

DL4Fugaku: AI frameworks on Fugaku

BOS: Challenges and opportunities with running AI workloads on HPC systems 11th JLESC Workshop, September 9th, 2020

Kento Sato

High Performance Big Data Research Team RIKEN Center for Computational Science (RIKEN R-CCS)

X Some of software introduced in the slides is under development. Experimental results will be changed in future in the course of tuning

Supercomputer Fugaku & Deep learning

- Large-scale deep learning is emerging as an essential machine learning approach for many research challenges such as image recognition, segmentation and natural language processing
- Fast and scalable large-scale deep learning enables us to train neural networks with more training data in shorter time
- Fugaku/A64FX is expected to achieve high performance DNN training/inference
- GPU has become a popular platform for executing DL, but we revisit the idea of running DL on CPUs in large-scale environments

Source: Toshiyuki Shimizu

, Post-K Supercomputer with Fujitsu's Original CPU, A64FX Powered by Arm ISA

- → High performance FP16/INT8
- \rightarrow High bandwidth memory (1024 GB/sec)
- → Scalable TofuD interconnect

To make use of Fugaku/A64FX performance, tuning AI software stack is indispensable

DL4Fugaku: Deep learning for Fugaku

- Objective: Fast and scalable deep learning on Fugaku/A64FX
 - Conduct porting, performance analysis and tuning
 - Deploy large-scale deep learning environment
 - Enhance the usability for production use in Fugaku

- RIKEN R-CCS internal teams are working together
 - Under collaboration with Industry & academia
 - Porting, tracing DL, performance analysis, tuning, merge to upstream

RIKEN R-CCS		\sim	Collat	Collaborators		
Operation team	Application tuning development unit		AIST	Fujitsu limited		
Research teams	High performance AI system research team		ARM	Linaro		
	High performance big data research team	Γ	Cybozu	Tokyo Tech		
	Large-scale parallel numerical computing technology research team		Fujitsu Laboratories	(alphabetical order		

Nov. 25th, 2019

Right : Naoki Shinjo, Head of Unit. Platform Development Unit. Fujitsu Limited Left : Satoshi Matsuoka, R-CCS Director

Survey on DL framework usage in Japan

Period

- Oct., 2019 to Nov., 2019
- Target organizations and users
 - RIKEN R-CCS
 - RIKEN AIP
 - Users from HPCI Strategic Program
 - Users of ABCI at AIST
 - $\rightarrow\,$ Potential Fugaku users who use DL frameworks answered this questionnaire

* "Other" users develop and use their own DL frameworks

Popular DL frameworks are either TensorFlow, PyTorch or Chainer → We plan to support these three frameworks on Fugaku

Porting and Tuning approach

• Deep learning software stack

- Deep learning frameworks are relying on low-level numerical libraries optimized for specific hardware
 - cuDNN for NVIDIA GPU, OneDNN for Intel CPU, ??? for A64FX

• Approach

• We decided to tune OneDNN for Fugaku's A64FX CPUs (OneDNN_aarch64) instead of full scratch development

Current status

- Most of porting and tuning are finished
- The source codes are in a github repository
 - <u>https://github.com/fujitsu/dnnl_aarch64</u>
- We also contribute to upstream of OneDNN repo

Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) → Deep Neural Network Library (DNNL) → oneAPI Deep Neural Network Library (oneDNN)

Slide courtesy of Jin Takahashi, Fujitsu laboratory ltd. with translation and modifications

Perfomrance Evaluation: ResNet-50 on A64FX (A single node)

Environment

• HW: A64FX (2.2GHz, 48 cores, HBM2 32GB)

() PyTorch v1.5.0

• SW: Fujitsu compier (fcc), Fujitsu numerical librariys (SSL-II)

II) PyTorch/ResNet-50(training)/ImageNet2012

Ref.) NVIDIA GPU v100: 905 ips [1]

[1] NVIDIA Data Center Deep Learning Product Performance, https://developer.nvidia.com/deep-learning-performance-training-inference

Slide courtesy of Jin Takahashi, Fujitsu laboratory ltd. with translation and modifications

Perfomrance Evaluation: ResNet-50 on A64FX (Multi-node)

Environment

- HW: A64FX (2.2GHz, 48 cores, HBM 32GB), TofuD interconnect
- SW: Fujitsu compier (fcc), Fujitsu numerical librariys (SSL-II), Horovod

Now, we are benchmarking in larger scale in other NNs More results will be open soon

Slide courtesy of Jin Takahashi, Fujitsu laboratory ltd. with translation and modifications

