
Memory Traffic and Complete Application Profiling
with PAPI Multi-Component Measurements

Daniel Barry, Heike Jagode, Anthony Danalis, Jack Dongarra
Innovative Computing Laboratory, University of Tennessee, Knoxville, TN USA

dbarry@vols.utk.edu
{jagode, adanalis, dongarra}@icl.utk.edu

Abstract—Some of the most important categories of perfor-
mance events count the data traffic between the processing cores
and the main memory. However, since these counters are not core-
private, applications require elevated privileges to access them.
PAPI offers a component that can access this information on
IBM systems through the Performance Co-Pilot (PCP); however,
doing so adds an indirection layer that involves querying the PCP
daemon. This paper performs a quantitative study of the accuracy
of the measurements obtained through this component on the
Summit supercomputer. We use two linear algebra kernels—
a generalized matrix multiply, and a modified matrix-vector
multiply—as benchmarks and a distributed, GPU-accelerated
3D-FFT mini-app (using cuFFT) to compare the measurements
obtained through the PAPI PCP component against the expected
values across different problem sizes. We also compare our
measurements against an in-house machine with a very similar
architecture to Summit, where elevated privileges allow PAPI to
access the hardware counters directly (without using PCP) to
show that measurements taken via PCP are as accurate as the
those taken directly. Finally, using both QMCPACK and the 3D-
FFT, we demonstrate the diverse hardware activities that can be
monitored simultaneously via PAPI hardware components.

I. INTRODUCTION

The amount of data that is moved between the processor and
the main memory of a computer often has a higher impact on
the performance of an application than any other aspect of
the application. Typically, application developers, as well as
compiler optimizations, try to structure data accesses so that
the cache hierarchy is utilized in order to minimize traffic to
the main memory. However, data still needs to be transferred
to and from the main memory for all but the simplest codes.

Assessing the amount of memory traffic during the execu-
tion of a program relies on hardware counters that are not
private to the core in which the program is running, and
thus are referred to as “uncore,” “northbridge,” or “nest,”
depending on the hardware vendor.1 However, since the main
memory is a shared resource among all processes, applications
must run with elevated privileges in order to access these
hardware counters. Unfortunately, the typical user of high
performance systems, such as the Summit supercomputer,
does not usually have the privileges needed to query the nest
counters. To circumvent this problem, IBM chose to utilize
the Performance Co-Pilot (PCP) [1] to export nest-related
information to ordinary users.

The middleware library PAPI [2] offers a component that
interfaces with PCP. Through this component, third-party per-

1In the rest of this document we will use the term “nest” since our work
is focused on IBM systems.

formance tools that depend on PAPI to access hardware coun-
ters, such as TAU [3], Score-P [4], Vampir [5], Caliper [6],
etc., can acquire information regarding the memory traffic
of applications without the need for elevated privileges. The
PCP component of PAPI operates by communicating with the
Performance Metrics Collector Daemon (PMCD) running on
a given system. The PMCD runs with the special privileges
needed to query the nest hardware counters. PAPI then queries
the PMCD via the PCP component without the user requiring
any special permissions. This enables all PAPI users to mon-
itor nest hardware events from user space without elevated
privileges and without using multiple APIs to access these
hardware counters from across the system. Also, one of PAPI’s
commitments as a portability layer is the thorough validation
of the hardware events exposed to the user to account for
unreliable counters, especially when there are multiple sources
of events.

Another burden in assessing whether an application uses the
available resources efficiently is the heterogeneous nature of
modern machines. This has resulted in modern applications
that have a hierarchical structure in order to utilize multi-
core CPUs, GPUs, and distributed-memory execution all at
the same time. However, assessing whether all the parts
of an application use the corresponding hardware compo-
nents efficiently and timely requires collecting information
from multiple diverse sources at the same time. The multi-
component structure of PAPI allows this diverse collection of
data, and as we demonstrate in this paper, enables the user to
assess the efficiency of the whole execution.

The following contributions are achieved in this work.

• We showcase monitoring of performance events that
measure memory traffic using the PAPI PCP component.
We perform a series of experiments with various com-
putational kernels—DGEMM, a modified DGEMV, and
data re-sorting subroutines of a distributed-memory 3D-
FFT—to quantify the accuracy of the measurements taken
via PCP.

• We evaluate the accuracy of measurements taken via
PCP and compare them with those taken directly from
hardware counters.

• We elucidate micro-architecturally driven nuance in mem-
ory traffic incurred by streaming and strided data access
patterns. Accessing data in strides has a similar impact
on memory traffic as utilizing software prefetching. Both
incur a read-per-write to memory.

393

2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-1199-0/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPSW59300.2023.00070

• We use a hybrid 3D-FFT mini-app and the QMCPACK
application to demonstrate how PAPI can be used to
monitor and correlate the activity of multiple hardware
components of a heterogeneous, distributed-memory sys-
tem.

We conduct experiments on two systems:

• Summit at the Oak Ridge National Laboratory: each
compute node has two sockets containing 22-core IBM
POWER9 CPUs and NVIDIA Tesla V100 GPUs. We do
not have elevated privileges on this system; therefore, we
use the PAPI PCP component to measure memory traffic.

• Tellico at the University of Tennessee Knoxville: a
two-socket testbed containing 16-core IBM POWER9
CPUs in which we do have elevated privileges, so we
measure nest events without the use of PCP. We define
the perf uncore events using the Nest IMC Memory
Offsets [7]. This serves as a basis for comparison of the
fidelity of measurements from Summit using PCP.

The memory traffic performance events we measure on these
systems are listed in Table I.

TABLE I: Architectures and Performance Events

System Arch. Performance Events

Summit
IBM

POWER9

pcp ::: perfevent .hwcounters.nest mba[0−7]
imc.PM MBA[0−7] [READ|WRITE]

BYTES.value:cpu[87|175]

Tellico
IBM

POWER9
power9 nest mba[0−7]::PM MBA[0−7]

[READ|WRITE] BYTES:cpu=0

In our experiments, we pin only one thread to each physical
core. Although there are 22 cores per socket, one of these
cannot be accessed by the user because it is “set aside for
system service tasks” [8].

II. BLAS BENCHMARKS FOR MEMORY TRAFFIC

There are two prevalent Basic Linear Algebra Subpro-
grams (BLAS) operations we use to evaluate the accuracy
of memory traffic measurements from the PCP component:
the matrix-vector (GEMV) and matrix-matrix multiplications
(GEMM). Validating PAPI’s capabilities to monitor memory
traffic contributes to an ongoing effort to design scalable
math library routines. However, we cannot inspect proprietary
vendor library kernel implementations at a sufficient fine-grain
granularity in order to use them to verify the identities of
performance hardware events. Hence, we examine reference
implementations of these two BLAS operations. Note that the
absolute performance achieved by these kernels is not relevant
to this work. We only use them to evaluate the accuracy
of the measurements of the hardware counters against the
expected behavior of these kernels, and therefore the reference
implementations are entirely sufficient for this study. We vary
the size of these operations and monitor and analyze their
memory reading and writing traffic.

In previous work [9], we accounted for noise in memory-
related measurements on Intel architectures by taking the
minimum or median counter reading of multiple executions,
or repetitions, of BLAS operations. On IBM POWER9, we
used the average over 512 repetitions of the DOT operation,

executing a different problem size each time to prevent data
reuse. Since the work presented here focuses exclusively on
POWER9, we use average readings for GEMV and GEMM.
Also, we vary the number of repetitions with problem size
and contrast batched and serial kernels, while in the previous
work, we only used serial kernels.

A. GEMV

Suppose we have the vectors x ∈ R
N ,y ∈ R

M and a ma-
trix A ∈ R

M×N , with each element being a double-precision,
floating-point number. The GEMV operation is defined as
y = Ax, where the ith element of vector y is the dot product
of the vector x and the ith row of matrix A.

1 for (i = 0; i < M; i++){
2 /* Dot product of row of A and x. */
3 sum = 0.0;
4 for (k = 0; k < N; k++)
5 sum += A[i][k] * x[k];
6 /* Store result in memory. */
7 y[i] = sum;
8 }

Listing 1: Reference GEMV Kernel.

Per line 6 of Listing 1, the reference GEMV incurs one read
from memory to retrieve the kth element of a row of matrix
A and one read to retrieve the kth element of input vector x.
The vector x gets reused for every successive iteration of the
outer for-loop, so if it fits in the cache it will only be read
from memory once, in the first iteration of the outer for-loop.
Therefore, the entire kernel causes N reads for vector x, M×N
reads for matrix A (which is only accessed once, so no reuse
is possible), and M reads are incurred by the hardware when
writing into the vector y. Therefore, a total of M×N+M+N
elements are read from memory for GEMV.

In order to observe a very large amount of memory writing
traffic, the resulting vector y must be large, since only y
is being written. However, to produce a vector y of size M
we need a source matrix of size M×N. Storing this matrix in
memory limits the maximum output size M that we can use
in our experiments. Making things even worse, in our actual
experiments we store a different matrix A for each thread.
The reason this is necessary is because if all threads shared
a common matrix A, then one of the threads would fetch
a portion of the matrix into the shared L3 cache, and the
other threads would read it directly from there, resulting in
a complicated data transfer pattern that is difficult to predict
and analyze. Furthermore, to ensure no data is cached between
different repetitions of our experiment we use a different
matrix A for each repetition. Therefore, when using a large size
M the memory requirements for allocating all the necessary
data would exceed the practical memory limitations of the
systems we used. One option is to use a matrix with a small
width, N, and only vary the height, M. Even with this approach,
we would still encounter the limitation of how big of a problem
size we can use, as we only limit the width of matrix A.

As such, we used a modified operation to limit both the
width and height of matrix A without restricting the size of
the vector y. This allows us to simulate the memory traffic of
a GEMV that computes a very large vector y (thus increasing
memory write traffic) while not consuming as much memory

394

for allocating matrix A. The modified operation is defined as
follows. We introduce the new variable P = min{M,N} and
cap the size of matrix A to P×N. Then we access the rows of
matrix A multiple times using the index ip = i%P.

yi =
N

∑
k=1

aip,k · xk (1 ≤ i ≤ M) (1)

We refer to this as the capped GEMV because it caps the
size of matrix A, regardless of the size of the output vector y.

�����

���� ���������

�

•

�

� �

�

�����������������•������

�

Fig. 1: Capped GEMV memory usage schematic.

This capping of memory allocation is shown visually in
Figure 1 with the shaded area of size P×N on the top of
the matrix depicting the capped amount of memory that is
needed, and the area with the diagonal pattern in the bottom
depicting the amount of memory that is not required. Factoring
in the multiple copies of matrix A that are needed to facilitate
multiple threads and multiple repetitions, as we explained
earlier, one can easily see that this modified kernel allows for
a much larger vector y and thus much higher writing traffic
to memory than the unmodified GEMV.

1 P = min(N,M);
2 #pragma omp parallel for schedule(static)
3 for (idx = 0; idx < numThreads; idx++)
4 for (i = 0; i < M; i++){
5 /* Dot product row of A and x. */
6 sum = 0.0;
7 for (k = 0; k < N; k++)
8 sum += A[idx][i%P][k] * x[idx][k];
9 /* Store result in memory. */

10 y[idx][i] = sum;
11 }

Listing 2: Batched, Capped GEMV.

Listing 2 shows the code which executes a batch of
numT hreads independent capped GEMV operations (one per
physical core). The purpose of this batched, capped GEMV is
to occupy all physical cores with work, without introducing
communication between OpenMP threads. This version of the
kernel creates numT hreads times more reading and writing
volume than the single-threaded, capped GEMV.

The memory access pattern is the same as the unmodified
GEMV, when the size of the capped matrix A exceeds the
size of the caches. Namely, each thread must read a total of
M×N+M+N elements and write M elements.

B. GEMM
Suppose we have three matrices A,B,C ∈ R

N×N , with each
element being a double-precision, floating-point number. The
GEMM operation is defined as C = AB, where the element in
row i, column j of C is the dot product of the ith row of A
and the jth column of B:

ci j =
N

∑
k=1

ai,kbk, j (1 ≤ i, j ≤ N) (2)

1 #pragma omp parallel for schedule(static)
2 for (i = 0; i < N; i++)
3 for (j = 0; j < N; j++){
4 /* Dot product of row of A and column of B. */
5 sum = 0.0;
6 for (k = 0; k < N; k++) {
7 sum += A[i][k] * B[k][j];
8 }
9 /* Store result in memory. */

10 C[i][j] = sum;
11 }

Listing 3: Reference GEMM.

Line 7 of Listing 3 shows that the whole matrix B is
accessed by the two inner most loop, since it’s only indexed
by k and j. Therefore, if matrix B is small enough (as it is in
most of our experiments), it will be cached and will not incur
traffic from main memory in any but the first iteration of the
outer most loop (i = 0). Matrix A will be accessed one row at
a time, and each row will be reused multiple times back-to-
back, while it still resides in cache. Therefore each line of A
will incur traffic from main memory only once. Similarly to
the case of GEMV, the output matrix C is not read, but only
written by the kernel, but most modern hardware architectures
will impose a read operation for each element written into
C. Therefore, the whole kernel will cause a total of 3×N2

elements to be read from main memory when the matrices fit
in the cache, and higher when they do not.

1 #pragma omp parallel for schedule(static)
2 for (idx = 0; idx < numThreads; idx++)
3 for (i = 0; i < N; i++)
4 for (j = 0; j < N; j++){
5 /* Dot product of row of A and column of B. */
6 sum = 0.0;
7 for (k = 0; k < N; k++) {
8 sum += A[idx][i][k] * B[idx][k][j];
9 }

10 /* Store result in memory. */
11 C[idx][i][j] = sum;
12 }

Listing 4: Batched GEMM.

Listing 4 shows the code which executes a batch of
numT hreads independent GEMM operations (one per physical
core). As in the case with the batched, capped GEMV, the
purpose of this code is to load each physical core with work
such that there is no communication among the OpenMP
threads. So there is numT hreads times as much reading and
writing as there is for the single-threaded, reference GEMM.

III. BENCHMARK RESULTS

In Figure 2a, we see the measurements for reading and
writing memory traffic taken during the execution of the
GEMM benchmark using a single thread running on one core.

395

The dashed lines reflect the expected memory traffic multiplied
by 8 (8 bytes per double-precision element) and divided by
64 (each memory read or write occurs in 64-byte chunks, or
half cache-line size). The IBM POWER9 architecture has the
“capability to fetch only 64 bytes of data (half cache lines),
instead of the normal full cache-line size of 128 bytes of data
from the memory” [10].

The shaded, banded region in the figure represents the
range of problem sizes for which we expect the measurements
to diverge from the expectations. This derives from the fact
that the expectations are formulated under the assumption of
caching. But when the problem sizes fall within or surpass
this shaded region, meaningful caching ceases to occur. The
lower bound of this region assumes that all three matrices (A,
B, and C) are cached during the GEMM operation. This bound
is computed by setting the size of the L3 cache (5MB) equal
to the memory consumed by A, B, and C and solving for N:

8× (3×N2) = 5×10242 =⇒ N ≈ 467 (3)

The upper bound of this region assumes that the entirety of
only one of A, B, or C is cached during the GEMM operation.
This bound is computed by setting the size of the L3 cache
equal to the memory consumed by one of the matrices:

8×N2 = 5×10242 =⇒ N ≈ 809 (4)

On Summit, there are 21 usable cores in a socket organized
in 11 core pairs, and there is a total of 110 MB of L3 cache.
Each core pair is delegated a 10MB cache slice, therefore
each core can use up to 5MB of L3 cache without creating
contention. When the other cores on the same socket are idle,
their local L3 cache slices can be re-appropriated by the active
core, giving the active core 110 MB worth of cache.

As shown by Figure 2a, when measuring the behavior of
a single-threaded (serial) GEMM kernel, neither the reading
nor writing memory traffic adhere to the expectations. We also
observe this to be the case when we repeat the experiment
on our testbed, Tellico, a system in which we have privileged
access to the nest counters (see Figure 2b). The memory traffic
deviates from the expectation whether or not we measure it via
PCP, and the measurements for small matrices are dominated
by noise.

To amortize the noisy component of the memory traffic
measurements, we can execute multiple GEMM operations
and take the average of their aggregate memory traffic [9].
But how many repetitions are necessary?

From inspection of Figures 2a and 2b, the memory traffic
deviates less from the expectation for larger GEMM operations
(while they still fit in the cache). This makes intuitive sense
because there is more memory traffic for larger problem
sizes. Hence, it takes more time for the operation to execute,
giving the counters sufficient time to update; whereas, smaller
operations execute too quickly for the counters to accurately
reflect the hardware activity which took place. It follows that
fewer repetitions are needed for larger problem sizes.

In Figure 3a, we adapt the number of repetitions for a given
problem size (N) per Equation 5.

Repetitions(N) =

{
�514−0.246×N�, N < 2048

10, N ≥ 2048
(5)

(a) PCP Events.

(b) Perf uncore events.

Fig. 2: Memory traffic of single-threaded GEMM operation
on IBM POWER9 measured with (a) PCP events and (b)
Perf uncore events using only 1 repetition.

This is a simple formula for ensuring that we will execute
around 500 repetitions for small matrix sizes and linearly drop
to 10 repetitions for the largest sizes. These numbers are design
decisions based on empirical observations in Figures 2a and 2b
and are not the unique solution of some underlying formula.
Other qualitatively similar numbers of repetitions would also
work. In Section IV, we show that unlike the linear algebra
kernels, large 3D-FFT problems do not suffer from the same
level of noise and do not require repetitions.

In Figure 3a, we observe that when we use this adaptive
repetition scheme the average memory traffic measurements
exhibit much lower noise and are closer to the expectation.
However, the amount of traffic diverges from the expectation
as the problem size increases (while the matrices still fit in the
cache). We repeat the experiment using a batched GEMM so
that each physical core is assigned its own GEMM operation
(see Figure 3b). In this trial, the work done by each core is
independent of that done by every other core, so there is no
OpenMP communication. We can observed that in this case
the measured traffic matches the expectation very well, as soon
as the matrices exceed trivially small sizes and only diverges
when the matrices exceed the size of the cache, as expected
(see section II-B).

This raises the question of what is causing this extraneous
memory traffic when executing a single-threaded kernel. Could
this be an artifact of PCP? To ascertain this, we repeated the
experiment by measuring nest events directly on the Tellico

396

(a) Single-threaded GEMM.

(b) Batched GEMM.

Fig. 3: Memory traffic of (a) single-threaded GEMM versus
(b) Batched GEMM on IBM POWER9 measured with PCP
events.

testbed, where we have elevated privileges and thus access to
perf uncore events; the results are shown in Figures 4a and 4b.

As before, there is more memory traffic than expected
for larger problem sizes and a gradual deviation from the
expectation in the single-threaded execution, despite not using
PCP, and this deviation disappears when keeping all cores
busy.

Looking at these results we see that in the single-threaded
execution (both on Summit and Tellico) the memory traffic
does not jump when the matrix size N exceeds the threshold
807 which corresponds to the 5MB cache slice per core.
However, when all 21 cores are active there are no other
available cache slices that a given core can use, because all of
the L3 slices are already in use, and the memory traffic jumps
drastically when each of the 21 batched GEMM operations
exceed 5MB of data.

In Figure 5a, we show the results of running the capped
GEMV kernel. For small sizes we use a square matrix A (i.e.,
M=N=P) and therefore the kernel performs a regular GEMV
operation. When the size M reaches the point where the matrix
exceeds the size of the L3 cache, then we fix the width (N) of
the matrix, and proceed with the capped GEMV, where P=N
and only the size M of the vector y grows. Since each thread
has access to 5MB of L3 cache, this transition happens when
M=N=P=1280.

Looking at the figure one can see that the amount of
reading from memory perfectly matches our expectations.

(a) Single-threaded GEMM.

(b) Batched GEMM.

Fig. 4: Memory traffic of (a) single-threaded GEMM ver-
sus (b) Batched GEMM on IBM POWER9 measured with
perf uncore events.

Specifically, when M<1280 the reading traffic matches what
is expected for a square GEMV (M2 + 2×M), and for larger
sizes the reading traffic matches what is expected for a capped
GEMV (M×N+M+N). However, there is more writing traffic
than expected, and we do not observe steady memory writing
until N exceeds 104. In an effort to investigate whether this
behavior is due to PCP, we repeated the experiment using our
Tellico tested (and perf uncore events). The results of this
experiment, shown in Figure 5b, show that there is extraneous
memory writing traffic in this environment as well. We also
reproduced this behavior on an Intel Skylake architecture
using perf uncore, although we do not include this graph due
to space limitations. Thus, this is neither a PCP-related nor
POWER9-specific phenomenon. Figures 5a and 5b reinforce
the need to have large-enough problem sizes which consume
sufficient time to attain stable, low-noise measurements; that
such a phenomenon is not PCP-specific; and measurements
taken via PCP are as accurate as those taken directly from
performance hardware counters.

These experiments demonstrate that in order to make mean-
ingful measurements of memory traffic, there needs to be
enough of it taking place, regardless of the measuring infras-
tructure, or the target architecture. Quantifying this effect, as
we have done here, is one of the contributions of this paper
and has implications for application developers who wish to
understand the behavior of their memory-bound codes.

397

(a) PCP Events.

(b) Perf uncore Events.

Fig. 5: Memory traffic of batched, capped GEMV on POWER9
measured with (a) PCP events, versus (b) perf uncore events.

IV. APPLICATION: 3D-FFT

Utilizing what we have learned about data movement be-
tween processing cores and main memory as well as the
Performance Co-Pilot, we now evaluate the fidelity of the
PCP component’s capabilities to monitor memory traffic of
production applications (and without using multiple kernel
repetitions) on Summit. We perform a case study on select data
re-sorting routines in a distributed 3D-FFT [11], [12] executed.
The 3D-FFT is a workhorse kernel utilized by various applica-
tions, such as HACC [13], GESTS [14], and QMCPACK [15],
among others. This implementation utilizes both CPU and
GPU cores in addition to network communication. The 3D-
FFT is defined as

Ãuvw =
N−1

∑
x=0

N−1

∑
y=0

N−1

∑
z=0

Axyzexp(�2πi
wz
N

)exp(�2πi
vy
N
)exp(�2πi

ux
N
)

(0 ≤ u,v,w ≤ N −1) (6)

where A, Ã ∈C
N×N×N are three-dimensional arrays containing

complex double-precision, floating-point numbers.
This 3D-FFT implementation decomposes the input data

array A into a two-dimensional r × c virtual processor grid
with each element in the grid corresponding to a distinct MPI
rank. This means the data array local to a single MPI rank is

of size N
r × N

c ×N. Each MPI rank is assigned to a socket (two
per compute node) on Summit. Since each socket has its own
nest, we measure PCP events per MPI rank. The re-sorting
routines are as follows:

• store 1st colwise forward (S1CF)
• store 1st planewise forward (S1PF)
• store 2nd colwise forward (S2CF)
• store 2nd planewise forward (S2PF)

The structure and performance of S1PF and S2PF are similar
to those of S1CF and S2CF, respectively, so we only show the
results of S1CF and S2CF.

Figures 6-9 illustrate the range between the minimum and
maximum measurements (of 50 runs) using a 2-by-4 virtual
processor grid. Pursuant to organically measuring a production
application job, we do not use the average of multiple repe-
titions as we did for the BLAS benchmarks. Since there is
relatively little measurement variation between runs for large
problems, only one run would be necessary.

A. S1CF

1 #pragma omp parallel for schedule(static)
2 for (plane = 0; plane < PLANES; plane++)
3 for (row = 0; row < ROWS; row++)
4 for (col = 0; col < COLS; col++)
5 tmp[plane][row][col]
6 = in[plane*ROWS*COLS + row*COLS + col];

Listing 5: S1CF, Loop Nest 1

This first loop nest in S1CF copies the contents of the
1D array in into the 3D array tmp. Since this routine is
executed once per MPI rank, in and tmp each contain
N
r × N

c × N = PLANES×ROWS×COLS double complex ele-
ments, each of which are 16 bytes. Aggregating across all
MPI ranks results in N3 elements copied from the in arrays
to the tmp arrays.

As we discussed in Section III, the event measurements
from the DGEMM shown in Figure 3b corroborate that a write
to memory automatically incurs a read from memory, as we
observe a read for not only matrices A and B, but also C, even
though C seemingly only needs to be written. Therefore, we
expect to observe two reads (one for each of in and tmp) but
only one write (for tmp). In Figure 6a, we indeed observe one
write; however, we only observe one read instead of two. In
the IBM POWER9 architecture, “hardware may detect Stride-
N streams in intervals when they access elements that map to
sequential cache blocks” [16]. In the case of the DGEMM,
there was indeed a strided access—that of the B matrix—
for which the hardware has detected a strided data stream.
However, in S1CF, the hardware does not detect a strided data
stream because in and tmp are accessed sequentially (i.e.
there is no stride). In the presence of a strided data stream,
the writes to variables will not bypass the cache, so they will
be read by the cache. In the absence of such a stream, the
writes indeed bypass the cache.

We can prevent cache-avoidant writes to memory by com-
piling the application using the -fprefetch-loop-arrays flag with
GCC. This flag provides the two assembly instructions shown
in Lines 2 and 3 in Listing 6.

398

(a) S1CF, Loop Nest 1 with no additional compiler optimizations.

(b) S1CF, Loop Nest 1 with compiler optimization -fprefetch-loop-arrays.

Fig. 6: Memory Traffic of Loop Nest 1 in S1CF.

1 tmp[plane][row][col]
2 404: 2c 4a 00 7c dcbt 0,r9
3 408: ec 41 00 7c dcbtst 0,r8
4 = in[plane*ROWS*COLS + row*COLS + col];

Listing 6: S1CF, Loop Nest 1 Assembly

The dcbtst instruction enables software prefetching by
“[causing] a single-line prefetch into the L3 cache” [10].
This forces tmp to be read into the cache from memory. In
Figure 6b, we observe the effect of this assembly instruction,
as there are now two reads: one for in and also for tmp.

1 #pragma omp parallel for schedule(static)
2 for (col = 0; col < COLS; col++)
3 for (plane = 0; plane < PLANES; plane++)
4 for (row = 0; row < ROWS; row++)
5 out[col*PLANES*ROWS + plane*ROWS + row]
6 = tmp[plane][row][col];

Listing 7: S1CF, Loop Nest 2

This second loop nest copies the contents from the 3D array
tmp into the 1D array out. Accounting for all MPI ranks, N3

elements are copied from the tmp arrays to the out arrays.

Figure 7a shows that we measure the expected one write
per iteration of the innermost loop shown in Listing 7, but
we measure more than the expected reads. Listing 7 shows
that tmp is accessed in strides. The dimensions of tmp are
ordered as PLANES by ROWS by COLS, but the loop nest
traverses tmp in order of COLS by PLANES by ROWS. Due
to this asymmetry in how tmp is arranged in memory versus
how it is traversed, a stride is present. As N increases, this
stride quickly exceeds the size of a cache line. This means

(a) S1CF, Loop Nest 2 with no additional compiler optimizations.

(b) S1CF, Loop Nest 2 with compiler optimization -fprefetch-loop-arrays.

Fig. 7: Memory Traffic of Loop Nest 2 in S1CF.

only a single element per cache line’s worth of contiguous
elements in tmp is usable—without an additional read from
memory—unless it can be cached.

When reading an element from tmp, an entire cache line
is read. Since tmp is accessed in strides of PLANES×ROWS,
the next element in the cache line is not used until another
PLANES×ROWS elements (and their corresponding cache

lines’ worth of data) have been read. Thus, 4× 16N2

8 bytes
are read before the next contiguous element in tmp is used
(division by 8 due to there being 8 processes).

Due to the strided access pattern, before the next contiguous
element from tmp is read, an additional PLANES×ROWS
elements are read from out (since each write to out in-
curs a read in the presence of a stride). These elements’
corresponding cache lines’ worth of data are read, but since
out is accessed sequentially, each element in a cache line is
immediately used. This means out does not consume more
of the cache space beyond its PLANES×ROWS elements. This

means that an additional 16N2

8 bytes of data occupy the cache
before the two sequential reads of tmp occur.

The size of the L3 cache is exceeded under the condition:

4× 16×N2

8
+

16×N2

8
= 5×10242 =⇒ N ≈ 724 (7)

For N > 724, an entire cache line must be read per iteration
of the innermost loop in Listing 7. Since a cache line is 64
bytes and a double complex element is 16 bytes, then 64

16 = 4
times as many reads must occur in order to supply all of tmp.
And since there is one read per write to out, then we expect

399

to observe up to 5 reads per iteration of the innermost loop in
Listing 7 when N > 724.

When we re-compile the second loop nest using the
-fprefetch-loop-arrays compiler flag, there is a significant im-
provement in performance due to more effective prefetching,

as shown in Figure 7b.

1 #pragma omp parallel for schedule(static)
2 for (plane = 0; plane < PLANES; plane++)
3 for (row = 0; row < ROWS; row++)
4 for (col = 0; col < COLS; col++)
5 out[col*PLANES*ROWS + plane*ROWS + row]
6 = in[plane*ROWS*COLS + row*COLS + col];

Listing 8: S1CF, Combined Loop Nest

Listing 8 shows S1CF written as a single loop nest. This
new loop nest accesses out in strides but in sequentially.
We expect there to be one write per innermost loop iteration
and two reads: one from in and—due to a strided access
pattern—one from out, which is significantly less reading
than we observed in the original S1CF. This is precisely what
we observe in Figure 8.

Fig. 8: S1CF with no additional compiler optimizations.

B. S2CF

1 /* c = cols in virtual proc. grid. */
2 X = COLS/c;
3 Y = c;
4 #pragma omp parallel for schedule(static)
5 for(plane = 0; plane < PLANES; plane++)
6 for(x = 0; x < X; x++)
7 for(y = 0; y < Y; y++)
8 for(row = 0; row < ROWS; row++)
9 out[plane*X*Y*ROWS + x*Y*ROWS + y*ROWS + row]

10 = in[y*PLANES*X*ROWS + plane*X*ROWS + x*ROWS + row];

Listing 9: S2CF

The loop nest in Listing 9 copies the contents from the 1D
array in into the 1D array out. Accounting for all MPI ranks,
N3 elements are copied from the in arrays to the out arrays.

In Figure 9a, there are as many reads and writes as we
expect to observe. Since there is not a stride present, the stores
bypass the cache, as observed in the case of the S1CF routine.
Strictly speaking, S2CF is not completely stride-free because
the dimensions of in are ordered Y by PLANES by X by
ROWS, but in is traversed PLANES by X by Y by ROWS. But
since the innermost dimension of the traversal matches the
innermost dimension of the ordering of in, the effect of the
stride is amortized.

(a) S2CF with no additional compiler optimizations.

(b) S2CF with compiler optimization -fprefetch-loop-arrays.

Fig. 9: Memory Traffic of S2CF.

For a larger-scale job, of which the results are shown in
Figure 10, we use 16 compute nodes on a 4-by-8 virtual
processor grid to perform computations on the problem sizes
N = {1344, 2016}. We do not use the -fprefetch-loop-arrays
compiler flag for this job. We expect two reads per write in
S1CF and one read per write in S2CF.

Fig. 10: Performance of S1CF and S2CF.

C. Acquiring a broad view of application behavior

In the study presented below, we use PAPI to simulta-
neously monitor three disparate performance metrics—GPU
power, network traffic, and memory traffic—of a GPU-enabled
application running on a distributed memory machine. The
application is a modified version of the 3D-FFT code we used
before, adapted to utilize the GPUs for the 1D-FFT operations.

400

Fig. 11: Performance profile of a single 3D-FFT rank.

Fig. 12: Performance profile of a single QMCPACK rank.

For our experiment we use 32 compute nodes and a 8-by-
8 virtual processor grid. GPU power and network traffic are
measured using the events in Table II. The performance profile
for this experiment is shown in Figure 11.

TABLE II: Supplemental Performance Events

Hardware PAPI
Component Performance Event

NVIDIA Tesla
V100 GPU

nvml
nvml ::: Tesla V100−SXM2−16GB:

device 0:power
Mellanox

ConnectX-5 Ex
infiniband

infiniband ::: mlx5 [0|1] 1 ext:
port recv data

This experiment illustrates the inner workings of the differ-
ent phases of the 3D-FFT, which utilize different categories
of hardware. The 1D-FFT phases entail host memory getting
copied to the GPU–a large amount of host memory being read;
the batch of 1D-FFT’s executed–a spike in GPU power; and
the results getting copied back to the host–a large amount
of host memory being written to. By cross-referencing the
memory traffic from the PAPI PCP component with the GPU

power available via the PAPI NVML component, we observe
this progression: a GPU power spike occurs precisely between
the transition from a high volume of host memory reading to
a relatively high volume of memory writing. Furthermore, we
observe approximately twice as much memory reading as we
do memory writing during the first and third data re-sorting
phases. This agrees with the previous observations of strided
memory accesses incurring a read for every write. During the
second and fourth re-sorting phases, we observe approximately
equal amounts of memory reading and writing. This is once
again due to the innermost dimension of the data traversal
matching the innermost dimension of the ordering of data
array, which effectively nullifies the effect the stride that is
occasionally present. These two re-sorting phases also realize
higher bandwidth due to better locality in their access patterns.
We observe a jump in network activity as measured via the
PAPI Infiniband component during the two “All2All” phases.
Using only native hardware events exposed via the various
components of PAPI, we are able to uniquely identify each
region of the 3D-FFT’s execution profile.

401

QMCPACK is a hybrid application which implements var-
ious Quantum Monte Carlo (QMC) algorithms to solve the
Schrödinger equation. For more information, please refer to
J. Kim et al. [15]. The example problem [17] used in our
QMCPACK experiment (on Summit) executes the Variational
Monte Carlo (VMC) method with no drift, then the VMC
method with drift, and finally, a Diffusion Monte Carlo (DMC)
method. Figure 12 demonstrates that the different stages in the
execution of QMCPACK are distinguishable by monitoring
separate hardware components simultaneously. Figure 11 is
qualitatively equivalent to Figure 12, reinforcing the objective
of PAPI’s multi-component monitoring capabilities for more
fine-grained insights into applications’ performance running
on heterogeneous HPC systems.

V. CONCLUSION AND FUTURE WORK

In this paper we have shown several examples of measuring
memory traffic using the Performance Co-Pilot. This technol-
ogy is particularly useful on systems in which users cannot
securely be granted elevated privileges. In such an environ-
ment, measuring application performance remains crucial.

The first major takeaway from the experimental results
outlined in this paper is that adapting the number of successive
executions of performance-critical kernels serves a technique
to accurately measure memory traffic. By measuring repeated
executions of a computational kernel, the noisy memory traffic
from other processes gets amortized. Doing adaptively fewer
repetitions for larger problem sizes saves both memory and
execution time. Unfortunately, our results also highlight the
fact that measuring the memory traffic of small kernels that do
not naturally repeat leads to measurements fraught with noise,
regardless of the measuring infrastructure or architecture.
Additionally, we observed that memory traffic measurements
from the PAPI PCP component are as accurate as those
measured directly from the perf uncore counters.

Memory traffic measurements taken using PCP are sensitive
to micro-architectural details, such as localized L3 cache
slices. It is useful for a performance-conscious programmer to
account for such peculiarities by executing a batch of kernels.
In the case of IBM POWER9, this was done by executing an
operation on each available CPU core.

Lastly, we generated profiles of the GPU power, memory
traffic, and network traffic for two distributed applications:
the 3D-FFT and QMCPACK. The 3D-FFT case study also
revealed nuanced architectural behavior, such as writing to
memory while bypassing the cache, as well as the GCC
compiler’s capability to toggle this feature off. This does show
that the programmer must be conscious of hardware details in
order to thoroughly interpret counter results.

PAPI provides a homogeneous interface to access different
counters, allowing programmers to simultaneously monitor
multiple, orthogonal performance metrics of interest via a
single API. Without this tool, the programmer would be tasked
with instrumenting application code with each performance
backend individually. PAPI is particularly useful for such hy-
brid applications as the 3D-FFT and QMCPACK, which utilize
multiple types of processors and other hardware components.

The main focus for future work is to extend these techniques
to accurately measure memory traffic for other BLAS opera-

tions in upcoming IBM systems (e.g. POWER10), as well as
other forthcoming architectures. It also will be important to
develop programming techniques to accurately measure other
categories of nest and uncore hardware events than those solely
related to memory traffic.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their improvement
suggestions. This research was supported in part by the Exas-
cale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration; and by the National
Science Foundation under award No. 1900888 “ANACIN-X.”

REFERENCES

[1] “Performance Co-Pilot (PCP),” https://pcp.io/index.html.
[2] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting Perfor-

mance Data with PAPI-C,” Tools for High Performance Computing 2009,
pp. 157–173, 2009.

[3] S. S. Shende and A. D. Malony, “The Tau Parallel Performance System,”
Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287–311, May
2006.

[4] M. Schlütter, P. Philippen, L. Morin, M. Geimer, and B. Mohr, “Profiling
Hybrid HMPP Applications with Score-P on Heterogeneous Hardware,”
in Parallel Computing: Accelerating Computational Science and Engi-
neering (CSE), ser. Advances in Parallel Computing, vol. 25. IOS
Press, 2014, pp. 773 – 782.

[5] H. Brunst and A. Knöpfer, “Vampir,” in Encyclopedia of Parallel
Computing, D. Padua, Ed. Springer US, 2011, pp. 2125–2129.

[6] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: Performance in-
trospection for hpc software stacks,” in SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2016, pp. 550–560.

[7] IBM Corporation, “Power9 performance monitor unit user’s guide,
2018,” https://wiki.raptorcs.com/w/images/6/6b/POWER9 PMU UG
v12 28NOV2018 pub.pdf.

[8] OLCF, “Summit user guide,” https://docs.olcf.ornl.gov/systems/summit
user guide.html.

[9] D. Barry, A. Danalis, and H. Jagode, “Effortless monitoring of arith-
metic intensity with papi’s counter analysis toolkit,” in Tools for High
Performance Computing 2018 / 2019. Cham: Springer International
Publishing, 2021, pp. 195–218.

[10] IBM Corporation, “Power9 processor user’s manual,”
https://www.ibm.com/developerworks/community/files/basic/
anonymous/api/library/35a0c17a-cd5e-4750-8f73-d98b6880d77b/
document/828804a0-e5d7-480c-bad1-cf21342c3889/media/POWER9\
%20Processor.pdf, 2018.

[11] H. Jagode, “Fourier transforms for the bluegene / l communication
network,” Master’s thesis, EPCC, The University of Edinburgh, 2006.

[12] H. McCraw, D. Terpstra, J. Dongarra, K. Davis, and R. Musselman,
“Beyond the CPU: Hardware Performance Counter Monitoring on Blue
Gene/Q,” in Proceedings of the International Supercomputing Confer-
ence 2013, ser. ISC’13. Springer, Heidelberg, June 2013, pp. 213–225.

[13] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heit-
mann, “Hacc: Extreme scaling and performance across diverse architec-
tures,” in SC ’13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2013, pp.
1–10.

[14] K. Ravikumar, D. Appelhans, and P. K. Yeung, “Gpu acceleration
of extreme scale pseudo-spectral simulations of turbulence using
asynchronism,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356209

[15] J. Kim et al., “Qmcpack: An open source ab initio quantum monte carlo
package for the electronic structure of atoms, molecules and solids,”
Journal of Physics Condensed Matter, vol. 30, no. 19, Apr. 2018.

[16] IBM Corporation, “Power isa version 3.0 b,” https://ibm.box.com/s/
1hzcwkwf8rbju5h9iyf44wm94amnlcrv.

[17] NVIDIA Corporation, “Qmcpack,” https://catalog.ngc.nvidia.com/orgs/
hpc/containers/qmcpack.

402

