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1 | INTRODUCTION

The sparse matrix-vector product (SPMV) dictates, to a large extent, the performance of a considerable variety of scientific applications. This com-
putational kernel reflects how a discretized linear operator acts on a vector, and therewith plays a central role in the iterative solution of linear
systems and eigenvalue problems. Some of the most popular methods that rely on the repetitive application of the SPMV kernel include Krylov sub-
space solvers, such as the conjugate gradient (CG), GMRES, or BiCGSTAB methods,! and the PageRank algorithm based on the power iteration.2
Therefore, itis not surprising that a significant effort has been devoted to accelerate the execution of this kernel, following the evolution of computer
architectures over the past decades.

The SPMV kernel involves a low number of floating-point operations (flops) per memory access. As a result, on current processor architec-
tures, with very fast and wide SIMD (single-instruction, multiple-data) floating-point units but in comparison slow main memory access, even
the presence of a deep hierarchy of memory caches cannot avoid that the speed of SPMV is mostly determined by that of the main memory
bandwidth. In consequence, the SPMV kernel is far from delivering the full peak flop performance of current processors.3® Furthermore, the
dispersion of the nonzero entries across the sparse matrix results in an irregular memory access pattern, making cache prefetching very dif-

ficult and reducing the cache hit ratio.”1° Finally, the irregular sparsity distribution poses a challenge not only to data prefetching but also to
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achieving a balanced parallel workload distribution. To tackle these difficulties, the optimization of the SPMV routine for a wide range of appli-
cations and/or computer architectures tries to intertwine two strategies: (1) given the memory-bound nature of the SPMV kernel, the sparse
matrix layout focuses on minimizing the memory footprint of the matrix and therewith the volume of data retrieved from memory; and (2) the
operation on the sparse matrix layout aims at balancing the workload across the parallel compute resources.’In theory, these two goals are inde-
pendent, and a strategy that parallelizes the SPMV kernel attaining a fair load balancing can operate on different sparse matrix layouts. However,
certain load balancing strategies require information that only some sparse matrix layouts supply. For example, balancing across nonzero ele-
ments is easy if each nonzero value is accompanied by its location information (row and column indices), but is much harder if the location
information is not available or has to be reconstructed.!! Furthermore, efficient prefetching and data reuse require the interplay between matrix
storage format and parallel processing scheme. In summary, these two goals—memory access minimization via data reuse and efficient parallel
execution—cannot be pursued independently, as the selection of a sparse matrix layout induces which parallelization and work balancing schemes
are amenable.

Over the years, a large number of application-specific sparse matrix layouts have been proposed.®® These specialized sparse data structures
along with the optimized SPMV kernels often deliver high performance for a target application problem, but generally perform poorly and/or require
expensive transformations of the matrix format for other applications. At the other end of the spectrum, for application-independent sparse matrix
manipulation and data exchange, the coordinate sparse matrix format (COQ) and the compressed sparse row format (CSR) have established them-
selves as de facto standard.'? Furthermore, significant efforts have been spent on developing fast SPMV kernels operating on these two formats, and
relevant vendor math libraries, such as NVIDIA’s cuSPARSE and Intel’s MKL, provide architecture-optimized versions of CSR-based and COO-based
kernels for the SPMV. Aside from architecture-specific implementations, the development of cross-platform SPMV kernels operating in the COO
and CSR formats is also a topic of active research.

In Reference 13, we targeted the optimization of SPMV on GPUs by introducing a variant of the COO format that compresses the integer
representation of the matrix indices. In addition, we employed a look-up table (LUT) to avoid the storage of repeated numerical values in the sparse
matrix. The realization of the SPMV kernel in that work built upon aworkload balancing parallelization scheme for GPUs optimized for matrices with
anirregular row distribution of the nonzero entries for CSR and COO,'415 inheriting this appealing property. In this article, we demonstrate that the
ideas developed in our previous work are multi-platform, in the sense that they carry over to multicore CPUs as well. In particular, the present work

makes the following contributions:

o We abstract the techniques in References 14 and 15 from their GPU implementation, obtaining an architecture-oblivious generalization of the
approach which divides the nonzero entries of the sparse matrix into chunks of equal size. The CPU-specific implementation then distributes the
execution of these chunks dynamically across the processor cores, using OpenMR to improve load balancing while taking care of potential race
conditions via atomic updates.

o Furthermore, our multicore variant of the compressed COO format interleaves the indexing information with the numerical values in a very
compact format that utilizes between 2 and 13 bytes per matrix entry compared with the 16 bytes per entry for the standard version of COO
(assuming 64-bit double-precision values and 32-bit integer indices for the latter format).

o We detail the multicore variant of the compressed COO matrix format and discuss the similarities and differences to the many-core variant
of the compressed COO matrix format. We also present in detail the multicore implementation of the SPMV kernel and its parallelization via
OpenMP.

o We provide a comprehensive performance analysis of the new realization of SPMV, using a collection of 56 large-scale test matrices from the
Suite Sparse Matrix Collection,'¢ and the two last generations of NVIDIA GPUs (Volta and Ampere) as well as two servers, respectively, equipped
with Intel and AMD multicore processors and a large number of cores.

Our idea to compress the indexing information to reduce the pressure on memory bandwidth is shared with other approaches, such as the
compressed sparse blocks (CSB) format.* This layout partitions the sparse matrix into a regular grid of sparse blocks, each of which is stored in CSR
format with the block indices compressed as offsets to a reference. In comparison, we also maintain the indices as offsets, encoded using a shorter
number of bits. However, our scheme is based on COO instead of CSR; we divide the nonzero matrix entries (instead of the matrix itself) into regular
chunks; we couple this partitioning with a balanced workload distribution for multicore processors and GPUs; and we also explore the compression
of the numerical data usinga LUT.

Therestof this articleis structured as follows: In Section 2, after a short introduction of the CSR and COO sparse matrix formats, we describe the
chunk-based multi-threaded parallelization of our approach and the compressed sparse matrix layout we propose for multicore CPUs. In Section 3,
we provide a complete experimental evaluation of the new GPU and CPU kernels, both from the points of view of memory requirements and parallel

performance. Finally, we close the article in Section 4 with a summary of the article and a discussion of future work.

"An SPMV kernel designed for a sequential execution does not need to account for load balancing, and can therefore exclusively focus on optimizing data compression.
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2 | SPMVOPTIMIZATION FOR MULTICORE AND MANY-CORE PROCESSORS

COO and CSR are two of the most popular data formats for storing sparse matrices.’? The former format only stores the numerical values of the
matrix nonzero entries along with their explicit column and row indices. The latter reduces the memory footprint of the COO format by replacing
the row indices with pointers to the first element in each row of a row-wise sorted matrix.

The balanced and compressed COO SPMV that we presented in Reference 13 builds upon the COO format, reducing the memory footprint
by compressing the row-column indexing information. Also, it uses a problem-specific LUT for encoding the most frequent numerical values of the
matrix. The SPMV kernel operating on this compressed COO format distributes the nonzeros across the parallel resources to favor workload balanc-
ing. A kernel using this parallelization strategy was previously identified to provide good performance on GPUs when operating on a standard CSR
format!! or the standard COO format;'” however, it needs to be enhanced with an on-the-fly decompression of the row-column indices when oper-
ating on the compressed COO format. Performance benefits may still be available if the decompression overhead is compensated by the reduction
of memory transfers. In the remainder of this article, we will use the notation “balanced COO” (BCOQ) when referring to the balanced SPMV kernel
operating on the standard COO format; and “balanced and compressed COO” (BCCOO) when referring to the balanced SPMV kernel operating on
the compressed COO format.

In Reference 13, we detailed the implementation, compression, and parallelization of the BCCOO SPMV for many-core GPUs. In this article, we
focus the description on the compression strategy and the parallelization strategy when the target architecture is a multicore CPU, discussing the
differences between the multicore implementation and the many-core implementation.

2.1 | Compressed COO format for multicore architectures

Given an n x n sparse matrix A, with n, nonzero entries, the COO format stores this matrix using three vectors: say a, i, and j, each of dimension n,,
that contain the numerical values of the nonzero elements of the matrix, and their row and column index coordinates, respectively.

Besides, we consider a partitioning of the COOQ sparse matrix into chunks of b consecutive nonzero entries, and we assume that these are sorted
by increasing order of row index. For simplicity, we assume that n, is an integer multiple of b in the rest of the section.

The compressed COO data structure maintains the information in compressed form. Specifically, it employs the following four vector arrays to

store the nonzero entries of the matrix:

lut isa LUT consisting of an array with the 256 most frequent (nonzero) numerical values appearing in the sparse matrix, each represented using
a 64-bit IEEE floating-point value (FP64). A single byte index is thus sufficient to reference a specific entry of 1ut.

row is an array of size n,/b that stores the row index of the first entry of the chunks using a 32-bit integer (INT32) per chunk. As our schemes
target the iterative solution of sparse linear systems, we assume that all matrix rows contain at least a nonzero entry (as the matrix would be
singular otherwise).

offset isalsoanarray of n,/b INT32 elements, each specifying the position of the first entry of the corresponding chunk in the fourth array.
datais anarray of n, + n tuples, of variable length each, that contain the information that is described next.

“

Let us consider a tuple t consisting of the three “terms” (i, ji, k;). The first term, i, always occupies a single byte and provides the key to decode

the information in the other two terms. Specifically:

e The most significant bit of i; specifies whether the term k; contains a full FP64 value (and, therefore, occupies 8 bytes) or, alternatively, is a 1-byte
index into the 1ut from which the FP64 value can be retrieved.

e The remaining 7 bits of i; (together with the term j;) encode the following information, depending on the value of i, being equal to:
OxFF or Ox7F (“end-of-row”): The partial values accumulated by the thread processing this row, as part of the partial product between this row
and vector x, are accumulated on the corresponding entry of y. The “current row” index is increased by one. The remaining two terms of the
tuple are void.
OxFE or Ox7E: The column index of this entry is specified as an absolute value in jtaking 4 bytes.
OxFD or 0x7D: The column index of this entry is encoded in j;, using 2 bytes, as the difference with respect to the column index of the previous
entry (differential encoding).

Any other: The term i; itself is the difference with the previous column index, while the term j; is void.

The key to the compression of the numerical values and indices thus liesin the dat a array, which stores each nonzero value and its corresponding
row-column indices in a very compact tuple, of variable length between 1 and 13 bytes. In comparison, the standard COO format requires 4+4

bytes for the row+column indices (an INT32 each) plus 8 bytes for the numerical value (an FP64 number), for a total of 16 bytes per element. The
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cost of compressing the indexing is negligible if the matrix is already in CSR format; the cost of computing the 1ut is O(n, logn,), and is faster than

a vector sorting because it involves less data movement.

2.2 | Parallelization of the COO SPMV

Consider the SPMVy := A - x, where both vectors x, y comprise n components. A trivial parallelization of the COO-based SPMV on a GPU dedicates
one thread to multiply a single nonzero entry of the matrix with the corresponding entry of x, using an atomic operation to accumulate the partial
result on the appropriate component of y. In practice, the performance of this initial GPU-parallel approach can be improved by instructing each
thread to multiply 2 or 4 elements of the sparse matrix A with those of the input vector x to update one or more entries of the solution y.13

The fine-grained mapping of work to threads used in the GPU implementation is far from optimal for a multicore CPU due to the significant
differences between the two architectures in terms of the number and functionality of the hardware cores, the distinct overhead due to thread
creation/switching, and the cache hierarchy. The general idea to parallelize the COO SPMV is to distribute the computations among the CPU threads
with a coarser granularity.

Consider a partitioning of the sparse matrix by blocks of rows, so that one CPU thread is in charge of performing all the operations that are
necessary to multiply the elements of a row block of A with those of x, updating the corresponding entries of y. This scheme yields an embarrassingly
parallel algorithm, where each thread can independently compute a block of the solution vector y. However, the scheme easily leads to workload
imbalance, due to differences in the number of nonzero entries per matrix row. The solution proposed in Reference 14 for CSR and in Reference 15
for COOQ, in both cases with a GPU as the target architecture, is to divide the matrix into blocks of consecutive nonzero entries; and to deal with
race conditions via the efficient hardware support for atomic updates in recent GPUs. As we describe next, the same idea carries over with some
modifications to a multicore CPU.

Indetail, when the target architecture is a multicore processor, we propose to partition the sparse matrix, stored in COO format, into chunks of b
consecutive nonzero entries, and we instruct the OpenMP runtime to distribute the operations associated with each chunk among the CPU threads,
viaan OpenMP #pragma omp parallel for directive.|ncomparison with the row-wise distribution, this alternative produces a theoretically
optimal partitioning of the workload. However, variations in the actual execution time of each chunk are still possible due to cache misses, leading
to a potential workload imbalance. In our approach, this is addressed via the selection of a chuck size b that is small in comparison with n,, so that
the default static OpenMP mapping obtains a good balancing of chunks to threads while avoiding the overhead of a dynamic schedule.

The partitioning and parallelization strategy described in the last paragraph requires careful control of race conditions, via atomic updates,
becauseit can lead to simultaneous updates to the same entry of the solution y by more than one thread. The overhead introduced by atomic updates
onthe CPU can be reduced by ensuring that the sparse matrix entries are arranged in increasing row index. (Note that this is the same arrangement
of the nonzero entries required by the CSR format. Therefore, assembling the COO data structure from the CSR counterpart does not require a
reorganization of the nonzero entries.) The reason is that, for this variant of COO a specialized ordering of the rows, race conditions due to update
collisions can only occur for the first and last row comprised in each chunk. In contrast, the updates for the solution entries associated with all other
rows can proceed in parallel. This scheme thus benefits from chunks that span several rows.

2.3 | Balanced and compressed COO SPMYV for multicore CPUs

The BCCOO SPMV kernel for multicore CPUs uses the parallelization strategy presented in Section 2.2 to operate on the compressed COO format
presented in Section 2.1. For simplicity, in Listing 1 we only show the code that processes the first row of the chunk, requiring an atomic update of the
corresponding entry in vector y. The code for the remaining rows is similar. The four arrays that represent the sparse matrix A ( lut, row, of fset,
and data) are accessed viaa st ruct named coo, which is passed as a pointer to the routine. The forloop indexed by variable h is parallelized with
an OpenMP #pragma omp parallel forand processes all the matrix chunks. The while loop processes all entries within the current chunk.
While the realizations of SPMV for multicore CPUs and many-core GPUs (see Reference 13 for the latter) share the same ideas in execution

strategies in terms of workload partitioning and compression, there exist some relevant differences in the implementation:

o Inthe GPU realization, each thread block processes a single chunk. To prevent thread divergence, all the chunk tuples are encoded in the same
way, yielding a less compact format.

e In the GPU case, we employ two auxiliary arrays, format and column, both of size n,/b. The entries of the first array indicate whether the
nonzero matrix elements in the chunk are stored as an FP64 or a byte (i.e., anindex to 1ut) and whether the rows of the chunk are encoded using

abyte, a 16-bit integer, or an INT32. The second array specifies the smallest column index for all nonzero entries in the chunk.

e The first byte in the array data does not inform of the tuple encoding. Instead, it directly encodes the row index (using a single byte in all cases).
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void COO_Comp SpMV (struct COO compressed *coo, double *x, double *y)

for (int 1 = 0; 1 < coo->n; i++) y[i] = 0.0;

// Process all chunks: 0,1,2,...,nb-1=(nz/b)-1

#pragma omp parallel for

for (int h = 0; h < coo->nb; h++) {
long k = coo->offset[h]; // First entry of this chunk in data
int r = coo->row[h]; // Row index of first entry in this chunk
int @ = 0f // Default column index of first entry in this chunk
double s = 0.0; // Partial accumulation

// Process first row. Special case as it requires atomic update
while (k < coo->offset[h+1]) {

// Process tuple t = (i _t,j t,k t)

uint8 t i t = coo->datalk]; k++; // Term i t in the tuple

if (i_t == OxFF) break; // end of row, exit loop
switch (i t & 0x7F) ({
case 0x7E:

NRRPRRPRRPRRR R R R
OVONOCULNPAWNRPROVONOTUOIDWN R
=l

21 // Column index is in j_t (4 bytes, absolute index)
22 c = *(uint32 t *) (coo->data + k); k += 4; break;
23 case 0x7D:

24 // Column index is in j_t (2 bytes, relative index)
25 c += *(uintlé_t *) (coo->data + k); k += 2; break;
26 default:

27 // Column index is in i t (1 byte, relative index)
28 c += i t & O0x7F;

29 }

30

31 if (i_t & 0x80) {

32 // Term k_t is the LUT entry with the value

33 s += coo->lut [coo->datal[k]] * x[c]l; k++;

34 } else {

35 // Value is in term k_t

36 s += *(double *) (coo->data + k) * x[cl; k += 8;

37 }

38 }

39 #pragma omp atomic

40 ylr]l += s;

41

42 // Remaining rows very similar. Omitted for brevity

43 }

44|}

Listing 1: Simplified realization of the multi-threaded, OpenMP-based code for SPMV

3 | EXPERIMENTALPERFORMANCE ANALYSIS
3.1 | Hardware and experimental setup

For the experimental evaluation of the BCCOO SPMV kernel, we selected 56 test matrices from the Suite Sparse Matrix Collection.® The chosen
benchmarks have row/column dimensions larger than 900,000, and arise in a variety of scientific problems excluding graph applications. (Although
the adjacency matrices associated with graphs have excellent compression properties, we do not consider them to be interesting use cases for the
SPMV kernel as there are more efficient algorithms for graph manipulation.) The test matrices are listed along with some key properties in Table 1.
The chunk size was set to 1024 for both CPU and GPU.

For the experimental evaluation on GPUs, we used two different architectures:

e An NVIDIA A100 (“Ampere”) GPU with compute capability 8.0, equipped with 40 GB of memory. This architecture features a bandwidth
of 1555 GB/s to main memory, and a theoretical peak performance of 9.7 DP (double-precision) TFLOPS (102 flops/s) using only the
CUDA cores.

e AnNVIDIA V100 (“Volta”) GPU with compute capability 7.0, furnished with 16 GB of main memory. The bandwidth to main memory is 900 GB/s
and the theoretical peak performance is 7.8 DP TFLOPS using only the CUDA cores.
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TABLE 1 Testmatrices

Matrix
af_shell10
atmosmodd
atmosmodj
atmosmod|
atmosmodm
audikw_1
bone010
boneS10
Bump_2911
cageld

cagel5
circuit5M_dc
circuit5M
Cube_Coup_dt0
Cube_Coup_dté
CurlCurl_3
CurlCurl_4
dgreen
dielFilterV2real
dielFilterV3real
ecologyl
ecology2
Emilia_923
Flan_1565
Freescalel
Freescale2
FullChip

G3_circuit

ALIAGAET AL.

n n, n,/n Matrix n n, n,/n
1,508,065 52,259,885 34.7 Geo_1438 1,437,960 60,236,322 41.9
1,270,432 8,814,880 6.9 Hamrle3 1,447,360 5,514,242 338
1,270,432 8,814,880 6.9 Hardesty1 938,905 12,143,314 12.9
1,489,752 10,319,760 6.9 Hook_1498 1,498,023 59,374,451 39.6
1,489,752 10,319,760 6.9 HV15R 2,017,169 283,073,458 140.3
943,695 77,651,847 82.3 kkt_power 2,063,494 12,771,361 6.2
986,703 47,851,783 48.5 Idoor 952,203 42,493,817 44.6
914,898 40,878,708 44.7 Long_Coup_dtO 1,470,152 84,422,970 574
2,911,419 127,729,899 43.9 Long_Coup_dté 1,470,152 84,422,970 574
1,505,785 27,130,349 18.0 memchip 2,707,524 13,343,948 4.9
5,154,859 99,199,551 19.2 ML_Geer 1,504,002 110,686,677 73.6
3,523,317 14,865,409 4.2 nlpkkt120 3,542,400 95,117,792 26.9
5,558,326 59,524,291 10.7 nlpkkt160 8,345,600 225,422,112 27.0
2,164,760 124,406,070 57.5 nlpkkt80 1,062,400 28,192,672 26.5
2,164,760 124,406,070 57.5 nv2 1,453,908 37,475,646 25.8
1,219,574 13,544,618 111 Queen_4147 4,147,110 316,548,962 76.3
2,380,515 26,515,867 111 rajat31 4,690,002 20,316,253 4.3
1,200,611 26,606,169 222 Serena 1,391,349 64,131,971 46.1
1,157,456 48,538,952 41.9 ss 1,652,680 34,753,577 210
1,102,824 89,306,020 81.0 StocF-1465 1,465,137 21,005,389 14.3
1,000,000 4,996,000 5.0 stokes 11,449,533 349,321,980 30.5
999,999 4,995,991 5.0 t2em 921,632 4,590,832 5.0
923,136 40,373,538 43.7 thermal2 1,228,045 8,580,313 7.0
1,564,794 114,165,372 73.0 tmt_unsym 917,825 4,584,801 5.0
3,428,755 17,052,626 5.0 Transport 1,602,111 23,487,281 14.7
2,999,349 14,313,235 4.8 vas_stokes_1M 1,090,664 34,767,207 31.9
2,987,012 26,621,983 8.9 vas_stokes_2M 2,146,677 65,129,037 30.3
1,585,478 7,660,826 4.8 vas_stokes_4M 4,382,246 131,577,616 30.0

In both cases, the many-core version of the balanced and compressed SPMV kernel was compiled with CUDA version 11.0.167. In the GPU

performance evaluation, we compare against the SPMV kernels available in NVIDIA’s cuSPARSE library version 11.0.167. As our GPU SPMV kernels

run only on the accelerator, the characteristics of the server are not relevant.

For the experimental evaluation on CPUs, we selected the following two platforms:

e Asystem with one AMD EPYC 7351P processor (16 cores, “Zen” microarchitecture) and 16 GB of RAM. The codes are compiled with Intel’s icc

and MKL 2021.1.

e Asystemwithtwo Intel Xeon Gold 6230 processors (10 cores per socket, “Skylake” microarchitecture), and 96 GB of RAM. The codes are compiled
with Intel i cc version 19.1 and linked with Intel’s MKL 2020.

The SPMV operation is a memory-bound kernel and increasing the number of cores augments the memory bandwidth only to the point of sat-

uration while the capacity of the local memory caches grows linearly with the number of cores, which may increase the performance. The exact

threshold for memory saturation depends on the sparse problem: in particular, “denser” problems can be expected to reach that threshold with a

smaller number of cores.
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3.2 | GPU performance analysis

For convenience, we revisit in this subsection the performance that is achieved with our many-core implementation of the BCCOO SPMV on GPUs;
see Reference 13 for additional details.

Before doing so, we recall that the performance of SPMV kernels is generally limited by the memory bandwidth. Therefore, the memory foot-
print of a particular sparse matrix layout can be a good indicator of the performance one can expect from an SPMV kernel based on that sparse
matrix format. In Figure 1, we report the memory footprint of the compressed COO realization specifically designed for many-core accelerators
relative to the memory footprint of the standard CSR format. For reference, the figure also includes the memory footprint of the standard COO
format. In some cases, storing the matrix in compressed COO format can provide attractive memory savings over the standard CSR format while, in
other cases, the CSR format provides a more compact storage. Compared with the standard COO format (which always presents a larger memory
footprint than the CSR format), the compression renders memory savings for about 2/3 of the problems, while it increases the memory footprint by
up to 20% for some matrices.

An aspect not captured by an analysis that is only focused on memory footprint is that COO-based layouts, like the compressed COO format,
may allow for better load balancing across the parallel execution units. The reason for this is that balancing the workload in the CSR format generally
requires the algorithm to recover the row indices on-the-fly, as those are not stored explicitly.!* In Figure 2, we offer the results of the performance
analysis on the NVIDIA V100 and A100 GPUs. We show the performance of the BCCOO SPMV kernel alongside those of the CSR and COO SPMV
kernels available in the NVIDIA cuSPARSE library. The performance results reveal that the BCCOO SPMV kernel outperforms the COO SPMV from
NVIDIA’s cuSPARSE library for all test matrices except two cases (rajat31 and tmt_unsym)on both GPU architectures. This could be expected as
(precisely except for these two cases, see Figure 1), the compression scheme reduces the volume of data retrieved from main memory, and therewith
the execution time, while accommodating an advanced load balancing technique. In comparison with the CSR format, the compressed COO format
reduces the memory footprint for less than half of the test cases; see Figure 1. Nevertheless, the performance results reveal that the CSR SPMV
kernelin NVIDIA’s cuSPARSE is scarcely competitive to the BCCOO SPMV kernel. Specifically, on both architectures, there exist only very few cases
where NVIDIA’s CSR SPMV achieves higher performance, and even in those cases, the performance advantage is only a few percent. At the same
time, for most cases, the balanced and compressed SPMV significantly outperforms NVIDIA’s CSR SPMV, offering an average speedup of 20% across

all test cases.

3.3 | CPU performance analysis
In Section 2, we discussed the common design principles and realization differences between the compression of the COO format for multicore

CPUs and many-core GPUs. Broadly speaking, the compression for CPUs can be more aggressive as it does not require a uniform compression for

all values of the same data chunk to avoid thread divergence—the multicore implementation compresses the values element-wise. In Figure 3, we
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SpMV perfomance on the NVIDIA V100
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In comparison

Performance of the BCCOO SPMV

FIGURE 2
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report the memory footprint of the specific compressed COO realization for multicore architectures relative to that of the standard CSR format.
Like inthe GPU case, storing the matrix in (the conventional) COO increases the memory footprint over the CSR format for all test cases. At the same
time, and unlike the many-core version of the compressed COO shown in Figure 1, the multicore version of the compressed COO exhibits a smaller
memory footprint than the CSR format for all test cases. A direct comparison between the many-core variant of compressed COO in Figure 1 and
the multicore variant of compressed COO in Figure 3 indicates that the multicore version of the compressed COO succeeds in reducing the memory
footprint more aggressively.

Next, we analyze the performance of the multicore version of the BCCOO SPMV kernel. For this purpose, we compare this realization against
the CSR SPMV kernel available in Intel's MKL library as well as a BCOO SPMV kernel that is furnished with the same parallelization strategy as
the BCCOO SPMYV kernel, but features no compression. Intel's MKL kernel for the COO SPMV is not considered in the analysis because it is not
parallelized, and achieves the same performance for all experimental configurations. In Figures 4 and 5, we show the performance characteristics
of the distinct SPMV kernels, for the EPYC- and Xeon-based platforms using a single core, all cores of a single socket (16 or 10 cores), and the full
server in the case of the Intel platform (two sockets, 20 cores), with a perfect one-thread-per-core binding in both servers. The MKL CSR SPMV
achieves on average an attractive 1.2x/3.8x speedup when running on a single socket of the EPYC/Xeon server, and a 4.9x speedup when running
on the full server for the latter platform. The BCOO SPMV kernel achieves a 1.3x/3.3x speedup when running 16/10 cores of a socket of the EPY-
C/Xeon server. However, the parallel efficiency decreases to a speedup of 3.8x when running on 20 cores of the Xeon server as the kernel then
hits the “memory wall”: the addition of arithmetic power fails to increase the performance further as the memory access limits the kernel speed.

SpMV perfomance on the AMD EPYC 7351P (1 core)
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FIGURE 4 Performance of the BCCOO SPMV in comparison with Intel’s MKL COO SPMV and Intel’'s MKL CSR SPMV using 1 core (top) and
the full server (1 socket and 16 cores, bottom) of the AMD EPYC 7351P platform
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SpMV perfomance on the Intel Xeon Gold 6230 (1 core)
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SpMV perfomance on the Intel Xeon Gold 6230 (10 cores / 1 socket)
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SpMV perfomance on the Intel Xeon Gold 6230 (20 cores / 2 sockets)
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In contrast, the BCCOO SPMV kernel suffers from the decompression overhead when running on a single core (resulting in lower performance than
the BCOO SPMV), but exhibits better scalability as it reduces the pressure from the memory bandwidth, and can thus fully exploit the additional
arithmetic resources. The BCCOO SPMYV kernel achieves a 6.3x/11.9x speedup when running on a single socket of the EPYC/Xeon server, and an
21.3x speedup when running on the full server for the latter platform. This super-linear speedup for BCCOO on Xeon server is due to the enlarged
cache available when running on multiple cores and the use of two threads per core (hyperthreading). Comparing the absolute performances, the
BCOO SPMV kernel outperforms the BCCOO kernel on average by 50%/30% on a single core, but the BCCOO SPMV kernel is 2.0x/3.3x faster
when running on 16/20 cores of the EPYC/Xeon servers.

These speedups are exclusively due to the reduced memory access enabled by data compression. Comparing the performance of all SPMV ker-
nels, we recognize that MKL's CSR SPMV is the overall winner for small core counts. This may be expected as (1) the sequential SPMV execution does
not have to account for load balancing but exclusively focuses on minimizing the memory access and arithmetic operations; and (2) when running on
a few cores only, the SPMV kernel does not saturate the memory bandwidth, and the additional arithmetic necessary to decompress the indexing
information cannot be completely hidden behind memory accesses, thus reducing the performance of the floating-point units. On a single socket,
the BCCOO SPMV is competitive with the MKL CSR SPMV, and when operating with the full server, the BCCOO SPMV regularly outperforms the
MKL CSR SPMV.

3.4 | Speedup analysis

Finally, we quantify the speedup that the BCCOO SPMV kernel can render over the SPMV kernels in the vendor libraries. For this, in Figure 6, we
display the speedup that BCCOO achieves over NVIDIA’s cuSPARSE library on the V100 and A100 GPUs. We observe that, on both architectures,
the BCCOO SPMYV executes on average of 1.4x faster than the CSR and COO SPMV kernels available in NVIDIA’s cuSPARSE library. In Figures 7
and 8, we present a similar analysis comparing the BCCOO SPMV against the MKL CSR SPMV and the BCOO SPMYV using different core counts

SpMV perfomance on the NVIDIA V100 SpMV perfomance on the NVIDIA A100
22 22
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FIGURE 6 Speedup analysis comparing the performance of the BCCOO SPMV against the COO SPMV and the CSR SPMV from NVIDIA’s
cuSPARSE library on the NVIDIA V100 (left) and NVIDIA A100 (right)
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FIGURE 7 Speedup analysis comparing the performance of the BCCOO SPMYV against Intel’'s CSR SPMV and the BCOO SPMV on the AMD
EPYC7351P
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FIGURE 8 Speedup analysis comparing the performance of the BCCOO SPMYV against Intel’'s CSR SPMV and the BCOO SPMV on the Intel
Xeon Gold 6230

of the Intel and AMD systems.”On average, when running on a single core of the EPYC platform, BCCOO is almost three times slower than Intel’s
CSR SPMV kernel, but 70% faster when the kernels are executed using the full socket. Similarly, on the Xeon architecture, when using only a single
core, Intel's CSR SPMV is twice faster than BCCOO, but on the same architecture, BCCOO outperforms Intel’'s CSR SPMV when both kernels are

executed using all 20 cores of the server.

4 | CONCLUDING REMARKS AND FUTURE WORK

We have proposed an SPMV kernel that combines load-balancing with compression to reduce the pressure on memory while using the available
compute power of modern CPUs and GPUs efficiently. We have developed kernel realizations for the most recent many-core GPUs from NVIDIA
as well as server-line multi-core processors from Intel and AMD with a large number of cores. While the implementations for these two types of

systems present some architecture-dependent differences, tuned to optimize performance, the scheme is based on a few key common ideas:

e The workload is distributed by partitioning the (nonzero) matrix entries into chunks of small size (in practice, about 1024 for both GPU and
CPU), which are then mapped to the threads by the runtime (CUDA for NVIDIA and OpenMP for Intel and AMD). Race conditions are avoided
via atomic updates and an arrangement of the matrix rows to minimize collisions. We thus prioritize obtaining a fair workload distribution over

other embarrassingly parallel row-wise oriented alternatives.

e Theindexing overhead is reduced by aggressively compacting the COO indices into 1, 2, or 4 bytes for the columns, and as little as a few bits for

the rows.

o The numerical information is compacted as well by moving the most frequent numerical values to a LUT and then using a 1-byte reference as a
pointer into the table.

The global combination of these ideas yields high performance realizations of the SPMV kernel that consistently outperform the
vendor-optimized native kernels in the case of NVIDIA’s GPUs and provide higher scalability in the case of Intel and AMD multicore architectures.
This provides a strong demonstration that (1) optimizing for workload distribution is crucial for irregular matrix computations; and (2) the cost of
decompressing data structures can be largely amortized for memory-bound algorithms.

As part of future work, we plan to investigate the extension of some of the ideas presented in this article to the CSR sparse matrix format as
well as the NUMA-aware optimization of the SPMV kernel. We also plan to migrate the GPUs realizations to AMD GPUs.
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