
Analysis of the Communication and Computation
Cost of FFT Libraries towards Exascale

Alan Ayala
Stanimire Tomov

Piotr Luszczek
Sébastien Cayrols
Gerald Ragghianti

Jack Dongarra

ICL Technical Report ICL-UT-22-07

Knoxville, July 1, 2022

Abstract

The Exascale Computing Project (ECP) of the United States, supports the design of soft-
ware and hardware towards computation at exa�ops rate. Many applications of this kind,
rely on e�cient and scalable Fast Fourier Transform (FFT) computation. In previous work,
we presented interim benchmark reports comparing almost a dozen state-of-the-art FFT li-
braries, analyzing their scalability and main features. Furthermore, we explored the impact
of GPU accelerators from di�erent vendors to further speedup FFT computation; as well as
the communication bottleneck.

In this report, we present a detailed study of the computation and communication costs
of parallel multidimensional FFT libraries. We focus on hardware with GPU accelerators,
as those envisaged for modern exascale supercomputers. We present results obtained using
an FFT Benchmark harness that we developed to easily benchmark and compare numerous
FFT libraries on DOE exascale systems.

Contents

� Introduction �

�.�.� State-of-the-art Libraries . �

� Experimental Setup ��

�.� Description of Hardware Resources . ��

�.� Description of Software Resources . ��

�.� Data Inputs and Outputs . ��

� Analysis of FFT Communication cost ��

�.� Communication models for FFTs . ��

�.� Bandwidth Analysis . ��

� FFT Benchmark Results ��

�.� Close to the peak performance . ��

�.� Comparison of Strong Scalability Results ��

�.�.� CPU-based libraries . ��

�.�.� GPU-based libraries . ��

� Discussion ��

�.� Impact of Vendors’ GPUs and Software ��

�.� Impact of the libraries setup time . ��

�

�.� The FFT communication bottleneck . ��

� Conclusions ��

� Appendix: Tensor transposition cost for parallel FFTs ��

�.� Multi-core CPU based systems . ��

�.� GPU based systems . ��

�

List of Figures

�.� Computation of �-D FFT via �-D pencils decompostition (left), and �-D
slabs decomposition (right). �

�.� Evolutionof bandwidth achieved onSummit and Spock of inter-node com-
municationwhen increasing the communicationvolumeandusingoneNIC.
Summit has a theoretical peak of �� GB/s (when using � NICs per node)
while Spock’s peak bandwidth is ��GB/s (using one NIC). ��

�.� Comparison of parallel FFT libraries on up to � Summit nodes, using �
MPIs per node and �MPI per single core of IBM POWER �. ��

�.� Comparison of parallel FFT libraries on up to � Spock nodes, using �MPIs
per node and �MPI per EPYC-���� core. ��

�.� Comparison of parallel FFT librarieswithGPU support onup to� Summit
nodes, using �MPIs per node and �GPU per MPI. ��

�.� Performance comparisonof a���� FFTusing heFFTewith vendor �-DFFT
libraries (NVIDIA and AMD) on Summit and Spock. The number of
GPUs used per node is four. ��

�.� Comparison of the average setup (FFT planning) time for all libraries from
Figure �.� at � nodes. ��

�.� Comparison of setup (planning) time for di�erent libraries. Note that FF-
TADVMPI is only composed of two kernels, since the packing and unpack-
ing is embedded intoMPI Alltoallw. ��

�

�.� Vampir trace of back-to-back �-D FFTs of size ����� (� forward + � back-
ward), using � Summit nodes with ��� IBM Power� cores, �� MPIs per
node. We use heFFTe with FFTW backend and pipelined MPI Isend and
MPI Irecv communication. ��

�.� Vampir trace of back-to-back �-D FFTs of size ����� (� forward + � back-
ward), using � Summit nodes with ��� IBM Power� cores, �� MPIs per
node. We use heFFTe with FFTW backend andMPI Alltoall communica-
tion. ��

�.� Vampir trace of back-to-back �-D FFTs of size ����� (� forward + � back-
ward), using � Summit nodes with �� NVIDIA GPUs, �MPIs per node.
WeuseheFFTewithCUFFTbackend andpipelinedMPI Isend andMPI Irecv
communication. ��

�.� Vampir trace of back-to-back �-D FFTs of size ����� (� forward + � back-
ward), using � Summit nodes with �� NVIDIA GPUs, �MPIs per node.
We use heFFTe with CUFFT backend andMPI Alltoall communication. . ��

�

List of Tables

�.� Multidimensional FFT Libraries in the FFT benchmark tests. All libraries
were tested using their latest release version. �

�.� Software versions used on Summit. ��

�.� Software versions used on Spock. ��

�.� Available MPI routines in FFT libraries ��

�

Acknowledgment

This research was supported by the Exascale Computing Project (��-SC-��-SC), a collab-
orative e�ort of two U.S. Department of Energy organizations (O�ce of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of
a capable exascale ecosystem, including software, applications, hardware, advanced system
engineering and early tested platforms, in support of the nation’s exascale computing imper-
ative.

�

Chapter �

Introduction

In this report, we use our benchmark harness [�] to analyze the computation and communi-
cation cost of modern FFT libraries using some of world’s most powerful computing archi-
tectures. We focus on �-D FFT computation with either the �-D decomposition approach
(pencils) or the �-D decomposition (slabs) as shows in Figure �.�.

FFTs on X-axis FFTs on Y-axis FFTs on Z-axis FFTs on XY-plane FFTs on Z-axis

3-D FFT via 2-D decomposition 3-D FFT via 1-D decomposition

Figure �.�: Computation of �-D FFT via �-D pencils decompostition (left), and �-D slabs decompo-
sition (right).

We base our analysis on the computation sequence described byAlgorithm �, which rep-
resents the steps that the FFT libraries used in this report follow for computing the FFT
�-D transform. Note that most state-the-art libraries only support �-D and �-D FFTs, while
some, e.g. AccFFT [�], extend their support to � dimensions.

The transfer phase of Algorithm � (also known as remap, reshape or transposition) is
performed using a Message Passing Interface (MPI) distribution. In [�], a novel approach,
which we refer to as FFTADVMPI in Table �.�, was introduced to performm-dimensional
FFTs with general backends using few lines of code, and MPI Alltoallw to handle the ex-
changes. This novel approach avoids data packing and unpacking.

�

Algorithm � Parallel �-D FFT computation
�: Input: �-D data array, grid of processors P⇥Q.
�: De�ne processor grids (MPI groups) for each direction
�: for r �, · · · , nbatches do
�: for r �, · · · , nexchanges do
�: Compute local �-D or �-D FFTs on the GPUs
�: Pack data in contiguous memory
�: for Process on myMPI group do
�: Transfer computed data to neighbor processes
�: end for
��: Unpack data in contiguous memory
��: end for
��: end for

�.�.� State-of-the-art Libraries

In this report, we consider nine state-of-the-art software libraries listed in Table �.�.

Table �.�: Multidimensional FFT Libraries in the FFT benchmark tests. All libraries were tested using
their latest release version.

Library Version CPU GPU Slabs Pencils
Name support support Decomp. Decomp.

AccFFT �.� yes yes no yes
�Decomp&FFT �.�.��� yes no no yes
FFTE �.� yes yes yes yes
FFTW �.�.� yes no yes no
FFTMPI �.� yes no no yes
heFFTe �.� yes yes yes yes
SWFFT �.� yes no no yes
P�DFFT � yes no yes yes
FFTADVMPI N/A yes no yes yes

Amongst themost recent libraries fromTable �.�, heFFTe [�] and FFTW [�] libraries are
used for error validation and their results served as the basis for comparisons with the other
FFT libraries. This is, for a given input array X 2 Rm⇥n⇥q and a parallel FFT library, we
calculate the computation error as shown in Eqs. (�.�) and (�.�).

E� = kX � IFFTheFFTe(FFTLibrary(X))kmax, (�.�)

E� = kX � IFFTFFTW(FFTLibrary(X))kmax, (�.�)

This is, we compute an inverse transform (with heFFTe andFFTW)of the forward trans-

�

http://accfft.org/
http://www.2decomp.org/
http://www.ffte.jp/
https://fftw.org/
https://lammps.github.io/fftmpi/
https://bitbucket.org/icl/heffte/src/master/
https://xgitlab.cels.anl.gov/hacc/SWFFT
https://www.p3dfft.net
https://www.sciencedirect.com/science/article/pii/S074373151830306X

form obtained by the given library. For the experimental part in Section �, we verify that the
errors are less than �����, which is roughly in the order of �kXk�, being the machine preci-
sion � = �(�����).

The harness software that we prepared for testing the libraries from Table �.� uses hard-
ware GPU acceleration whenever possible and allows mixed-interface to accommodate C,
C++, and Fortran codes by wrapping and properly linking object �les together with the re-
quired dependent runtime, system, and language. Some tests still had to be performed out-
side the software harness due to the cross-language and cross-platform portability issues.

�

Chapter �

Experimental Setup

�.� Description of Hardware Resources

The performance experiments in this report are obtained using two supercomputers located
at the Oak Ridge National Laboratory, namely Summit and Spock. The former is an IBM
AC��� supercomputer featuring IBM POWER � CPUs and NVIDIA Volta V��� GPUs
and is currently ranked number two on the TOP��� list of the largest supercomputing in-
stallations. The lattermachine is Spock,which is a precursor of theupcomingFrontier super-
computer at ORNL. Frontier is expected to overcome the � Exa-�op/s barrier using double-
precision data. Spock is composed of nodeswithAMDCPUs andGPUs. Belowwe list their
technical speci�cations relevant for this report:

• Summit has a total of �,��� nodes. Each node consists of two sockets, each with a ��-
core IBMPOWER �CPU and �NVIDIAVolta V���GPUs. The total of �GPU ac-
celerators provide a theoretical double-precision peak performance of approximately
�� Tera-�op/s. Within the same socket, the computing units are connected with the
NVIDIANVLink node interconnect with a theoretical uni-directional bandwidth of
�� GB/s (or ��� GB/s bi-directional). Inter-node injection bandwidth is limited to
twoMellanox In�niband NICs totaling in uni-directional bandwidth of ��GB/s (or
��GB/s bi-directional).

• Spock has hardware and software in preparation for the upcomingmuch larger Fron-
tier system. We use it as an early-access testbed available as part of the Exascale Com-
puting Project (ECP) early access platforms. In total, it has a total of �� compute
nodes, each consisting of one ��-core AMD EPYC ����CPU equipped with to ���
GB of DDR� memory and connected to � AMD MI��� GPUs. The CPU is con-
nected to all GPUs via PCIe Gen�with uni-directional bandwidth of ��GB/s (or ��

��

GB/s of bi-directional bandwidth). The GPUs are connected in an all-to-all arrange-
ment via the In�nity Fabric (xGMI) with uni-directional bandwidth of �� GB/s (or
�� GB/s bi-directional bandwidth). The Spock nodes are connected with Slingshot-
�� dragon�y network providing a node injection uni-directional bandwidth of ��.�
GB/s (��GB/s bi-directional) from a single NIC card.

�.� Description of Software Resources

For this report we use the libraries showed in Table �.�; for their compilation and execution,
we use the software listed below in Tables �.� and �.�.

Table �.�: Software versions used on Summit.

Software Module Version Used in Tests

CUDA ��.�.�
FFTW �.�.�
GNU compilers �.�.�
SpectrumMPI ��.�.�.�-��������
CMake �.��.�
PGI ��.�
Scalasca �.�
ScoreP �.�
Vampir ��.�

Table �.�: Software versions used on Spock.

Software Module Version Used in Tests

ROCM �.�.�
FFTW �.�.�
GNU compilers �.�.�
Cray-MPICH �.�.��
CMake �.��.�

�.� Data Inputs and Outputs

We performed a variety of experiments to benchmark the nine state-of-the-art parallel FFT
libraries mentioned earlier with only three of them having support for GPU accelerators to
o�oad computation. Speci�cally, we used the following setup:

��

• We consider that input data is in pencil or slab decomposition, ready to start com-
puting the batches of �-D FFTs, c.f. Figure �.�. Output is arranged along the slow
dimension.

• For our analysis of computation cost, we employ a �-D FFT transforms of size ranging
from ���� to �����.

• In order to maintain statistical rigor, we report the average time of ten consecutive
runs of single forward �-D FFT transforms and use that value on the graphs directly
or convert them intoG�op/s rate using thewell-knownFFTcomplexity: �N log�(N),
whereN is the FFT size.

• For a fair comparison, we employed our benchmark harness [�], which ensures that
all libraries used the same input and output data as well as MPI process grids or to
perform the same type of communication exchange: either slabs or pencils. Also for
fairness purposes, we disabled the tuning phases in case it was enabled by default in
any given library: this was done to report out-of-the-box experimental results as some
of the libraries do not include tuning as one of the phases included in their functional
scope.

��

Chapter �

Analysis of FFT Communication cost

In our previous work [�, Appendix], we pro�led the tensor transposition (lines � to �� from
Algorithm �) for di�erent study cases. We observed how the dominance ofMPI cost in run-
time, around ��%, slows down the computation for both collective and binary exchanges. In
this section we analyze the communication cost from a theoretical point-of-view and then
with experiments on di�erent architectures.

�.� Communication models for FFTs

The Cooley-Tukey algorithm for FFT computation gives us the asymptotic complexity of
�(N · log(N)) for an m-dimensional FFT of size N on a single-device. In parallel systems,
however, it is the cost of MPI communication that dominates the runtime [�, �]. There is a
vast literature on performancemodels for FFTswhen usingAlgorithm �withΠ processes on
n computing nodes. And since such models are architecture dependent, there is no a single
one that can accurately hold for all supercomputers. Amongst the most relevant models:

• In [�], authors propose to use�
⇣

N
σ(P)

⌘
, where σ(P) is the bisection bandwidth of the

network.

• In [�], authors use regression to �nd γ such that the communication cost is �(n�γ).
This was developed for a Cray XC�� system (Shaheen II).

• In [�], authors propose a theoretical lower-bound for the communication cost on �-D
FFT computations towards exascale computing systems, assuming a �-D torus topol-
ogy (which is found in supercomputers targeting exascale such as Fugaku at Riken-

��

Japan). The communication time is given as �
⇣

N
P�/� ·B

⌘
, where B is the network

bandwidth.

�.� Bandwidth Analysis

In Figure �.�, we compare the practical inter-node peak bandwidth we obtained on either
Summit or Spock. We used the same con�guration of the Network Interface Cards (NIC)
on both systems. Note that the inter-node bandwidth achieved on both systems gets close
to the peak. Summit has two NICs per node and thus gets twice the overall bandwidth of
Spock that was only equipped with a single network card.

Figure �.�: Evolution of bandwidth achieved on Summit and Spock of inter-node communication
when increasing the communication volume and using one NIC. Summit has a theoretical peak of
��GB/s (when using �NICs per node) while Spock’s peak bandwidth is ��GB/s (using one NIC).

�Refer to [��] for a similar for �-D real-to-complex model designed for Intel Xeon Phi Clusters.

��

Chapter �

FFT Benchmark Results

�.� Close to the peak performance

On systems that support GPU accelerators, it is typically the vendor implementations that
o�er the fastest computation, such is the case of cuFFTonNVIDIAGPUdevices or rocFFT
for AMD devices. When using multi-GPU devices, e.g. a DGX system from NVIDIA, it is
also the vendor implementation, in this case cuFFTMp [��], which claims to achieve exce-
lent scalability up to PetaFlop scale, and more than ��% of the peak machine. In a hybrid
CPU-GPU system, in general there is no a single library that can claim the title of the fastest,
instead, it highly depends on how they handle theMPI communication and their portability
(e.g., cuFFTMp is dependent on NVSHMEM, which restricts its usage to speci�c systems).

��

�.� Comparison of Strong Scalability Results

�.�.� CPU-based libraries

Figure �.�: Comparison of parallel FFT libraries on up to � Summit nodes, using �MPIs per node
and �MPI per single core of IBM POWER �.

Figure �.�: Comparison of parallel FFT libraries on up to � Spock nodes, using �MPIs per node and
�MPI per EPYC-���� core.

Figures�.� and�.� show the strong scalability timing of���� FFTs on themulticoreCPUsof
Summit and Spock, respectively. These results feature all seven software libraries considered

��

for this report and hence these �gures o�er the most comprehensive comparison between
them.

�.�.� GPU-based libraries

Figure �.� shows the strong scaling timings of ���� FFTs on the GPUs of Summit spread
among up to � nodes. Note that heFFTe, AccFFT, and FFTE are the only libraries com-
pared in the �gure as they are the only ones that provide support for distributed-memory
systems with NVIDIA GPUs. Finally, heFFTe is the only library that provides support for
distributed-memory systems with AMD GPUs. Therefore, we show in Section �.� perfor-
mance results on Spock exclusively featuring the heFFTe library.

Figure �.�: Comparison of parallel FFT libraries with GPU support on up to � Summit nodes, using
�MPIs per node and �GPU per MPI.

��

Chapter �

Discussion

In this chapter, we analyze di�erent scenarios that can play a fundamental role in tuning
FFT software implementations to adapt them to run e�ciently on exascale hardware com-
ponents.

�.� Impact of Vendors’ GPUs and Software

At the time of this writing, heFFTe is the only library that provides multidimensional FFTs
for distributed-memory systems with AMD and Intel GPUs; therefore, it is not currently
possible to compare hybrid FFT performance on Spock-like systems.

Figure �.�: Performance comparison of a ���� FFT using heFFTe with vendor �-D FFT libraries
(NVIDIA and AMD) on Summit and Spock. The number of GPUs used per node is four.

��

Figure �.� shows the strong scalability timing of ���� FFTs of heFFTe on the GPUs of
Summit in comparison with Spock. The performance shown is for heFFTe’s cuFFT back-
end on Summit and heFFTe’s rocFFT backend on Spock. This �gure sheds light on the
optimizations required for systems based on AMDGPUS with a single NIC con�guration:

• The scaling deteriorates past � nodes indicating excessive increase of demand for com-
munication bandwidth capacity as the all-to-all exchanges dominate quickly the com-
pletion time.

• The scaling dip may most likely be alleviated by additional network resources such
as extra NIC cards, which are present on the Summit system for a higher injection
bandwidth of the o�-node tra�c.

• Vendors such as AMD, Intel and NVIDIA need to further accelerate the inter-node
GPU transfers. E�orts such as NCLL [��], would help with this task and must get a
considerable attention towards exascale.

�.� Impact of the libraries setup time

Most applications, such asLAMMPS [��], require several FFTs to compute calculations such
as the energy of a system. When the same data structure is going to be used many times, the
time for setting up the transformmay not be relevant; however, when single or few transfor-
mations are needed then itmay be relevant to analyze howmuch time a given library takes for
planning the FFT. InFigure�.�, we showhowdi�erent setup timing varies amongst libraries,
AccFFT being the slowest one almost �⇥worse than the fastest one (heFFTe).

Figure �.�: Comparison of the average setup (FFT planning) time for all libraries from Figure �.� at �
nodes.

��

�.� The FFT communication bottleneck

In the Fig. �.�, we show a breakdown of the kernel components within a �-D FFT running
onmulti-coreCPUs for �ve of the libraries shown in Fig. �.�. We can clearly observe a similar
behavior for all the implementations, and note that optimizations of MPI Alltoallw could
potentially yield to gettingmuch faster FFTs via the approachof theFFT librarywith advance
MPI routines [�], which moves the packing and unpacking kernels into the network. This,
however, is at an early stage, sinceMPI Alltoallw is far from being optimized in comparison
to MPI Alltoall or MPI Alltoallv, and in distributions such as SpectrumMPI, it is not even
GPU-aware [��].

Figure �.�: Comparison of setup (planning) time for di�erent libraries. Note that FFTADVMPI is
only composed of two kernels, since the packing and unpacking is embedded intoMPI Alltoallw.

��

Chapter �

Conclusions

This report introduced an FFT Benchmark harness that was developed to easily benchmark
andcomparenumerousFFT libraries onDOEexascale systems. Theharness is open source [�]
and facilitates the addition of other FFT libraries and FFT benchmarking problems from
FFT as well as application developers and users.

The FFT benchmark harness was used to benchmark and compare the FFT libraries
from [��], by adding the Spock ECP system at ORNL that features AMD MI��� GPUs.
Spock is an early-access system and precursor to Frontier, so only � nodes were available for
now to run.

Results show that all libraries can be easily ported and run on the multicore CPU parts
of these two systems, while support for GPUs is provided only in the heFFTe, AccFFT, and
FFTE libraries for Nvidia GPUs, and only heFFTe supports AMDGPUs.

Single GPU �-D FFTs on AMD GPUs need further optimizations. Currently, rocFFT
on MI��� is up to �⇥ slower than cuFFT on V��� GPUs. For ���� FFTs cuFFT reaches
��.�%of theV���GPUcompute peak vs. rocFFT reaches �.�%of theMI���GPUcompute
peak. Regardless of that, the �-D FFTs are communication-bound and therefore the local
(single GPU) performance is less important in the distributed computing setting. Indeed,
Summit has about �⇥ faster inter-node communication bandwidth, and our benchmark
results quantify that this translates to about �⇥ faster �-D FFTs. Frontier is expected to have
the same inter-node communication bandwidth as Summit.

��

Bibliography

[�] “HPFFT: A Parallel FFT Benchmark Harness.” ����. [Online]. Available: https:
//github.com/icl-utk-edu/�ber

[�] A. Gholami, J. Hill, D. Malhotra, and G. Biros, “Acc�t: A library for distributed-
memory FFT on CPU and GPU architectures,” CoRR, vol. abs/����.�����, ����.

[�] L. Dalcin, M. Mortensen, and D. E. Keyes, “Fast parallel multidimensional FFT using
advancedMPI,” Journal of Parallel andDistributed Computing, vol. ���, pp. ���–���,
����.

[�] A. Ayala, S. Tomov, A. Haidar, and J. Dongarra, “heFFTe: Highly E�cient FFT for
Exascale,” in ICCS ����. Lecture Notes in Computer Science, ����.

[�] M. Frigo and S.G. Johnson, “The design and implementation of FFTW�,”Proceedings
of the IEEE, vol. ��, no. �, pp. ���–���, ����, special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[�] A. Ayala, S. Tomov, P. Luszczek, S. Cayrols, G. Ragghianti, and J. Dongarra, “Fft
benchmark performance experiments on systems targeting exascale,” Tech. Rep. ICL-
UT-��-��, ����-�� ����.

[�] “heFFTe library,” ����, available at https://bitbucket.org/icl/he�te.

[�] A. G. Chatterjee, M. K. Verma, A. Kumar, R. Samtaney, B. Hadri, and R. Khurram,
“Scaling of a Fast Fourier Transform and a pseudo-spectral �uid solver up to ������
cores,” J. Parallel Distributed Comput., vol. ���, pp. ��–��, ����.

[�] K. Czechowski, C. McClanahan, C. Battaglino, K. Iyer, P.-K. Yeung, and R. Vuduc,
“On the communication complexity of �D FFTs and its implications for exascale,” ��
����.

[��] D. Takahashi, “Implementation of Parallel �-D Real FFT with �-D decomposition on
Intel Xeon Phi Clusters,,” in ��th International conference on parallel processing and

applied mathematics., ����.

[��] “cuFFTMp library,” ����. [Online]. Available: https://developer.nvidia.com/blog/
multinode-multi-gpu-using-nvidia-cu�tmp-�ts-at-scale/

��

https://github.com/icl-utk-edu/fiber
https://github.com/icl-utk-edu/fiber
https://bitbucket.org/icl/heffte
https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-cufftmp-ffts-at-scale/
https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-cufftmp-ffts-at-scale/

[��] NVIDIA, “NCCL library,” ����. [Online]. Available: https://github.com/NVIDIA/
nccl

[��] “Large-scale atomic/molecular massively parallel simulator,” ����, available at https:
//lammps.sandia.gov/.

[��] “Release notes on IBM SpectrumMPI ��.�,” ����, Available at https://www.ibm.
com/docs/en/smpi/��.�?topic=release-notes.

[��] A. Ayala, S. Tomov, P. Luszczek, S. Cayrols, G. Ragghianti, and J. Dongarra,
“Interim report on benchmarking FFT libraries on high performance systems,”
Innovative Computing Laboratory, University of Tennessee, Tech. Rep. ICL-
UT-��-��, Jun. ����. [Online]. Available: https://www.icl.utk.edu/publications/
interim-report-benchmarking-�t-libraries-high-performance-systems

[��] D. Takahashi, “FFTE �.�: A fast Fourier transform package,” http://www.�te.jp/, ����.

[��] “parallel �d and �d complex �ts,” ����, available at http://www.cs.sandia.gov/
⇠sjplimp/download.html.

[��] A. Ayala, S. Tomov, M. Stoyanov, A. Haidar, and J. Dongarra, “Accelerating Multi-
Process Communication for Parallel �-D FFT,” in ���� Workshop on Exascale MPI

(ExaMPI), ����, pp. ��–��.

[��] A. Ayala, S. Tomov, M. Stoyanov, and J. Dongarra, “Scalability Issues in FFT Com-
putation,” in Parallel Computing Technologies. Springer International Publishing,
����.

[��] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk, R. Thakur, and J. L.
Trä�, “MPI on a Million Processors,” inRecent Advances in Parallel VirtualMachine

andMessage Passing Interface,M.Ropo, J.Westerholm, and J.Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, ����, pp. ��–��.

��

https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://lammps.sandia.gov/
https://lammps.sandia.gov/
https://www.ibm.com/docs/en/smpi/10.4?topic=release-notes
https://www.ibm.com/docs/en/smpi/10.4?topic=release-notes
https://www.icl.utk.edu/publications/interim-report-benchmarking-fft-libraries-high-performance-systems
https://www.icl.utk.edu/publications/interim-report-benchmarking-fft-libraries-high-performance-systems
http://www.cs.sandia.gov/~sjplimp/download.html
http://www.cs.sandia.gov/~sjplimp/download.html

Chapter �

Appendix: Tensor transposition cost
for parallel FFTs

In this appendix section, we further analyze the communication schemes available in most
state-of-the art FFT libraries. The e�ect that the parallel tensor transposition bottleneck has
on scalability at large-scale has been extensively studied, see e.g., [��, �].

Given the upcoming exascale ecosystem of software and hardware, we consider relevant
to analyze the di�erent MPI routines in which state-of-the-art libraries with GPU support,
c.f., Table �.�, rely to perform tensor transpositions. For the experiments below, we use
heFFTe library (due to their wide range of communication options) and Vampir for visu-
alization, c.f., Table �.�.

Table �.�: Available MPI routines in FFT libraries

Library Communication Type�
AlltoAll Point-to-Point

AccFFT [�] MPI Alltoall MPI Isend /MPI Irecv
MPI Sendrecv

FFTE [��] MPI Alltoall -MPI Alltoallv
�tMPI [��] MPI Alltoallv MPI Send /MPI Irecv

heFFTe [�] MPI Alltoall MPI Send /MPI Isend
MPI Alltoallv MPI Irecv

�Refer to [��] for a survey of di�erent MPI routines used in modern FFT libraries

��

.

�.� Multi-core CPU based systems

Systems like Fugaku, an exascale supercomputer at the Riken Center for Computational
Science in Kobe, Japan, rely on multi-core chips with high speed interconnections. In [��],
authors studied FFT scalability issues in such systems. In Figure �.�, we observe that for a
small count of cores (���) the communication cost (tensor transpose) is ⇡ ��% even when
overlapping the packing and unpacking with the MPI exchange.

Forward 1D FFT
Backward 1D FFT

Grids: (1, 12, 14) - (12, 1, 14) - (12, 14, 1)
Average time per direction: 2.22124 (s)
Performance: 72.51 GFlops/s
Memory usage: 497MB/rank
Max error: 4.20192e-15

Pipelined Isend/Irecv

84.26%

5.58%

5.13%

4.16%

Others: 0.87%

Pack

Figure �.�: Vampir trace of back-to-back �-D FFTs of size ����� (� forward + � backward), using �
Summit nodes with ��� IBM Power� cores, ��MPIs per node. We use heFFTe with FFTW backend
and pipelinedMPI Isend andMPI Irecv communication.

��

Next, we present an experiment using MPI Alltoall for the tensor transposition on ���
CPU cores. Libraries that support this type of communication require to have a padding
step before calling the MPI routine. In Fig. �.�, we can observe that the pack and unpack
kernels take a considerable amount of time (around ��%). In Fig. �.� we will see that when
moving those kernels into the GPUs could reduce their cost to under �%. In Section �.� we
also commented on how moving these kernels into the network could help accelerate the
FFT computation.

MPI_Alltoall

Forward 1D FFT
Backward 1D FFT

Grids: (1, 12, 14) - (12, 1, 14) - (12, 14, 1)
Average time per direction: 3.62171 (s)
Performance: 44.47 GFlops/s
Memory usage: 499MB/rank
Max error: 4.20192e-15

Unpack

Pack

MPI_Barrier

52.6%

36.7% 3.85%
3%
2.65%
1.2%

Figure �.�: Vampir trace of back-to-back �-D FFTs of size ����� (� forward + � backward), using �
Summit nodes with ��� IBM Power� cores, ��MPIs per node. We use heFFTe with FFTW backend
andMPI Alltoall communication.

��

�.� GPU based systems

Systems like Summit, and the upcoming Frontier, rely on hybrid CPU-GPU systems. The
accelerators have proven to considerable speedup the computation of local kernels, such as
the batched �-D FFTs, packing and unpacking, c.f., [�, �, ��]. In Figures �.�and �.� we ob-
serve that the non-blocking point-to-point exchange yields to faster computation than the
all-to-all approach; however, in both cases MPI covers around ��% of the runtime, and this
was achieved only with ��GPUs, which is just �.��% of the total number of GPUs available
in Summit.

Pipelined Isend/Irecv

Forward 1D FFT
Backward 1D FFT

92.57%

2.94%

Others: 1.13%Grids: (1, 4, 4) - (4, 1, 4) - (4, 4, 1)
Average time per direction: 0.298241 (s)
Performance: 540.04 GFlops/s
Memory usage: 5120MB/rank
Max error: 4.57383e-15

MPI_Waitall

2.22%
1.14%

Figure �.�: Vampir trace of back-to-back �-D FFTs of size ����� (� forward + � backward), using �
Summit nodes with ��NVIDIA GPUs, �MPIs per node. We use heFFTe with CUFFT backend and
pipelinedMPI Isend andMPI Irecv communication.

��

Figure �.� also shows how the sub-communicatorswere created for the all-to-all transfers
(see the black polygons). All libraries fromTable �.�, set theMPI groups and communicators
during the FFT planning, trying to ensure good load-balancing. In [��], it was shown how
tuning grids can ensure linear scaling to over forty thousand processes, and how a bad choice
of grids could lead to scalability failure. And even though tuning FFT parameters helps to
achieve better performance on several thousand of processes; our experiments also suggest
that at very large processes count (e.g.,millions), it is the associated latencyofMPI Alltoall(v)
what will produce scaling failures, refer to [��] for an external analysis. Therefore, e�orts to
further optimize all-to-all MPI routines, mainly for small data-volume exchanges, are critical
and will have a great impact on the performance of FFT libraries at the exascale level.

MPI_Alltoall

Forward 1D FFT
Backward 1D FFT

95.13%

2.2%
1.8%

Others: 0.87%
Grids: (1, 4, 4) - (4, 1, 4) - (4, 4, 1)
Average time per direction: 0.51395 (s)
Performance: 313.38 GFlops/s
Memory usage: 5120MB/rank
Max error: 4.57383e-15

Figure �.�: Vampir trace of back-to-back �-D FFTs of size ����� (� forward + � backward), using �
Summit nodes with ��NVIDIA GPUs, �MPIs per node. We use heFFTe with CUFFT backend and
MPI Alltoall communication.

��

	Introduction
	State-of-the-art Libraries

	Experimental Setup
	Description of Hardware Resources
	Description of Software Resources
	Data Inputs and Outputs

	Analysis of FFT Communication cost
	Communication models for FFTs
	Bandwidth Analysis

	FFT Benchmark Results
	Close to the peak performance
	Comparison of Strong Scalability Results
	CPU-based libraries
	GPU-based libraries

	Discussion
	Impact of Vendors' GPUs and Software
	Impact of the libraries setup time
	The FFT communication bottleneck

	Conclusions
	Appendix: Tensor transposition cost for parallel FFTs
	Multi-core CPU based systems
	GPU based systems

