
Composition of Algorithmic Building Blocks in
Template Task Graphs

Thomas Herault
Innovative Computing Laboratory

The University of Tennessee
Knoxville, TN, USA

Joseph Schuchart
Innovative Computing Laboratory

The University of Tennessee
Knoxville, TN, USA

Edward F. Valeev
Department of Chemistry

Virginia Tech
Blacksburg, Virginia, USA

George Bosilca
Innovative Computing Laboratory

The University of Tennessee
Knoxville, TN, USA

Abstract—In this paper, we explore the composition capabilities
of the Template Task Graph (TTG) programming model. We
show how fine-grain composition of tasks is possible in TTG be-
tween DAGs belonging to different libraries, even in a distributed
setup. We illustrate the benefits of this fine-grain composition on
a linear algebra operation, the matrix inversion via the Cholesky
method, which consists of three operations that need to be applied
in sequence.

Evaluation on a cluster of many core shows that the trans-
parent fine-grain composition implements the complex operation
without introducing unnecessary synchronizations, increasing the
overlap of communication and computation, and thus improving
significantly the performance of the entire composed operation.

Index Terms—Task-Based Runtime System, Template Task
Graph, Layered software design, Library composition

I. INTRODUCTION

The Template Task Graph (TTG) concept has recently been
introduced [1], [2] as the key abstraction of a homonymous
programming model targeting scalable distributed micro task-
based applications over modern high-performance computing
platforms. The power of TTG derives from its ability to encode
a finite directed acyclic graph (DAG) of tasks (or, rather,
families of DAGs) in a compressed form by exploiting the
regularity of structure of typical DAGs.

A TTG program consists of definitions of at least one TTG,
which includes the type of operations the graph can generate
(the Template Tasks, TTs), the types of input and output of
each of these TTs (for static error checking), and the definition
of how data (or control) messages can travel between the TTs.
Computation is kicked off by initial data or control messages
triggering a cascade of tasks dynamically instantiated by the
flow of messages through the graph, through any predecessor
task, executing on any thread across the entire execution
environment. For TTGs composed of “normal” tasks (those
that depend solely on replicated deterministic knowledge) the
static replicated definition of each TTG allows any thread on
any process to ’discover’ new tasks (or provide the input of
previously discovered tasks) without any communication, a
capability critical to ensure high scalability.

However, when designing software libraries that rely on
TTGs to implement their task-based algorithms, this introduces
a new challenge: as the actual DAG of tasks is discovered
dynamically during the execution from a predecessor task that
belongs to the same DAG, how can we ensure that tasks
discovered in one library can use data that has been produced
by tasks from another library? And how can we detect how
a successorship dependency can be established between tasks
from different DAGs, allowing a tasks to forward their output
to tasks belonging to another library?

A simple approach, embraced by many programming
paradigms as a mean to compose libraries, is to use syn-
chronizing fences between libraries: a DAG is fully unrolled
and executed, storing the results of its computations in des-
ignated memory, before the DAG of the next library starts
to execute, pulling the data from the same, well designated,
memory. These fences introduce unnecessary synchronization
in the parallel application and lead to sub-optimal use of
resources, i.e., less concurrency and potentially higher storage
requirements, and lower occupancy of computing resources
for imbalanced algorithms. Therefore, such synchronization
points and the ensuing serial portions of code may severely
limit scalability [3].

Many existing DAG runtime systems allow a fine-grain
composition of tasks, but when designing an application that
composes two or more operations, where each operation is
itself a distributed DAG of tasks, the programmer is faced
with different situations depending on the task programming
interface:

• While Sequential Task Flow (STF) approaches (e.g.,
OpenMP [4], OmpSs [5], StarPU [6], PaRSEC DTD [7])
conceptually provide fine-grain task composition by se-
quential construction of task graphs, the practical level
of composition is typically limited. Because of the se-
quential nature of task discovery, STF-based systems
introduce a window of submission: once a number of
tasks have been discovered, tasks must be executed before
new tasks can be discovered by the sequential thread.
Unbounding this submission window, indeed opens up

opportunities for composition in exchange of a significant
increase in memory consumption by the runtime, but
only once all the tasks of the preceding operation have
been discovered and taken into account. This hampers
the fine-grain task composition because the full DAG
of a previous operation must be discovered before any
task of the next DAG. Moreover, the sequential discovery
quickly becomes a bottleneck, even at moderate scales.
The Template Task Graph approach, which unrolls a
synthetic graph of template tasks, is impervious to this
limitation because the sequential part of the code only
needs to discover a number of template tasks that is
independent of the problem size (and is typically constant
per operation).

• On the other hand, future-based systems (e.g., HPX [8],
MADNESS [9]) require the programmer to manage one
future per dependency, which quickly becomes intractable
when composing very large task graphs. A future repre-
sents a single value / dependency, and thus the approach
lacks scalability, as a set of futures, linear in the problem
size, must be defined as the output and input of each
exposed DAG.

• Finally, existing approaches closest to TTG and based
on unrolling of a synthetic graph of task classes (such
as PTG) do not usually provide a concept that allows
fine-grain task composition, as the generating graph does
not know about the successor or predecessor graph. In
PTG, the current approach either promotes coarse-grain
operation composition (the first task of a successor DAG
is only started after the last task of a predecessor DAG
is completed), or it falls back on a non-scalable future-
based systems: each data element of the input and output
of an operation needs to be exposed via a future.

In this paper we demonstrate that by virtue of a full
task graph satisfying the same concept as individual template
tasks, TTGs naturally compose with other TTs and/or TTGs
to form dynamic and more complex TTGs. Execution of
such composite TTGs has the same favorable properties as
execution of a single TTG composed of primitive TTs. This
allows composition of complex fine-grained task DAGs from
simpler reusable DAGs without any loss in performance. To
illustrate the benefits of such TTG-based composition and
the resulting performance benefits, we used a paradigmatic
example from the Linear Algebra community, Matrix Inversion
via the Cholesky method.

Such composition of task graphs extends properties known
from software library design such as encapsulation and sep-
aration of concerns to the area of fine-grain task graph com-
position. It promises to further improve resource utilization
by extending the view of the task scheduler across other
separately developed algorithmic building blocks expressed in
individual task graphs.

The rest of the paper is structured as follows. Section II
provides an overview of the TTG programming model using a
motivating example for the the composition of TTs and TTGs.
Section III discusses the composition of linear algebra building

blocks to form higher-level algorithms such as the Cholesky
method for matrix inversion. Section IV discusses features in
TTG and the underlying runtime systems that are useful to
analyzing and improving the performance of composed task
graphs. Section V provides an evaluation of the composed
matrix inversion. Section VI discusses related work before
Section VII concludes the paper.

II. TEMPLATE TASK GRAPH

Template Task Graph (TTG) is a new task programming
interface built on top of C++ that promotes a flow program-
ming model inspired by earlier innovations such as Flow-
Based Programming (FBP) [10]. TTG targets modern scientific
applications on modern high-performance computing (HPC)
systems. Thus, efficiency in resource utilization, distributed
computing, and scalability are key elements in the design
and implementation of TTG. TTG defines a portable task-
based interface, and features multiple implementations over
different runtime systems. At the time of writing this paper two
implementations exists: an implementation over the PaRSEC
runtime system [11], that is the main focus for the high-
performance implementation of TTG, and another one over the
MADNESS runtime system [9] that validates the portability
of the design and its openness towards other programming
models.

TTG is designed with scalability in mind. In the context of
distributed task programming paradigms, this implies that the
discovery of tasks cannot be a sequential process, but must be
distributed not only between the processes but even between
threads (and tasks) that compose the application. However, the
DAG of tasks remains, in essence, a common object, shared
among all computing resources. Thus, to avoid bottlenecks
it is important to create a structure over which the different
computing units can distribute the load.

In [12], the authors introduce a task-based programming
paradigm, called parameterized task graphs (PTG), running on
top of PaRSEC where parameterized DAGs of tasks are created
at compile time, thus providing a rigid structure on which
the actual DAG of tasks that is executed can be discovered
in a fully distributed manner: each thread in the parallel
application can instantiate any subsection of the DAG of tasks
independently, and only the tracking of dependencies between
these subsections needs to be shared between threads.

TTG builds on a similar idea, but takes in account that
modern scientific applications are not easily amenable to
the rigid structure of a parameterized DAG. For example,
parameterized DAGs cannot easily deal with data-dependent
applications where the flow of data depends on the computed
data itself. TTG preserves the central idea of a common
shared structure of graph that describes classes of tasks and all
potential data flow between them, but it opens this approach
to irregular and data-dependent applications by allowing each
task to instantiate its actual successors at runtime.

There are 3 core concepts in TTG:
a) Template task and task identifier: template tasks (TT)

constitute the nodes of template task graphs. A template task

1 struct Key { int pos, step; };
2 auto stencilOperation =
3 [=](const Key &key, // identifies the task
4 Cell&& current, // cell to compute
5 const Cell& left, // left and right neighbors
6 const Cell& right) {
7 auto position = key.pos;
8 auto step = key.step;
9 current = compute(position, timestep,

10 current, left, right);
11 if(step < maxStep) {
12 // send to next timestep, left and right neighbor
13 ttg::broadcast<0, 1, 2>(
14 std::make_tuple(
15 Key{(position + nbCell - 1) % nbCell, step+1},
16 Key{position, step+1},
17 Key{(position + 1) % nbCell, step+1)},
18 std:move(current));
19 } else {
20 // send to output
21 ttg::send<3>(position, std::move(current));
22 }
23 };
24
25 ttg::Edge<Key, Cell> current("current");
26 ttg::Edge<Key, Cell> l2r("left2right");
27 ttg::Edge<Key, Cell> r2l("right2left");
28 ttg::Edge<int, Cell> output("result");
29
30 auto stencilTT =
31 ttg::make_tt(stencilOperation,
32 // input edges
33 ttg::edges(current, r2l, l2r),
34 // output edges
35 ttg::edges(current, l2r, r2l,
36 output),
37 "stencilOperation");
38
39 // connect the output edge to some template task
40 // storing results, omitted for simplicity
41
42 ttg::make_graph_executable(stencilTT);
43 // kick-off computation on all cells
44 for(auto n = 0; n < nbCell; n++) {
45 if(isLocal(n)) {
46 Cell cell(n);
47 Cell neutral();
48 stencilTT->set_arg<0>(Key{n, 0}, cell);
49 stencilTT->set_arg<1>(Key{n, 0}, neutral);
50 stencilTT->set_arg<2>(Key{n, 0}, neutral);
51 }
52 }
53 // wait for completion
54 ttg::fence(world);

Listing 1: TTG Example: 1D Stencil on a circular domain

represents a class of operations to apply to a set of data
elements. Template tasks are instantiated into tasks using a
task identifier. For example, in a simple stencil application
(see the code in Listing 1), a single template task, stencilTT
(Lines 30–37), defines a function to apply on each element
of the stencil (stencilOperation, Lines 2–23). In this
example, a task identifier is a pair of integers (Line 1) that
defines the cell position in the stencil and the step of the
iterative operation.

b) Terminals and Edges: Data flows through the graph
along edges (Lines 25–28 in Listing 1) that connect the
terminals of tasks. A task becomes ready for execution once
all its input terminals have received a value. The edges
current (next step for this cell), l2r (receives from left
neighbor and sends to right neighbor) and r2l (receives
from right neighbor and sends to left neighbor) connect the

3 input terminals of stencilOperation with the first 3
output terminals of the same template task. This connection
is created by passing edges as input and output edges to
ttg::make_tt (Lines 30–37), which creates a new template
task. TTG will automatically connect the outputs and inputs
and ensure that every input is connected to at least one
output terminal (in ttg::make_graph_executable). Data
is sent to the task’s output terminals using either ttg::send
(Line 21) or ttg::broadcast (Lines 13–18). The numeric
template parameters specify the output terminals to use, i.e.,
ttg::broadcast<1,2,3> sends the cell along the current,
l2r, and r2l edges.

c) Template Task Graphs and Dynamic instantiation of
tasks: One or multiple Template Tasks connected together
form a Template Task Graph, which can be implicit, like in
the stencil example, or explicit (see below for examples). This
graph can be made executable by notifying the runtime system
(via the make_executable method), which then allows the
user to start instantiating tasks explicitly via the set_arg

method of a template task (Lines 48–50). In the stencil
example, the data for the first iteration of the stencil operation
is injected into the data flow via the loop of invocations in
Lines 44–52. The user provides the task identifiers for each
task invocation (a Key with the cell ID and step 0) and the
data on which it will start to operate. From then on, until
all tasks are done (Line 11 tests if the iteration reached a
maximum number of steps for each task), each task instantiates
one or more successor tasks that become ready once all their
inputs are provided. Ready tasks are executed by the runtime in
parallel, over the distributed resources. Data transfers required
by the data flow happen asynchronously in the background.

The TTG API features many other elements, like traits to
tune scheduling policies; process maps to specify where tasks
execute; pull terminals to trigger operations when they are
necessary instead of executing them proactively; reducing and
gathering terminals to work with a variable amount of input
flows; control flows to add additional constraints on the order
of execution of tasks. These features have been studied in
detail in [1] and [2].

III. COMPOSITION OF TEMPLATE TASK GRAPHS

A straightforward approach to using different template task
graphs in an application is to execute them one after the other.
This, however, introduces serial code paths into applications
whose individual parts are parallelized using TTG. Instead,
edges can be used to combine both individual template tasks
as well as whole template task graphs. For example, instead
of writing each cell into a shared data structure (omitted in
Listing 1) and passing this data structure between TTGs, it
is possible to link individual TTGs using edges. Thus, the
output of the stencil task graph could easily become the input
of another task graph.

A. Extending the 1D Stencil Example

Listing 2 illustrates how the initial generation of the 1D
stencil algorithm can be implemented in parallel with another

TT, and how it is composed with the 1D stencil TT to
form a small TTG that provides the results of the stencil
computation through a single edge. The stencilOperation

is unchanged from the previous example in Listing 1, and
we add a generateOperation (Lines 6–20) and a genTT

(Lines 26–29). The generateOperation iterates over all
possible cells in the stencil and instantiates the local cells
with the initial value (Line 10) before it broadcasts the new
cells to its output terminals, targeting tasks connected to its
output terminals. The creation of the stencilTT TT is slightly
changed. Its input terminals are connected to multiple edges
using ttg::fuse. Each input terminal is connected to an
output terminal of genTT and a corresponding output terminal
of stencilTT itself (similar to Listing 1). Thus, the resulting
stencilTT can accept inputs from either a previous iteration
of stencilTT or from an output of genTT.

In Lines 43–50, makeStencilWithInit builds a template
task graph that contains the generation task connected to the
stencil computation task. The inputs to that TTG are empty
while its outputs are a single terminal (the output terminal
of the stencilTT). This TT hides all the complexities of
connecting the genTT and stencilTT and provides a well-
defined interface for its users to interact with it. For example,
the resulting stencilTTG (Line 53) could be connected to
another TTG through its output terminal and can be invoked
(Line 55) to start the computation.

Internal operations, terminals, and edges that compose these
operations are encapsulated inside the TTG, and a user of
this operation can connect to it via its terminals, by providing
edges that will forward the outputs of the stencil operation
to a new set of tasks. Note, however, that this composition
remains fine grain: data flows through the output edge as it is
generated, distributed between the processes and the threads
of each process.

B. A more complete example: matrix inversion via the
Cholesky method

To illustrate further the capabilities provided by the com-
position of TTGs, we introduce a more complex example,
the inversion of a matrix via the Cholesky method (POINV).
This operation comprises two successive parts: the Cholesky
factorization (POTRF) followed by POTRI, the inversion of
a matrix factorized by the Cholesky decomposition. The
Cholesky factorization is the decomposition of a Hermitian,
positive-definite matrix into the product of a lower triangular
matrix and its conjugate transpose: given a matrix A, where A
is positive-definite of dimension N ×N , it computes L such
that A = LLT , where L is a lower triangular matrix with real
and positive diagonal entries, and LT denotes the conjugate
transpose of L.

The Cholesky factorization can be computed efficiently
using a well-known tile algorithm that is amenable to task-
based representation [13], [14]. This algorithm decomposes
the operation in four different base kernels, namely POTRF,
TRSM, HERK (or SYRK for real values), and GEMM, that

1 using namespace std;
2 auto makeStencilWithInit(int nbCell,
3 ttg::Edge<int, Cell>& output) {
4 auto stencilOperation = // unchanged from Listing 1
5
6 auto generateOperation =
7 [=]() {
8 for(auto n = 0; n < nbCell; n++) {
9 if(isLocal(n)) {

10 Cell cell(n);
11 // broadcast new cell to the first step
12 ttg::broadcast<0, 1, 2>(
13 make_tuple(
14 Key2{n, 0},
15 Key2{(n+nbCell-1) % nbCell, 0},
16 Key2{(n+1) % nbCell, 0}),
17 std::move(cell));
18 }
19 }
20 };
21 // Keep edges from Listing 1, and define additional:
22 ttg::Edge<Key, Cell> gen2middle("g2c");
23 ttg::Edge<Key, Cell> gen2left("g2l");
24 ttg::Edge<Key, Cell> gen2right("g2r");
25
26 auto genTT =
27 ttg::make_tt(generateOperation, ttg::edges(),
28 ttg::edges(g2c, g2l, g2r),
29 "generateOperation");
30
31 auto stencilTT =
32 ttg::make_tt(stencilOperation,
33 // fused input edges from init
34 // and a previous step
35 ttg::edges(ttg::fuse(current, g2c),
36 ttg::fuse(left, g2l),
37 ttg::fuse(right, r2l)),
38 // output edges
39 ttg::edges(current, left,
40 right, output),
41 "stencilOperation");
42
43 auto ins = make_tuple();
44 auto outs = make_tuple(stencilTT->template out<3>());
45 vector<unique_ptr<ttg::TTBase>> ops(2);
46 ops[0] = std::move(genTT);
47 ops[1] = std::move(stencilTT);
48
49 return ttg::make_ttg(std::std::move(ops),
50 ins, outs, "Stencil TTG");
51 }
52
53 stencilTTG = makeStencilWithInit(nbCell, output);
54 ttg::make_graph_executable(stencilTTG);
55 stencilTTG->invoke();
56 ttg::fence(world);

Listing 2: 1D stencil generation and computation combined
into a single TTG

are basic operations of the BLAS library [15]. The actual
tile algorithm is outside the scope of this paper and we refer
interested readers to [16] for more details. Figure 1a represents
the internal connections between the Template Tasks that
implement this tile algorithm in TTG and Figure 2a shows
the unrolled DAG of applying POTRF to a matrix with 5× 5
tiles.

The inversion of a Cholesky matrix, called POTRI, consists
of computing the inverse of a real symmetric positive-definite
matrix A, A−1 once given the Cholesky decomposition of A.
Once again, there is a well-known tile algorithm to compute
efficiently this operation by applying successively two other
operations on the matrix A: first apply TRTRI to compute

tile_kk

POTRF

output_result output_trsm

tile_kk tile_mk

TRSM

output_result tile_mk output_row output_col

tile_mk tile_kk

SYRK

output_potrf output_syrk

input_kn input_mk input_mn

GEMM

output_trsm output_gemm

(a) POTRF

tile_kk

TRTRI

output_result

tile_kk tile_kn

TRSML

output_result

tile_kk tile_mk

TRSMR

GEMM_A GEMM_B GEMM_C TRSML_kn

A B C

GEMM

GEMM_B GEMM_C TRSML_kn

(b) TRTRI

tile_kk

LAUUM

to_syrk_C output_result

tile_kn tile_nn

SYRK

SYRK_nn output_result

tile_kk tile_kn

TRMM

to_GEMM_C output_result

A B C

GEMM

GEMM_C output result

(c) LAUUM

Fig. 1: Graph representation of the TTGs for the tile algorithms of POTRF, TRTRI and LAUUM

the inverse of L, L−1, then apply LAUUM to compute the
product L−1TL−1 to compute A−1. The TTG representations
of these algorithms are given in Figure 1b and Figure 1c
and the corresponding DAGs are presented in Figure 2b and
Figure 2c. The distributed tile algorithm for TRTRI uses three
base kernels from the BLAS: TRTRI (which computes the
same operation on a single local tile), TRSM, and GEMM;
similarly, the distributed tile algorithm to compute LAUUM
is implemented using four BLAS kernels: LAUUM (which
computes the product on a single tile), TRMM, SYRK or HERK
(depending on the type of the elements), and GEMM.

The composition of the distributed POTRF operation fol-
lowed by a POTRI operation is thus a common operation used
by applications that rely on dense linear algebra operations.
This illustrates well how base sequential kernels are composed
at the tile level to produce distributed operations and how these
operations are composed globally to produce complex results.
We can consider three levels of composition: 1) each operation
can be executed in sequence over the entire matrix, executing
first POTRF, then TRTRI, and finally LAUUM (Figure 2); 2)
TRTRI and LAUUM can be composed at the tile level to
produce the DAG for POTRI, to execute POTRF followed by
POTRI; or 3) all three basic operations can be composed at
the tile level into the DAG of the POINV operation.

To provide a consistent interface, each of the TTG imple-
menting these three building blocks is augmented with a new
Template Task, that we call a dispatcher and that takes a single
input terminal on which all tiles of the input matrix are sent.
This template task distributes the incoming tiles to the first
tasks of each algorithm that require it. It is thus similar in
nature to the injection of cells into the task graph discussed
in Section II, Listing 1. An edge is connected to the output
terminal of each template task that applies a final operation
in each algorithm. Through this edge, tiles are sent from one
algorithm to the next, where they are again distributed by the
dispatcher task. This provides a single entry and exit point
for each TTG and TTGs can be composed as required by
adding an edge connecting them. For example, in Listing 3 the
output terminal of TRTRI is connected to the input terminal of
LAUUM through the trtri_to_lauum edge to form the TTG
of the POTRI operation (Line 6), whose visual representation
is shown in Figure 3.

TRSM

SYRK

GEMM GEMMGEMM

POTRF

TRSM TRSMTRSM

SYRK

GEMMGEMM POTRF

TRSM

SYRK

SYRK

GEMM

TRSM

SYRK

SYRK

GEMM

TRSM

GEMM GEMMSYRK

POTRF

SYRKSYRK

TRSMTRSM

GEMM

POTRF

SYRK

TRSM

POTRF

(a) POTRF
TRTRI TRTRI TRSMR

GEMM

TRSMR

TRSMLGEMM GEMM

TRSMRTRSMRTRSMR

TRSML GEMMGEMM

TRTRITRSMR

TRSML

TRSMR

TRSML

GEMM

GEMM

TRTRITRSMRTRSMR

GEMM

TRSML

TRSML

TRSMR

TRSML

GEMM

GEMM

TRTRI

TRSML

TRSML

TRSML

(b) TRTRI
LAUUM

SYRK

SYRK

LAUUM

SYRK

TRMM

GEMM

LAUUM

SYRK

TRMM

GEMM

SYRK

TRMM

GEMM

SYRK SYRKGEMM

SYRK

TRMM

GEMM

TRMM

GEMM

SYRK

LAUUM

SYRK

GEMM

GEMM

TRMM TRMM

GEMM

GEMM

TRMM TRMM TRMM LAUUM

(c) LAUUM

Fig. 2: Task graphs for individual operations on a matrix of
5 × 5 tiles if no composition is applied (some management
tasks left out for clarity).

This representation exposes all the internal dependencies of
each algorithm, but a user of any of these TTGs does not
need to understand those internal complexities to use them:
it is sufficient to provide each tile of the input matrix on the
input edge and to consume them on the output edge to use
these operations.

A DAG of POTRI applied to a matrix with 5 × 5 tiles
is shown in Figure 4. It is notable that the composition at

1 using namespace std;
2 auto make_potri_ttg(ttg::Edge<Key2, MatrixTile>&input,
3 ttg::Edge<Key2, MatrixTile>&output)
4 {
5 ttg::Edge<Key2, MatrixTile>
6 trtri_to_lauum("trtri_to_lauum");
7
8 auto ttg_trtri = make_trtri_ttg(input, trtri_to_lauum);
9 auto ttg_lauum = make_lauum_ttg(trtri_to_lauum, output);

10
11 auto ins = make_tuple(ttg_trtri->template in<0>());
12 auto outs = make_tuple(ttg_lauum->template out<0>());
13 vector<unique_ptr<ttg::TTBase>> ops(2);
14 ops[0] = std::move(ttg_trtri);
15 ops[1] = std::move(ttg_lauum);
16
17 return ttg::make_ttg(std::move(ops),
18 ins, outs, "POTRI TTG");
19 }

Listing 3: Composition of POTRI in TTG, combining TRTRI
and LAUUM.

TRTRI TTG

LAUUM TTG

Input

TRTRI Dispatch

TRTRI TRSML_kk TRSMR_kk TRSMR_mk

tile_kk

TRTRI

output_result

tile_kk tile_kn

TRSML

output_result

tile_kk tile_mk

TRSMR

GEMM_A GEMM_B GEMM_C TRSML_kn

Input

LAUUM Dispatch

LAUUM SYRK TRMM_A TRMM_B GEMM_A GEMM_B

A B C

GEMM

GEMM_B GEMM_C TRSML_kn

tile_kk

LAUUM

to_syrk_C output_result

tile_kn tile_nn

SYRK

SYRK_nn output_result

tile_kk tile_kn

TRMM

to_GEMM_C output_result

A B C

GEMM

GEMM_C output result

Fig. 3: Graph representation of the TTG for the tile algorithm
of POTRI.

this level already eliminates the shrinking of concurrency
by merging the two DAGs into a single graph that exhibits
significant concurrency from top to bottom.

Similarly, the DAG for the fully composed POINV is pro-
vided in Figure 5. In contrast to executing POTRF (Figure 2a)
and TRTRI (Figure 2b), the serializing tail has been eliminated,
providing significant concurrency throughout the task graph.

TRTRI

LAUUM

TRSMR

TRSML GEMMGEMM GEMM TRTRI

TRMM LAUUM

TRSMR TRSMR

TRSMLGEMMGEMMTRTRI

TRMMTRMM LAUUM

TRSMR TRSMR TRSMR

TRSML

SYRK GEMM

TRSMR

TRSML

GEMM

GEMM

SYRK

SYRK

TRSMR

GEMM

TRSMR

TRTRI

TRMMTRMM TRMMLAUUM

TRSML

GEMMSYRK GEMM

TRSML

SYRKGEMMSYRK

TRSMR

TRSML

GEMM GEMM

TRTRI

TRMMTRMM TRMMTRMM LAUUM

TRSML

GEMMSYRK GEMMGEMM

TRSML

SYRKGEMMGEMM

TRSML

SYRKGEMMSYRK

Fig. 4: DAG for the TTG of POTRI (Figure 3) on a matrix
of 5 × 5 tiles, composing TRTRI (green) and LAUUM (blue).
Some tasks (such as the dispatcher) have been omitted for
clarity.

TRSM

SYRK

GEMM GEMMGEMM TRSMR

POTRF

TRSM

TRSMTRSM

TRTRI

TRSMR

TRSMRTRSMR

SYRK

SYRK

GEMMGEMM

TRSM

POTRF

SYRK

GEMM

TRSM

GEMMSYRK

SYRK

GEMM

TRSM

GEMMSYRK

LAUUM

GEMMGEMM TRSMLGEMM

SYRK

POTRF

SYRK

TRTRI

TRSMR TRSMRTRSMR

TRSM TRSM

GEMM

GEMMGEMM

TRMMLAUUM SYRKTRSML

GEMM GEMM

TRSML

POTRF

SYRK

TRTRI

TRSMRTRSMR

TRSM

SYRKTRMMTRMM

LAUUM

GEMMSYRK

TRSML

GEMMGEMM

TRSML

POTRF

TRTRI TRSML

TRSMR

GEMM

TRMMTRMMTRMM

LAUUM

SYRKGEMM GEMMGEMMSYRK SYRK

TRSML TRSMLTRTRI TRSMLTRSML

TRMMTRMMTRMM TRMMLAUUM SYRKGEMM GEMMGEMMGEMMSYRK GEMM SYRKGEMMSYRK

Fig. 5: Single task-graph for POINV on a matrix of 5 × 5
tiles, composing POTRF (red) and POTRI, in turn composed
of TRTRI (green) and LAUUM (blue).

A notable advantage of the composition as it is done
between TTGs is that the user can connect multiple edges
(fused edges) to outputs of TTGs, to forward the data produced
to multiple operations that run in parallel. In the context of
the inverse of a Cholesky matrix, for example, it is frequent
that the user requires both the factorized representation of the
matrix (output of POTRF) and the inverse (output of POTRI). In
the traditional approach, the factorization is computed, a copy
of the output is created, and the inversion operation is applied
(which modifies its inputs). With the fine grain composition
of TTGs, the user can create two edges and fuse them. On
one edge, the data will flow from the POTRF operation to
the POTRI operation, while on the other edge the output
of the POTRF operation can be read and stored for further
(independent) computations. The runtime system ensures that
the order of execution provides consistent views of the data,
preventing tasks from modifying tiles while they are read by
other tasks (more details are provided below in Section IV).
In all cases, tiles are made available one by one, as they are
produced, instead of waiting for the entire matrix operation to
complete.

IV. INTEGRATION OF COMPOSITION FEATURES IN THE
RUNTIME ECOSYSTEM

A. New policy in the backend runtime system

As noted in Section III, composition features introduce new
behaviors that favor concurrent access of tasks to the same
units of data. For example, a user may need to keep an
intermediary result, without interrupting the flow of data to
the next phase of the algorithm. These competing requests can
introduce concurrent accesses where one of the tasks accessing
a data element requires write access (or modify access) to it.
In that case, both backend runtime systems, MADNESS, and
PaRSEC implement a private-copy-based policy: they create
an additional copy for this data element before scheduling
the write/modify task and provide the private copy to it, thus
ensuring the correctness of the execution of read-only tasks.

However, the read accesses will eventually complete, and
when a data element that was flowing in the task system is
neither required by any new task for reading or writing, it is
garbage collected and freed by the system. In the example
of an intermediary result, the data elements provided to
the reading tasks are typically consumed by an additional
computation or by copying them into designated memory for
later processing.

This private-copy-based policy is efficient in terms of par-
allelism, as it ensures the number of tasks that can run in
parallel remains equal to all tasks whose input data are ready to
process. However, it puts significant pressure on the memory,
as many private, short lived, copies might be created, copies
that will live only during the execution of a few tasks.

In the PaRSEC runtime system, we have introduced a new
policy, that impacts the scheduling of tasks: if a task selected
for execution by the dynamic scheduler requires write-access
that conflicts with any other ready task, the writing task is
deselected and marked to be re-scheduled when existing read
accesses are completed. To avoid starvations, when the same
task is selected again for execution, if new read accesses
have been discovered on its input data, then a private copy
is allocated (fallback to the private-copy-based policy). This
new policy, which we call defer-writer, can be optionally set by
users on a given TTG or TT. It limits the amount of temporary
memory required for the execution of the TTGs while delaying
update operations by favoring tasks that read the data elements.

Such concurrent accesses also occur within TTGs: the
TRTRI and LAUUM operations, for example, exhibit parallel
tasks that either read or modify the same tiles. In typical
task-based systems, a control flow is added to ensure those
accesses are done in sequence (all reads execute before the
tasks that modify the data, e.g., DPLASMA [13]), or the
sequential discovery of tasks ensures that the DAG built by
the runtime system will execute all tasks that read the data
before any task that writes it (e.g., StarPU [6]). With TTG,
and the defer-writer and private-copy-based policies, the user
can control how these cases are managed, and the choice of
approach does not require modifying the code of the algorithm.

B. Profiling and debugging tools

TTG implementations come with a set of tools to help
debug and understand the performance of TTG applications.
The first tool is illustrated with Figure 1 and Figure 3:
and provides a graphical representation of the Template Task
Graph, where each Template Task appears as a box with input
terminals on top and output terminals at the bottom. Edges are
represented by arrows that link an output terminal to an input
terminal. Since the Template Task Graph is not a DAG (edges
represent all possible connections, and Template Tasks can be
instantiated many times with different Task Identifiers during
the execution of a single DAG of task out of a TTG), these
graphs usually feature cycles.

That graphical representation is extended for TTG composi-
tions by encapsulating all TTs or TTGs belonging to the same
TTG inside a cluster subgraph, and adding the name of the
TTG to the encapsulating box, as illustrated in Figure 3 for
the POTRI TTG, which comprises the TRTRI TTG and the
LAUUM TTG. The API of TTG allows the user to specify the
depth in the hierarchy of objects they request from this output.

Second, TTG inherits from the tools available in its backend
runtime system. Using the PaRSEC runtime system, the user
can represent the DAG of tasks as it has unrolled during the
execution of the TTGs, and as is illustrated in Figure 2 for
the individual POTRF, TRTRI, and LAUUM DAGs on a 5× 5
matrix. The task graph of the composition of these three al-
gorithms in provided in Figure 5 below. These representations
are especially useful to detect dependency errors during the
development of new TTGs. The user can define the level
of information that is displayed in the nodes and edges, for
example, to add task identifiers in the task names, and data
identifiers on the arrows.

V. EVALUATION OF COMPOSITION CAPABILITIES

We conducted our evaluation on Hawk1, a Hewlett Packard
Enterprise system equipped with 64 core AMD EPYC Rome
dual-socket nodes connected through an Infiniband ConnectX-
6 fabric. We used GCC 10.2.0, Open MPI 4.1.0, and UCX
1.12.0 for our experiments. All data points reflect at least 5
repetitions and errors bars represent the standard deviation.

A. POINV Performance

Figure 6 shows the performance of POINV with different
levels of compositions described above and compares the
performance against DPLASMA [13] and SLATE [17] on
16 nodes of Hawk with different tile sizes. Both SLATE
and DPLASMA provide a sequential composition of POTRF,
TRTRI and LAUUM to implement POINV.

The data suggests that the fine-grain composition of TTG
is especially useful for smaller tiles (128, Figure 6a) while the
benefit diminishes for tiles of size 256 (Figure 6b). It is espe-
cially notable that for small tiles, the fully composed POINV
reaches peak performance at small matrices (5k2 elements per
node) while the partially composed POTRF +POTRI requires

1https://www.hlrs.de/systems/hpe-apollo-hawk/

https://www.hlrs.de/systems/hpe-apollo-hawk/

0 10000 20000 30000 40000 50000
Matrix Size

0

1000

2000

3000

4000

5000

6000

7000
Pe

rfo
rm

an
ce

 [G
F/

s]
DPLASMA (4x4)
TTG (POINV) (4x4)
TTG (POTRF+POTRI) (4x4)
TTG (POTRF+TRTRI+LAUUM) (4x4)
SLATE (4x4)

(a) Tile size 128.

0 20000 40000 60000 80000 100000
Matrix Size

0

2000

4000

6000

8000

10000

12000

14000

Pe
rfo

rm
an

ce
 [G

F/
s]

DPLASMA (4x4)
TTG (POINV) (4x4)
TTG (POTRF+POTRI) (4x4)
TTG (POTRF+TRTRI+LAUUM) (4x4)
SLATE (4x4)

(b) Tile size 256.

Fig. 6: Problem scaling on 16 nodes with different tile sizes.

approximately double the size. As expected due to the need for
fences, all sequential compositions provide lower performance
than the fine-grain composition implementations.

For tiles of 256 elements, the performance benefit of fine-
grain composition is significantly diminished. This can be
explained by the change in balance between computational
density and communication overhead. All three algorithms
are dominated by GEMM, whose computational complexity
is in O(N3) while the communication overhead is in O(N2).
Thus, by doubling the tile size, the computational efforts are
increased by a factor of 8 while the amount of data to be
transferred quadruples.

Indeed, looking at a comparison of event traces in Vampir
for both tile sizes demonstrates this point. Figure 7 provides a
screenshot of a Vampir comparison of traces for both the fine-
grain composed TTG version and the sequential composition.
The run with tiles of size 128 (Figure 7a) takes about 11 s
while the run with tiles of size 256 (Figure 7b) lasts for almost
60 s. With the smaller tile size, the fine-grain composition
hides most (although not all) communication overhead and the
communication between algorithms takes a significant share of
the total runtime. For the larger tiles, the share of communica-
tion diminishes and computation becomes dominant, reducing
the benefit of the fine-grain composed algorithm.

Figure 8 shows the weak-scaling performance of the differ-
ent POINV implementation with 202 tiles per node. Similar to

(a) Tile size 128.

(b) Tile size 256.

Fig. 7: Comparison of traces of fine-grain composition (top
each) and sequential composition (bottom each) POINV on 8
processes with 60 threads each. The GEMM of POTRF are
shown in blue, those of TRTRI are shown in yellow, and those
of LAUUM are shown in red, and idle/communication tasks
are shown as gray. All other tasks are green.

the above results, the fine-grain composition in TTG is more
beneficial at smaller tile sizes (128), and diminishes when the
tile size increases. In fact, it appears that DPLASMA shows
slightly better performance than TTG. This may be due to
the topological communication schemes used by DPLASMA,
which appears to improve performance at scale.

We note that SLATE consistently yields relatively low
performance, and scales poorly. We have noticed similar
behavior in the past [2] and have seen that SLATE performs
significantly better with larger tiles. However, we decided to
include SLATE as a state of the art implementation. We have
obtained a similar behavior for ScaLAPACK [18], which we
have omitted here.

Overall, the fine-grain composition of task graphs (or al-
gorithmic building blocks) promises improved latency hiding
by exposing increased levels of concurrency to the runtime
system. This is especially valuable for applications with a
low computation-communication ratio and could become even
more significant when applied to algorithms operating on
sparse data structures. However, the development of such
applications remains as future work.

0 10 20 30 40 50 60
Number of Nodes

0

2000

4000

6000

8000

Pe
rfo

rm
an

ce
 [G

F/
s]

DPLASMA
TTG (POINV)
TTG (POTRF+POTRI)
TTG (POTRF+TRTRI+LAUUM)
SLATE

(a) Tile size 128.

0 20 40 60 80 100 120
Number of Nodes

0

10000

20000

30000

40000

50000

Pe
rfo

rm
an

ce
 [G

F/
s]

DPLASMA
TTG (POINV)
TTG (POTRF+POTRI)
TTG (POTRF+TRTRI+LAUUM)
SLATE

(b) Tile size 256.

Fig. 8: Node scaling performance with 202 tiles per node.

B. POTRI Performance

The Chameleon library (v1.1.0) runs on top of the StarPU
runtime system and provides a composed version of POTRI
(TRTRI + LAUUM) [19], which we compared against the
composed POTRI in TTG (Figure 4). The performance on 64
nodes with 60 threads per node on Hawk and different tile
sizes are shown in Figure 9. It can be seen that the TTG im-
plementation vastly outperforms the Chameleon performance
across the range of matrix sizes measured. The speedup with
tiles of size 128 and 256 varies between 2x and 3x. This hints
at the fact that sequential task discovery in Chameleon induces
significant overheads and may even leave threads idling at
small tile sizes. For even larger tile sizes (e.g., 512) the gap
between the two implementations becomes smaller but we still
observe measurable speedups, esp at higher node counts.

The performance achieved when scaling the number of
nodes with a fixed number of tiles per node in each dimension
of the matrix is shown in Figure 10. With tiles of size 128,
TTG achieves higher performance even at a single node, which
further underlines the idea that the sequential task discovery
in Chameleon becomes the bottleneck. At tiles of size 256,
the performance of TTG and Chameleon on a single node
are similar, while TTG still achieves 2-3x speedup at higher
node counts, mirroring the finding discussed above. We have
observed similar behavior for a range of 30-90 tiles per

50000 100000 150000 200000 250000 300000 350000 400000
Matrix Size

20000

40000

60000

80000

100000

120000

140000

160000

Pe
rfo

rm
an

ce
 [G

F/
s]

Chameleon/StarPU (8x16, 128)
TTG (POTRI) (8x16, 128)
Chameleon/StarPU (8x16, 256)
TTG (POTRI) (8x16, 256)
Chameleon/StarPU (8x16, 512)
TTG (POTRI) (8x16, 512)

Fig. 9: POTRI performance of TTG and Chameleon at different
tile sizes on 128 nodes.

dimension per node. The observed speedups at higher node
counts and larger tiles can still be explained by the fact that
in Chameleon the full task graph has to be discovered by
each process. In contrast, the task graph discovery happens
in parallel in TTG while the template task graph is unrolled.

Chameleon on top of StarPU relies on a Sequential Task
Flow discovery of tasks. Such API allows to define a ’window
size’ via environment variables. The ’window’ in this context
defines how many tasks in advance the sequential thread that
discovers tasks can insert in the DAG of tasks before it is
blocked waiting for tasks to execute before the discovery
can proceed. By default Chameleon does not define these
environment variables, making StarPU run with an infinite
window: any number of tasks can be submitted without
blocking the execution. This allows the tasks of the LAUUM
operation to be discovered, and to run in parallel with tasks of
the TRTRI operation. However, because the task discovery is
still sequential, the first LAUUM task is still only discovered
after the last TRTRI task is discovered. Thus, many tasks that
are not ready to execute in the TRTRI DAG are discovered
and inserted in the DAG before the first LAUUM task (which
becomes ready to execute quickly after the first TRTRI task
is completed) is discovered and inserted. This still limits
the amount of parallelism, which becomes dependent on the
relative speed of the task insertion thread and the progress of
the DAG. This explains partly the difference in performance
compared to the TTG approach. In the TTG approach, the
connection between the final task of TRTRI on any tile of
the matrix with the first tak of LAUUM on the same tile is
done beforehand, in a scalable way, by simply connecting the
output terminal of the TRTRI TTG to the input terminal of the
LAUUM TTG. At runtime, as soon as TRTRI is done on any
tile of the matrix, the first LAUUM task on that tile becomes
ready to execute maintaining maximum parallelism throughout
the execution.

VI. RELATED WORK

The composition of task-based systems is highly dependent
on the interface used to describe the tasks. Most traditional
systems propose a mostly sequential interface, where tasks

0 20 40 60 80 100 120
Number of Nodes

103

104

105
Pe

rfo
rm

an
ce

 [G
F/

s]

Chameleon/StarPU [tile size 128]
TTG (POTRI) [tile size 128]
Chameleon/StarPU [tile size 256]
TTG (POTRI) [tile size 256]
Chameleon/StarPU [tile size 512]
TTG (POTRI) [tile size 512]

Fig. 10: POTRI performance of TTG and Chameleon with
increasing node numbers and 50 tiles per node.

are discovered in sequence and executed asynchronously. The
runtime system dynamically builds the DAG of tasks using
dependency information either given as pragmas (OpenMP [4]
or OmpSs [5]) or via the API (Sequential Task Flow model in
StarPU [6], [20], Dynamic Task Discovery in PaRSEC [7], task
dependencies in DASH [21]). In such approaches, the com-
position of DAGs within the same framework is completely
transparent: in fact, there is a single DAG of tasks during the
entire execution, and tasks are dynamically added and later
removed when they complete their execution. However, the
sequential discovery of tasks quickly becomes a bottleneck
and the serialization of the discovery of task graphs means
that consuming tasks may not be discovered before producing
tasks have completed, preventing data from flowing directly
from the producer to the consumer. The comparison with
Chameleon in the experimental section illustrates this chal-
lenge for these approaches, and explains how the composition
of TTGs is impervious to this issue.

In other systems, dependencies are made explicit via the
creation of futures and promises (Legion [22], MADNESS [9],
Charm++ [23], HPX [8]). Tasks are asynchronous functions
that can set futures exposed to them and are unscheduled until
all the promises they request are set. In this model too, DAGs
are not explicit entities, and the composition of work within the
same model uses the same future mechanisms. While futures
enable data flow between tasks, the composition of task graphs
requires sets of futures, which have to be managed by the
application.

Last, a few approaches propose to build DAGs as objects
that can be scheduled. These DAGs can be built at compile-
time (PTG in PaRSEC [12], Eventify [24]) or at runtime
(Dagger in Charm++ [25], [26]). The composition between
two of these DAGs is part of the available API, but it can
remain coarse grain (i.e. the first task of a successor DAG can
only start after the last task of a predecessor DAG is complete).

VII. CONCLUSION

In this paper, we have introduced the composition feature of
Template Task Graphs, describe its capabilities and evaluated

its performance on the algorithm to compute the inverse of
a matrix via the Cholesky method. The choice of the Inverse
Cholesky as a playground was due to its composition of three
sequential steps: first, a Cholesky decomposition on a symmet-
ric positive-definite matrix A; then the inverse operation on the
resulting triangular matrix. The inverse operation itself consists
of two consecutive operations, a triangular inversion and a
triangular update. Using the graph composition of TTG, the
resulting DAG of tasks are merged at the granularity of tiles,
allowing the composed system to execute without synchro-
nizing barriers or fences between two high-level operations.
As an added feature, intermediary results can be transparently
extracted during the execution of the composed operation.

The TTG composition method hides the internal com-
plexities of individual subgraphs, or building blocks, and
thus enables proper software design in the realm of task-
based applications by enabling both separation of concerns
and encapsulation. The interaction between building blocks
is achieved through edges, along which data is transported,
giving the opportunity to the underlying runtime system to
transparently handles data consistency and data exchange
across process boundaries.

Performance evaluation on a distributed system shows that
the fine grain composition generally increases the overlap
of communication and computation, and the occupancy of
computing resources. In particular, it results in significant
performance improvement compared to the traditional fenced
composition for cases where the computation/communication
ratio is small, and a significant performance improvement
compared to traditional fine-grain task composition based on
sequential task discovery.

ACKNOWLEDGMENT

This research was supported partly by NSF awards
#1931347 and #1931384, and by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nu-
clear Security Administration. We gratefully acknowledge the
provision of computational resources by the High-Performance
Computing Center (HLRS) at the University of Stuttgart,
Germany.

REFERENCES

[1] G. Bosilca, R. J. Harrison, T. Herault, M. M. Javanmard, P. Nookala,
and E. F. Valeev, “The Template Task Graph (TTG) - an emerging
practical dataflow programming paradigm for scientific simulation at
extreme scale,” in IEEE/ACM 5th Intl. Wksp. on Extreme Scale
Programming Models and Middleware (ESPM2), Nov. 2020, pp. 1–7.
[Online]. Available: https://ieeexplore.ieee.org/document/9307054

[2] J. Schuchart, P. Nookala, M. M. Javanmard, T. Herault, E. F. Valeev,
G. Bosilca, and R. J. Harrison, “Generalized Flow-Graph Programming
Using Template Task-Graphs: Initial Implementation and Assessment,”
in 2022 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2022.

[3] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities,” in Proceedings of the April 18-
20, 1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring).
Association for Computing Machinery, 1967.

[4] “OpenMP OpenMP Application Programming Interface, Version 5.2,”
Sep 2021. [Online]. Available: https://www.openmp.org/wp-content/
uploads/OpenMP-API-Specification-5-2.pdf

https://ieeexplore.ieee.org/document/9307054
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

[5] A. Duran, R. Ferrer, E. Ayguade, R. M. Badia, and J. Labarta, “A
Proposal to Extend the OpenMP Tasking Model with Dependent Tasks,”
Intl. Journal of Parallel Programming, vol. 37, no. 3, 2009.

[6] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Conc. Comp. Pract. Exper., vol. 23, 2011.

[7] R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic Task Dis-
covery in PaRSEC: A Data-flow Task-based Runtime,” in Proceedings
of ScalA’17, 2017.

[8] T. Heller, H. Kaiser, and K. Iglberger, “Application of the ParalleX exe-
cution model to stencil-based problems,” Computer Science - Research
and Development, vol. 28, no. 2-3, pp. 253–261, 2013.

[9] R. J. Harrison, G. Beylkin, F. A. Bischoff, J. A. Calvin, G. I. Fann,
J. Fosso-Tande, D. Galindo, J. R. Hammond, R. Hartman-Baker, J. C.
Hill, J. Jia, J. S. Kottmann, M. Y. Ou, L. E. Ratcliff, M. G. Reuter,
A. C. Richie-Halford, N. A. Romero, H. Sekino, W. A. Shelton,
B. E. Sundahl, W. S. Thornton, E. F. Valeev, Á. Vázquez-Mayagoitia,
N. Vence, and Y. Yokoi, “MADNESS: A multiresolution, adaptive
numerical environment for scientific simulation,” SIAM J. Sci. Comput.,
vol. 38, no. 5, 2016.

[10] J. P. Morrison, Flow-Based Programming, 2nd Edition: A New Approach
to Application Development. Scotts Valley, CA: CreateSpace, 2010.

[11] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. Don-
garra, “PaRSEC: A programming paradigm exploiting heterogeneity for
enhancing scalability,” Comp in Sc. and Eng., vol. 99, p. 1, 2013.

[12] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra,
“PTG: An abstraction for unhindered parallelism,” Proceedings of
WOLFHPC’14, 2014.

[13] G. Bosilca et al., “Flexible Development of Dense Linear Algebra
Algorithms on Massively Parallel Architectures with DPLASMA,” 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, 2011.

[14] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical Linear Algebra on
Emerging Architectures: The PLASMA and MAGMA Projects,” Journal
of Physics: Conference Series, vol. 180, 2009.

[15] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for fortran usage,” ACM Transactions on
Mathematical Software (TOMS), vol. 5, no. 3, pp. 308–323, 1979.

[16] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel
tiled linear algebra algorithms for multicore architectures,” Parallel
Computing, vol. 35, no. 1, pp. 38 – 53, 2009.

[17] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, “SLATE:
Design of a Modern Distributed and Accelerated Linear Algebra Li-
brary,” in Supercomputing, ser. SC ’19. Association for Computing
Machinery, 2019.

[18] J. Choi, J. Dongarra, R. Pozo, and D. Walker, “Scalapack: a scalable lin-
ear algebra library for distributed memory concurrent computers,” in The
Fourth Symposium on the Frontiers of Massively Parallel Computation.
IEEE Computer Society, oct 1992.

[19] Institut national de recherche en sciences et technologies du numérique
(INRIA). Chameleon—a dense linear algebra software for heterogeneous
architectures. [Online]. Available: https://project.inria.fr/chameleon/

[20] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent,
and S. P. Thibault, “Achieving high performance on supercomputers
with a sequential task-based programming model,” IEEE Transactions
on Parallel and Distributed Systems, 2017.

[21] J. Schuchart and J. Gracia, “Global Task Data-Dependencies in PGAS
Applications,” in High Performance Computing. Springer International
Publishing, 2019.

[22] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Supercomputing,
2012.

[23] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent object
oriented system based on C++,” in Proceedings of the Conference on
Object Oriented Programming Systems, Languages and Applications,
1993.

[24] D. Haensel, L. Morgenstern, A. Beckmann, I. Kabadshow, and
H. Dachsel, “Eventify: Event-Based Task Parallelism for Strong Scal-
ing,” in Proceedings of the Platform for Advanced Scientific Computing
Conference, ser. PASC ’20. Association for Computing Machinery,
2020.

[25] A. Gursoy and L. V. Kale, “Dagger: combining benefits of synchronous
and asynchronous communication styles,” in Proceedings of 8th Inter-
national Parallel Processing Symposium. IEEE, 1994, pp. 590–596.

[26] L. V. Kale and M. A. Bhandarkar, “Structured dagger: A coordination
language for message-driven programming,” in European Conference on
Parallel Processing. Springer, 1996, pp. 646–653.

https://project.inria.fr/chameleon/

APPENDIX

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

Platform: all experiments were conducted on Hawk
(https://www.hlrs.de/systems/hpe-apollo-hawk/), a Hewlett
Packard Enterprise system equipped with 64 core AMD EPYC
Rome dual-socket nodes connected through an Infiniband
ConnectX-6 fabric. We used GCC 10.2.0, Open MPI 4.1.0,
and UCX 1.12.0 for our experiments.

Experiments:
• TTG DPOINV, DPOTRI, DTRTRI, DALUUM and

DPOTRF runs (all figures in the paper): All TTG runs
were conducted using the code available in https://github.
com/therault/ttg/tree/potrf-composition2 at commit
ea1b2ae3c2de286dca03a34b91dcd87dfd65536b
by evaleev (comment of the commit: by default prevent
find * commands from looking in INSTALL/STAGING
areas to avoid key pain point).

• SLATE (Figures 6 and 8 in the paper): all SLATE
runswere conducted using the official repository
at https://bitbucket.org/icl/slate.git at commit
c7f5563a1d0d6c580cb7cd9b4cf1a02b3fbb6ca6
(master main)

• DPLASMA (Figures 6 and 8 in the paper): All
DPLASMA runs were conducted using DPLASMA avail-
able in https://github.com/ICLDisco/dplasma/ at commit
c90b90abeaa67282ccd280572a7e414b79ce6fbc
by bosilca (comment of the commit: Merge pull request
#58 from bosilca/fix/concurrent arenas)

Figures 1 to 5 provide graphical representations of graphs.
They are generated using the PaRSEC runtime system, directly
from the application. See Experimental Setup below for more
detail.

Figures 6 and 8 are performance measurement figures that
are extracted from jobs running over the batch scheduler of
Hawk. We provide the scripts submitted to the batch scheduler
and the scripts used to extract the results and analyze them as
Artifacts linked below.

Figure 7 holds traces of executions visualized with Vampir
(https://vampir.eu/). The Experimental Setup section below
provides more details on how to reproduce such figure.

AUTHOR-CREATED OR MODIFIED ARTIFACTS:

Artifact 1

Persistent ID: https://doi.org/10.5281/zenodo.6968710
Artifact name: Artifact Appendix for Composition of Algo-
rithmic Building Blocks in Template Task Graphs
Reproduction of the artifact with container: We did not provide
a container with the necessary software, as the container would
not produce the same performance as those obtained in a high-
performance environment like the one of Hawk where perfor-
mance were measured. However, the CMakeLists.txt of
TTG fetches directly almost all software components neces-
sary for the reproduction of the experiments done in this paper.

To reproduce the environment, you will need:

• CMake 3.22.0 or later
• TTG from https://github.com/therault/ttg at commit
ea1b2ae3c2de286dca03a34b91dcd87dfd65536b
(in branch potrf-composition2)

• MKL version 19.1.0
• GCC version 10.2.0
• DPLASMA from https://github.

com/ICLDisco/dplasma/ at commit
c90b90abeaa67282ccd280572a7e414b79ce6fbc
(master branch)

• SLATE from the official repository at
https://bitbucket.org/icl/slate.git at commit
c7f5563a1d0d6c580cb7cd9b4cf1a02b3fbb6ca6
(master main)

• GraphViz 2.43.0
• Vampir 9.8.0
• Open MPI version 4.1.0
• hwloc version 2.2.0
• Open Trace Format 2 (OTF2) version 2.3

The run scripts as well as the analysis scripts are provided
at https://doi.org/10.5281/zenodo.6968710.

TTG experiments:

• The source is in the source directory
• We compiled the tester used for performance runs in a

performance build directory
• We compiled the tester used to output the DAGs and

profiling other graphs in a profiling directory
• Figures 6 and 8 of the paper: we configured TTG from

an empty performance directory with the following
command line, where TTG_SOURCE is an environment
variable pointing to the source directory of TTG:
cmake ${TTG_SOURCE} -DTTG_EXAMPLES=1
-DIntelMKL_THREAD_LAYER=sequential we
compiled the tester with the following command
executed in the performance directory: make -C
examples testing_dpoinv-parsec

• The run scripts are generated using the
generate-all.sh generator. The resulting batch
scripts have been submitted using qsub.

• The resulting output log files have been passed to
plot.py to generate the plots: ./plot.py /*.log

• To produce Figures 1 and 3 in the paper
(graphs of the TTGs), we started from an
empty profiling directory, and configured
the tester using the following arguments, in the
profiling directory: cmake -DTTG_EXAMPLES=1
${TTG_SOURCE} We then compiled the tester by
issuing the following command in the profiling
directory: make testing_dpoinv-parsec.
Finally, we ran the following commands that
outputs DOT representations of the graphs:
./examples/testing_dpoinv-parsec
-nruns 0 -N 100 -t 20 -v -seq 2
./examples/testing_dpoinv-parsec

https://www.hlrs.de/systems/hpe-apollo-hawk/
https://github.com/therault/ttg/tree/potrf-composition2
https://github.com/therault/ttg/tree/potrf-composition2
https://bitbucket.org/icl/slate.git
https://github.com/ICLDisco/dplasma/
https://vampir.eu/
https://doi.org/10.5281/zenodo.6968710
https://github.com/therault/ttg
https://github.com/ICLDisco/dplasma/
https://github.com/ICLDisco/dplasma/
https://bitbucket.org/icl/slate.git
https://doi.org/10.5281/zenodo.6968710

-nruns 0 -N 100 -t 20 -v -seq 1 The
outputs were copy/pasted in files and edited to simplify
the presentation, then processed via the dot tool from
GraphViz https://graphviz.org

• To produce Figures 2, 4 and 5, we started from
an empty profiling directory, and configured
the tester with the following arguments from the
profiling directory: cmake -DTTG_EXAMPLES=1
-DIntelMKL_THREAD_LAYER=sequential
-DPARSEC_PROF_GRAPHER=ON ${TTG_SOURCE}
We then compiled the tester by issuing the
following commands in the profiling directory:
make -C examples testing_dpoinv-parsec.
Finally, we ran the following commands that
outputs DOT representations of the graphs:
./examples/testing_dpoinv-parsec
-nruns 0 -N 100 -t 20 -seq 0 -dag
poinv ./examples/testing_dpoinv-parsec
-nruns 0 -N 100 -t 20 -seq 1 -dag
potri ./examples/testing_dpoinv-parsec
-nruns 0 -N 100 -t 20 -seq 2 -dag
sequential Each command generates a local
file whose name is the last argument appended
with -0.dot. These files were edited to
simplify them using the massage_dot.sh
script: ./massage_dot.sh poinv-0.dot
> poinv-clean.dot ./massage_dot.sh
potri-0.dot > potri-clean.dot
./massage_dot.sh sequential-0.dot >
sequential-clean.dot and produce the figures
were created by passing the resulting dot files to
the dot tool from GraphViz (https://graphviz.org)
dot -Tpdf -O poinv-clean.dot; dot
-Tpdf -O potri-clean.dot; dot -Tpdf
-O sequential-clean.dot

• To produce the lower parts of Figure 7a and 7b, we started
from an empty profiling directory, and configured
the tester with the following arguments from the
profiling directory: cmake -DTTG_EXAMPLES=1
-DIntelMKL_THREAD_LAYER=sequential
-DPARSEC_PROF_TRACE=ON
-DPARSEC_PROF_TRACE_SYSTEM=OTF2
${TTG_SOURCE}. The OTF2 library, version 2.1.1
must be discovered by cmake during this configuration
phase for the rest to work. We then compiled the tester by
issuing the following command in the profiling directory:
make testing_dpoinv-parsec. To prepare for the
run, the file $HOME/.parsec/mca-params.conf
must be created/edited to include the following lines:
profile_filename = profile mca_pins
= task_profiler. Then, the tester was run
with the following command: mpirun -np 8
./examples/testing_dpoinv-parsec -N
$((20*256)) -t 256 -c 60 -nruns 0. This
produces an OTF2 output in profile.otf2 and
the profile/ directory. This can be opened with

Vampir (https://vampir.eu/) to obtain a figure similar
(the actual figure depends on the execution) to the
top of Figure 7b To obtain a figure similar to the
top of Figure 7a, the run must be mpirun -np
8 ./examples/testing_dpoinv-parsec -N
$((20*128)) -t 128 -c 60 -nruns 0. Note
that the file profile.otf2 and the directory
profile/ must be deleted between two tests.

DPLASMA experiments:
• DPLASMA was configured in an empty performance

directory with the following command line (where
DPLASMA_SOURCE is an environment variable set to
the directory holding the soure of DPLASMA). cmake
${DPLASMA_SOURCE}/

• It was then compiled with make
• And run using the batch scheduler via the script refer-

enced above
• Results were collected from the output of the job, and

analyzed using the python script referenced above
SLATE experiments:
• SLATE was configured in an empty performance

directory with the following command line (where
SLATE_SOURCE is an environment variable set to
the directory holding the soure of SLATE). cmake
${SLATE_SOURCE}/

• It was then compile with make
• And run using the the batch scheduler script referenced

above

https://graphviz.org
https://graphviz.org
https://vampir.eu/

	Introduction
	Template Task Graph
	Composition of Template Task Graphs
	Extending the 1D Stencil Example
	A more complete example: matrix inversion via the Cholesky method

	Integration of composition features in the runtime ecosystem
	New policy in the backend runtime system
	Profiling and debugging tools

	Evaluation of composition capabilities
	Poinv Performance
	Potri Performance

	Related Work
	Conclusion
	References
	Appendix

