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The Usual Way of Parallelization
The algorithm is sprinkled with parallelization blocks

� MPI

� Threading/Tasking

� ILP/Unrolling

� Vectorization

� GPU-Offloading
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Layered Approach
Parallelization is hidden in different layers

� MPI

� Threading/Tasking

� ILP/Unrolling

� Vectorization

� GPU-Offloading
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Software Stack

Laptop Desktop Cluster Exascale HW

Comm. Library: MPI �

Tasking Library: Eventify

Coulomb Library: FMSolvr

Application I: Gromacs
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CPU Tasking Framework
Task life-cycle per thread

Dispatcher

TaskFactory LoadBalancer

�

Queues

� Task execution

� new task � task

Tasks can be computation or communication tasks

Tasks can be prioritized by task type

Only ready-to-execute tasks are stored in queue

Workstealing from other threads is possible
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Adding Inter-node Communication via MPI
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Rationale: writing to data structure should not be concurrent ⟶ avoid critical sections
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MPI Details

Code

while (notFinished()){

executeTask();

Status = Communicator.Iprobe();

if (Status.MessageNeeded()){

Communicator.Irecv();

} else {

Communicator.Discard();

}

/*do something else */

Communicator.Wait();

/*use received data */

}

MPI Calls

Isend to all ranks

Iprobe busy waiting for messages

Call Irecv for messages in any case

If message not needed, write data to

dummy buffer

Call Wait before using data
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Distinguishing Incoming Messages

MPI_I[send|recv](buf,

count,

datatype,

[dest|source],

tag,

comm,

request)

0 1 0 … 0 1 1 0 1 1 0 1

type

2 Bits

depth

3 Bits

ID

rest (usually 27 Bits)

It’s in the Tag

MPI send / receive operations need a tag

(integer)

Information can be encoded in this tag

Type of sent data (multipole, local moment,

particle)

Level of the corresponding box (2d⋅level

boxes)

ID of box on this level

This essentially mimics a matching probe /

receive operation

Member of the Helmholtz Association September 10, 2020 Slide 6



Results from JURECA
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Results from JURECA
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Outlook

Race condition in multithreaded MPI, no multithreading + MPI yet

Handle message information more generally not via tag

Restrict send operations to just some ranks

Communicate data in larger chunks (defined by communication algorithm)
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Questions?

� Please feel free to contact us via email if you have any questions.

� Ivo Kabadshow

� i.kabadshow@fz-juelich.de
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