
FIND OUT MORE AT http://icl.cs.utk.edu/parsec

SPONSORED BYIN COLLABORATION WITH WITH SUPPORT FROM

National Science Foundation

PaRSEC is a generic framework for architecture aware scheduling and
management of micro-tasks on distributed many-core heterogeneous
architectures. Applications we consider can be expressed as a Direct Acyclic Graph
of tasks with labeled edges designating data dependencies. DAGs are represented
in a compact problem-size independent format that can be queried on-demand to
discover data dependencies in a totally distributed fashion. PaRSEC assigns
computation threads to the cores, overlaps communications and computations and
uses a dynamic, fully-distributed scheduler based on architectural features such as
NUMA nodes and algorithmic features such as data reuse.

FEATURES

Supports Distributed Heterogeneous Platforms
Sustained Performance
NUMA & Cache Aware Scheduling
State-of-the-art Algorithms
Capacity Level Scalability
Performance Portability
Implicit Communication
Communication Overlapping

Node0

Node1

Node2

Node3

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

PAST

ACTIVE

FUTURE

Input serial codes are converted automatically by the PaRSEC compiler into the
task Dataflow representation which can also be edited by the programmer. The
Dataflow compiler generates the stubs that, along with the Data distribution
provided by the programmer via Domain Specific Extensions, the Application
code & Codelets, the Runtime and relevant libraries are linked by the system
compiler to generate the executable that will run on a heterogeneous distributed
memory supercomputer.

PaRSEC uses a symbolic, problem size independent representation to express
the Directed Acyclic Graph (DAG) of the Dataflow of a program. As a result, at
runtime, successors and predecessors of any given task can be evaluated
independently, without exploring portions of the DAG pertaining to tasks
localized on other nodes. Furthermore, the whole DAG is never unfolded, and
only the set of locally active tasks resides in the memory at any given time.

PaRSEC TOOLCHAIN

APPLICABILITY DOMAINS

EFFICIENT DATA FLOW
REPRESENTATION

CORES 3 6 9 3 6 93 6 9 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9

20

40

60

80

80

70

60

50

40

30

20

10

0

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Pe
rf

or
m

an
ce

 (T
Fl

op
/s

)

afshell10
(D,LU)

FilterV2
(Z,LU)

Flan
(D,LLT)

audi
(D,LLT)

MHD
(D,LU)

Geo1438
(D,LLT)

pmlDF
(Z,LDLT)

HOOK
(D,LU)

Serena
(D,LDLT)

internal runtime with PaRSEC

 0

 1

 2

 3

 4

 5

 6

 7

16x1 16x2 16x4 16x8

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Nodes x Cores/Node

Number of Nodes

Original (isolated) icsd_t2_8()
PaRSEC (isolated) icsd_t2_8()

D
E
V
E
L
O
P
E
R
S

zgeqrt

zgeqrt2

zttqrtdormqr dormqr

zgeqrt

zgeqrt2

dormqr dormqr

zgeqrt

zgeqrt2

zttqrtdormqr dormqrzttmqr zttmqr

zttmqr zttmqrzgeqrt

dormqr

zgeqrtzgeqrt2

zttqrt

dormqr

zttmqr

zgeqrt2

zgeqrt

zgeqrt2

PARAMETRIC DAG

DYNAMIC TASK DISCOVERY

DATA DISTRIBUTION

SCHEDULING HINTS

High-level DSLs

Sequential
Source Code

Domain Science
CHEMISTRY, NUCLEAR PHYSICS, ...

for i = 1:N
for j = 1:M

 for k = 1:L
 T[j,k] = X[i][j][k]* Y[k][j][i]

z = sum(X)

Write high-level DSLs (Tensor
contraction, Block Sparse,
Trees, ...)

Annotate loop nests using
language extensions

APIs give information
to the run-time such as:
• data distribution (across nodes)
• data organization
• data serialization functions
• object construction/destruction

NWCHEM (EXECUTION OF ICSD_T2_8()) SPARSE DIRECT SOLVER PaSTIX DENSE LINEAR ALGEBRA (192 GPU CLUSTER)

DPOTRF h-PaRSEC

DPOTRF PaRSEC

DGEQRF PaRSEC
DGEQRF h-PaRSEC

DGEQRF ideal

DPOTRF ideal

1 4 8 16 32 36 48 64

