
Message in a Bottle

Communication for the FMM

September 10, 2020 Ivo Kabadshow, Mateusz Zych, Laura Morgenstern Jülich Supercomputing Centre

Member of the Helmholtz Association

The Usual Way of Parallelization
The algorithm is sprinkled with parallelization blocks

� MPI

� Threading/Tasking

� ILP/Unrolling

� Vectorization

� GPU-Offloading

Member of the Helmholtz Association September 10, 2020 Slide 1



Layered Approach
Parallelization is hidden in different layers

� MPI

� Threading/Tasking

� ILP/Unrolling

� Vectorization

� GPU-Offloading

Member of the Helmholtz Association September 10, 2020 Slide 1

Software Stack

Laptop Desktop Cluster Exascale HW

Comm. Library: MPI �

Tasking Library: Eventify

Coulomb Library: FMSolvr

Application I: Gromacs

Member of the Helmholtz Association September 10, 2020 Slide 2



CPU Tasking Framework
Task life-cycle per thread

Dispatcher

TaskFactory LoadBalancer

�

Queues

� Task execution

� new task � task

Tasks can be computation or communication tasks

Tasks can be prioritized by task type

Only ready-to-execute tasks are stored in queue

Workstealing from other threads is possible

Member of the Helmholtz Association September 10, 2020 Slide 3

Adding Inter-node Communication via MPI

Thread 0

Thread 1

⋮

Thread n

Rank 0

Thread 0

Thread 1

⋮

Thread n

Rank 1

⋯

Thread 0

Thread 1

⋮

Thread n

Rank k

⋯

Receiving Sending

Sending

Sending

Sending

Rationale: writing to data structure should not be concurrent ⟶ avoid critical sections

Member of the Helmholtz Association September 10, 2020 Slide 4



MPI Details

Code

while (notFinished()){

executeTask();

Status = Communicator.Iprobe();

if (Status.MessageNeeded()){

Communicator.Irecv();

} else {

Communicator.Discard();

}

/*do something else */

Communicator.Wait();

/*use received data */

}

MPI Calls

Isend to all ranks

Iprobe busy waiting for messages

Call Irecv for messages in any case

If message not needed, write data to

dummy buffer

Call Wait before using data

Member of the Helmholtz Association September 10, 2020 Slide 5

Distinguishing Incoming Messages

MPI_I[send|recv](buf,

count,

datatype,

[dest|source],

tag,

comm,

request)

0 1 0 … 0 1 1 0 1 1 0 1

type

2 Bits

depth

3 Bits

ID

rest (usually 27 Bits)

It’s in the Tag

MPI send / receive operations need a tag

(integer)

Information can be encoded in this tag

Type of sent data (multipole, local moment,

particle)

Level of the corresponding box (2d⋅level

boxes)

ID of box on this level

This essentially mimics a matching probe /

receive operation

Member of the Helmholtz Association September 10, 2020 Slide 6



Results from JURECA

SMT
10−2

10−1

R
u
n
ti
m
e
[s
]

MPI Ranks Different Nodes

MPI Ranks Same Node

N = 1000, p = 3, d = 3

SMT

1 2 4 8 16 24 48

10−1

100

#Ranks

R
u
n
ti
m
e
[s
]

Ideal Scaling

MPI Ranks Different Nodes

MPI Ranks Same Node

N = 103680, p = 10, d = 4

Member of the Helmholtz Association September 10, 2020 Slide 7

Results from JURECA

SMT

10−2

10−1

R
u
n
ti
m
e
[s
]

Threads

MPI Ranks Same Node

MPI Ranks Same Node

N = 1000, p = 3, d = 3

SMT

1 2 4 8 16 24 48

10−1

100

#Workers per Node

R
u
n
ti
m
e
[s
]

Ideal Scaling

Threads

MPI Ranks Same Node

MPI Ranks Same Node

N = 103680, p = 10, d = 4

Member of the Helmholtz Association September 10, 2020 Slide 8



Outlook

Race condition in multithreaded MPI, no multithreading + MPI yet

Handle message information more generally not via tag

Restrict send operations to just some ranks

Communicate data in larger chunks (defined by communication algorithm)

Member of the Helmholtz Association September 10, 2020 Slide 9

Questions?

� Please feel free to contact us via email if you have any questions.

� Ivo Kabadshow

� i.kabadshow@fz-juelich.de

Member of the Helmholtz Association September 10, 2020 Slide 10


