
Evaluating Data Redistribution in PaRSEC

Qinglei Cao , George Bosilca , Nuria Losada, Wei Wu,
Dong Zhong, and Jack Dongarra , Fellow, IEEE

Abstract—Data redistribution aims to reshuffle data to optimize some objective for an algorithm. The objective can bemulti-dimensional,
such as improving computational load balance or decreasing communication volume or cost, with the ultimate goal of increasing the
efficiency and therefore reducing the time-to-solution for the algorithm. The classic redistribution problem focuses on optimally
scheduling communications when reshuffling data between two regular, usually block-cyclic, data distributions. Besides distribution, data
size is also a performance-critical parameter because it affects the reshuffling algorithm in terms of cache, communication efficiency, and
potential parallelism. In addition, task-based runtime systems have gained popularity recently as a potential candidate to address the
programming complexity on the way to exascale. In this scenario, it becomes paramount to develop a flexible redistribution algorithm for
task-based runtime systems, which could support all types of regular and irregular data distributions and take data size into account. In
this article, we detail a flexible redistribution algorithm and implement an efficient approach in a task-based runtime system, PaRSEC.
Performance results show great capability compared to the theoretical bound and ScaLAPACK, and applications highlight an increased
efficiency with little overhead in terms of data distribution, data size, and data format.

Index Terms—Data redistribution, data distribution, data size, data format, task-based programming model, dynamic runtime system,
high-performance computing

Ç

1 INTRODUCTION

MASSIVE parallelism is the dominant force behind the
increased capabilities of high-performance comput-

ing (HPC) because of shifting trends towards increasingly
hybrid machines and fat nodes with deep memory hierar-
chies augmented with various types of accelerators
(GPUs, APUs, etc.). To satisfy the increasing demands of
applications and achieve new levels of efficiency and per-
formance, HPC architectures are delivering unprecedented
increases in concurrency, non-uniform hardware designs,
and changing performance capabilities. In this unfriendly
scenario, application developers are required to expose
enough parallelism from algorithms to highly utilize
heterogeneous hardware resources, to decompose and
express their computations in a way that is portable
among shared- and distributed- memory machines with
widely varying configurations. As a result, they face unfa-
miliar challenges at all levels, from the increasing number
of nodes to the highly sophisticated architectural

capabilities of each node. They also face a lack of portabil-
ity between different architectures and a lack of compati-
bility across different versions of the same hardware. The
’MPI+X model’ is one of the most popular programming
paradigms for parallel applications to relieve the burdens
of expressing parallelism, managing hardware resources,
and addressing communications. This model explicitly
exposes the complexity of handling the non-uniform plat-
forms to developers, and encourages static assumptions
about synchrony, deterministic scheduling, predictable
runtime of computation and communication, and distri-
bution of the computation between different logical
domains. As the systems grow increasingly complex in
core and node count and in the heterogeneity of computa-
tional resources and applications’ sizes, these burdens
become increasingly costly, and the static assumptions no
longer hold; even a minor amount of system noise and
small delays could introduce significant slack in large-
scale synchronous applications [1], [2], [3].

Therefore, to support developers’ productivity and per-
form at extreme scales, it is becoming clear that changes in
the programming model paradigm are required to tackle
these challenges and facilitate the development of parallel
HPC applications. The task-based programming model has
become popular and has proven to be efficient and produc-
tive in this regard. A task-based programming runtime
could help users to efficiently manipulate the complicated
low-level heterogeneous resources so that they get opportu-
nities to focus more on their domain knowledge instead of
computer science. In this context, users need to describe
algorithms to the runtime by expressing computations and
the corresponding data where computations perform by
means of tasks and dependencies. Computations become
entities (a.k.a., tasks, a set of instructions that access and
modify an explicit and bounded amount of data), and the

! Qinglei Cao, George Bosilca, Nuria Losada, Dong Zhong, and Jack
Dongarra are with the Department of Electrical Engineering and Com-
puter Science, University of Tennessee, Knoxiville, TN 37996 USA.
E-mail: {qcao3, dzhong}@vols.utk.edu, {bosilca, nlosada, dongarra}@icl.
utk.edu.

! Wei Wu is with Los Alamos National Laboratory, New Mexico 87545
USA. E-mail: wwu@lanl.gov.

Manuscript received 25 Mar. 2021; revised 15 Sept. 2021; accepted 22 Nov. 2021.
Date of publication 30 Nov. 2021; date of current version 10 Dec. 2021.
This work was supported in part by the Exascale Computing Project under
Grant 17-SC-20-SC, a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration. For com-
puter time, this research used the Shaheen II supercomputer hosted at the
Supercomputing Laboratory at KAUST.
(Corresponding author: Qinglei Cao.)
Recommended for acceptance by R. M. Badia.
Digital Object Identifier no. 10.1109/TPDS.2021.3131657

1856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6690-194X
https://orcid.org/0000-0002-6690-194X
https://orcid.org/0000-0002-6690-194X
https://orcid.org/0000-0002-6690-194X
https://orcid.org/0000-0002-6690-194X
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0003-3247-1782
https://orcid.org/0000-0003-3247-1782
https://orcid.org/0000-0003-3247-1782
https://orcid.org/0000-0003-3247-1782
https://orcid.org/0000-0003-3247-1782
mailto:qcao3@vols.utk.edu
mailto:dzhong@vols.utk.edu
mailto:bosilca@icl.utk.edu
mailto:nlosada@icl.utk.edu
mailto:dongarra@icl.utk.edu
mailto:wwu@lanl.gov


data flowing among them are the dependencies. Therefore,
algorithms can be represented as a directed acyclic graph
(DAG) with vertices as tasks and edges as dependencies.
Hence, a vast amount of potential parallelism is exposed by
a set of successive and fine-grained tasks, and the runtime
system is then responsible for scheduling these tasks, while
satisfying the data dependencies between them guided by
the DAG, while dynamically mapping parallelism onto the
underlying hardware resources. Task-based programming
models associated with dynamic runtime systems have
been thoroughly studied, and have been proven extremely
efficient in intelligently using all the resources’ computa-
tional power on heterogeneous platforms for many scien-
tific computing fields—including application libraries built
on top of the usual dense [4], [5], [6], [7], [8] and sparse [9],
[10], [11], [12], [13] linear algebra solvers with regular, arith-
metic/memory-intense computational tasks.

On the other hand, in many scientific applications, data
needs to be frequently moved from one distribution scheme
into another at runtime, in order to provide better data
locality, load balance, as well as performance. For instance,
in adaptive mesh refinement (AMR), in order to dynamically
adapt the accuracy of a solution within certain sensitive or
turbulent regions of simulation, these regions need to be
refined; hence, redistribution is always applied to these
regions with the explicit goal of a better load balance. Such
data layout/distribution changes are called “data redistrib-
ution”. Actually, the question of data redistribution has
been proposed for more than two decades, both statically
and dynamically, as the issue was central to dealing with
the imposed data distributions of early distributed-memory
programming models such as High Performance Fortran
(HPF) [14]. Array redistribution, popular in HPF and used to
change the distribution of an array dynamically from a
specified source distribution to a specified target distribu-
tion is also one of the most expensive communication pat-
terns and is particularly important for applications where
the parallelism alternates between dimensions of the data.
As a result, numerous scientific literature on array redistri-
bution exists [15], [16], [17], [18], [19], [20]. More general
data redistribution focuses on redistribution between two
data sets (e.g., from how it was generated by the producer
to how the application needs the data to be laid out among
its processes [21]) or relocating data distributed across one
producer grid onto a different distribution scheme across a
consumer grid [22].

Research on redistribution involves not only HPF but also
the Message Passing Interface (MPI) [19], [23], towards both
coarse-grained [24] and fine-grained [25], [26] and applies
to many scientific domains—including linear algebra, like
ScaLAPACK [27], [28], and particle codes [25], [26], [29].
However, there are two main limitations.

! These approaches usually focus on regular data distri-
butions: the static Block Cyclic Data Distribution
(BCDD; for one-dimensional, it is 1DBCDD; two-
dimensional, 2DBCDD) descriptor onwhich the dense
linear algebra community has been relying for more
than two decades. Irregular data distribution (distri-
butions other than BCDD) is also important from
a load balancing perspective in terms of memory,

computation and communication, as suggested by
the hybrid data distribution (called ”band distri-
bution”) utilized in [13] used for tiled low-rank
(TLR) Cholesky.

! Distribution is the ultimate goal for these studies (even
if the derived data size changes as a side-effect like in
ScaLAPACK [30]); in fact, besides distribution, finding
the right data size (a.k.a. tile size in tile-based algo-
rithms like PLASMA [31] and DPLASMA [5])—the one
that trades-off performance and level of concur-
rency—is also a critical step [32]. Smaller tiles further
decrease the computational intensity of themathemat-
ical kernels, while increasing the memory burden and
themanagement overhead imposed on the supporting
programming model and execution environment.
Oppositely, while providing more computationally
intensive operations, larger tiles decrease the degree
of parallelism available, limiting the number of tasks
that can run in parallel and therefore reducing the
occupancy. In many cases, e.g. [33], the so-called data
tiling size is critical and dependent on the problem
size, and it has been elusive to determine a single best
data size used for the whole linear algebra system
includingmultiple stages.

Due to the increasing complexity of hardware architec-
tures and communication topologies, many of the regular
data distributions might be unfitting for modern problems,
both in terms of the efficiency and the scalability of the result-
ing algorithms. Moreover, as the popularity of task-based
runtimes increases, it is interesting to revisit the data redistri-
bution problem in this context and imagine support for more
flexible, irregular, data redistributions in a task-based run-
time system. In this paper, we focus on PaRSEC [34] an
event-driven task-based runtime system depending on data-
flow and propose an efficient approach in PaRSEC for the
flexible data redistribution algorithm [35]. We believe our
redistribution algorithm is generic and could be applicable
for other event-driven runtime systems; however, this is out
of this paper’s scope.

The challenges we are addressing in this paper are two-
fold, at the algorithmic level and at the programming para-
digm level: (1) a flexible redistribution algorithm (2) its
implementation in a task-based runtime along with runtime
supports and optimizations to reduce overheads and maxi-
mize utilization of network bandwidth1. The following
innovations represent the core of our efforts and this paper’s
contributions:

! designing a flexible redistribution algorithm for a
general redistribution problem supporting coarse-
and fine- grained [26] without constraints of data
distribution and data size,

! deploying the redistribution algorithm in the PaR-

SEC task-based runtime system along with runtime-
level support and optimizations,

! building a cost model of this redistribution imple-
mentation in PaRSEC on overhead analysis and bound
declaration,

1. source codes of redistribution are available in PaRSEC: https://
bitbucket.org/icldistcomp/parsec with Git hash version ccf60d9

CAO ET AL.: EVALUATING DATA REDISTRIBUTION IN PARSEC 1857

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 

https://bitbucket.org/icldistcomp/parsec
https://bitbucket.org/icldistcomp/parsec


! analyzing the performance of the implementation,
comparing against the theoretical bound and Sca-

LAPACK, and highlighting effectiveness and minimal
overheads in real applications.

To the best of our knowledge, this is the first time a flex-
ible redistribution algorithm targeting a general redistri-
bution problem has been proposed in the task-based
runtimes world, and the first time in redistribution to sup-
port irregular distributions and explicitly take data size
into account.

The remainder of this paper is as follows. Section 2
presents related work, Section 3 introduces the design of the
redistribution algorithm, and Section 4 provides a basic
description of PaRSEC. The implementation in PaRSEC is
proposed in Section 5. Section 6 depicts runtime support
and optimizations for redistribution workloads. Section 7
introduces the cost model, including cost analysis, actual
bandwidth, and bound declaration. Performance results and
analysis, along with application demonstrations, are illus-
trated in Section 8. Finally, we conclude and present future
work in Section 9.

2 RELATED WORK

2.1 The Runtime System
Numerous efforts are ongoing to support fine-grained data-
flow programming. In this section, we briefly refer to the
task-based runtimes focusing on data flows.

QUeuing And Runtime for Kernels (QUARK) [36], [37],
StarPU [6], and OmpSs [7] provide a task-insertion appli-
cation programming interface (API) and dynamically build
the task-graph. To interact with the runtime to provide
dependencies, the developer expresses sequential loop nests
containing asynchronous task insertion calls. A conse-
quence in distributed settings is all of the participating pro-
cesses have to discover the entirety of the graph to infer
communication before reducing to the set of local tasks; oth-
erwise, expertise information about the algorithm needs to
be provided to the runtime system carefully by users. This
pruning phase may limit potential scalability [38].

QUARK has no implicit support for heterogeneous nor
distributed architectures and is used to allow kernel rou-
tines to execute asynchronously in parallel on a shared-
memory architecture.

StarPU is a simple tasking API that provides numerical
kernel designers with a convenient way to execute parallel
tasks over heterogeneous architectures. On the other hand,
it provides a method to easily develop and tune powerful
scheduling algorithms, via the insertion of implicit point-to-
point communication tasks [39] and limited collective com-
munication tasks, assuming all dependencies related to a
collective communication need to be discovered when that
collective communication is performed [40].

OmpSs is a task-based programming model used as a
forerunner for OpenMP and is based on compiler directives
with heterogeneous architectures support. In addition,
COMP Superscalar (COMPSs) [41] is developed to ease the
development of applications for distributed infrastructures,
which provides a programming interface for the develop-
ment of the applications and a runtime system that exploits
the inherent parallelism of applications at execution time.

Recent versions of the OpenMP specification [42] intro-
duce the task and depend clauses, which can be employed to
express dataflow graphs. OpenMP is widely used and sup-
ports homogeneous, shared-memory systems, and its target
extension to support accelerators is quickly gaining traction.
However, distributed-memory and inter-node communica-
tion in OpenMP need to be described explicitly and per-
formed with the use of an external communication library
(e.g., MPI, SHMEM).

Legion [43] describes logical regions of data, which are
used to describe organization of data and to make explicit
relationships useful for reasoning about locality and indepen-
dence. It uses a low-level runtime, REALM [44], to schedule
and execute tasks and uses GASNet as the underlying com-
munication layer, which supports heterogeneous architec-
tures andworks in shared- and distributed-memory systems.

HPX [45] is an open-source implementation of the con-
cepts of the ParalleX execution model, developed for con-
ventional architectures and, currently, Windows and Linux-
based systems (e.g., large non-uniform memory access
[NUMA] machines and clusters).

The SuperMatrix [8] approach is similar in motivation
and technique to SMP superscalar (SMPSs)[46], which is
exclusively focused on linear algebra algorithms. No prag-
mas or specific programming model is defined, since the
runtime directly considers for parallelization a set of linear
algebra routines. SuperMatrix also implements a task
dependency analysis, but in this case, data renaming and/
or redistribution is not considered.

Open Community Runtime (OCR) [47] is a work-in-prog-
ress effort to create a low-level, task-based runtime for
extreme-scale parallel systems, with support for fault-toler-
ance. It currently supports homogeneous architecture in dis-
tributed systems and uses Intel Threading Building Blocks
(TBB) to manage threading.

2.2 Redistribution
For more than two decades, research on data redistribution
has evolved around regular data distributions. In the 1990s,
research about array and data redistribution sprung up after
the appearance of HPF [15], [17], [18], [48]. For instance,
Akiyoshi Wakatani et al. [15] proposed a new scheme, strip
mining redistribution to reduce the communication time for
arrays redistribution; Antoine P. Petitet and Jack J. Don-
garra [48] presented various data redistribution methods for
block-partitioned linear algebra algorithms operating on
densematrices that were distributed in a block-cyclic fashion
and introduced techniques redistributing data ”on the fly”,
to make the data distribution blocking factor independent
from the architecture-dependent algorithmic partitioning.

In the 2000s, research spreads to more broad fields [25],
[49], [50]. Early 2000’s, frameworks such as ReSHAPE [50]
were developed to support dynamic resizing of parallel
MPI applications executing on distributed-memory plat-
forms, including support for releasing and acquiring pro-
cessors and efficiently redistributing application state to a
new set of processors. Similarly, [25] designed a new data
distribution operation MPI Alltoall specific. It is based on
collective MPI operations, point-to-point communication
operations, or parallel sorting, that allows an element-wise
distribution of data elements to specific target processes

1858 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



and is used to implement irregular data distribution opera-
tions, for example, in particle codes.

More recently, we witnessed a resurgence of interest in
data redistribution due to increasingly complex applica-
tions, which need to relocate data distributed across one
grid onto a different distribution scheme across another
grid to improve data locality and/or reduce the cost of data
movement [21], [22], [24], [26], [51]. [51] as a representative,
studied the complexity of the problem—”finding a re-map-
ping of data items onto processors such that the data redis-
tribution cost is minimal and the operation remains as
efficient”—computed optimal solutions, evaluated through
simulations, and showed the NP-hardness to find the opti-
mal data partition and processor permutation (defined by
new subsets) that minimized the cost of redistribution fol-
lowed by a simple computational kernel.

However, all research on the array or data redistribution:
(1) focused on a simplified problem, i.e., the regular distribu-
tions BCDD; (2) tried to address load imbalance caused by
the data distribution, but ignored impact from data size.
They also highlighted that with the increasing complexity of
hardware architectures and communication topologies, tar-
geting only regular distributions BCDD is not enough. As
task-based runtime systems emerge, interest in data redistri-
bution and resource management increases; for instance,
DMRlib [52] enable job reconfiguration as an OmpSs exten-
sion providing support formalleable application by allowing
users to provide their own redistribution functions with
explicit communications. However, none of them deals with
the data redistribution problem itself in a task-based runtime
system. Therefore, a flexible redistribution algorithm, taking
into account not only regular and irregular data distribution
but also the impact of data size in a task-based runtime sys-
tem, becomes necessary.

3 REDISTRIBUTION

3.1 Problem Definition
Ageneral redistribution problemR is a function or routine to
change distribution schemes (Table 1 describes parameters
and notations):R : SRC ! TGwith the following properties:

! Source SRCwith the distributionDs, possibly random
(details in Section 6.1) or on a process grid Ps " Qs,
Ps, Qs > 0;

! Target TG with the distribution Dt, possibly random
or on a process grid Pt " Qt, Pt, Qt > 0;

! Submatrix Asub to be redistributed with size of
size row" size col andwith displacements (disp rows,
disp cols) in SRC and (disp rowt, disp colt) in TG, and
Asub should not exceed the bounds ofSRC and TG.

Fig. 1 depicts a general redistribution problem in matrix
format, redistributing a submatrix from SRC to TG with dif-
ferent distributions and tile sizes. While the problem is
generic, in our particular context Asub is to be redistributed
between two dense matrices stored in tile format. There are
several features that need to be clarified:

! Ds and Dt could be random; more general than con-
cepts of redistribution in related work, which is a
regular data distribution along each dimension of
the array.

! Tiles in SRC and TG are rectangles, not specified as
square, and MBs, NBs, MBt, NBt are independent
withDs andDt.

! Displacements of (disp rows, disp cols) in SRC and
(disp rowt, disp colt) in TG could be any points not
exceeding the bounds of SRC or TG respectively.

3.2 Algorithm Description
For a general redistribution problem, to redistribute a sub-
matrix between two matrices with different distributions,
tile sizes, and displacements, an efficient algorithm should
be as flexible as possible to deal with all possible cases.
Hence, as shown in Fig. 2, zooming in one tile in TG to catch
its source data in SRC, we split the TG tile into nine parts, or
SEGMENTS, according to their location in SRC, NorthWest
(NW), North (N), NorthEast (NE), West (W), Inner (I), East
(E), SouthWest (SW), South (S) and SouthEast (SW). Fig. 3
shows the possible categories based on the existence of
SEGMENTS, determined by combinations of size row,
size col, MBs, NBs, MBt, NBt and location of TG tiles’ start-
ing points in SRC. The idea is that:

! each tile in TG is independent;
! focusing only on a tile in TGwith fixedMBt andNBt,

and varying MBs and NBs at their dimension inde-
pendently from " to 1, where " is an infinitesimal
number and1 an infinite number.

TABLE 1
Parameters and Notations

Symbol Description

R Function or routine for redistribution
SRC Source data descriptor
TG Target data descriptor
Asub Submatrix to be redistributed
sizefrow;colg Row/column size of Asub

disp rowfs;tg Row displacement in source(s)/target(t)
disp colfs;tg Column displacement in source(s)/target(t)
fM;Ngfs;tg Row(M)/column(N) size of source(s)/target(t)
fMB;NBgfs;tg Row(MB)/column(NB) tile size of source(s)/target(t)
Dfs;tg Data distribution of source(s)/target(t)
fP;Qgfs;tg Row(P )/column (Q) distribution of source(s)/target(t)
fSMB; SNBgfs;tg Row(SMB)/column (SNB) block distribution of source

(s)/target(t)
fm;ngfs;tg Tile row(m)/column(n) index of source(s)/target(t)
local Source and target data on the same process
remote Source and target data on different processes
random Process ID of each tile is achieved by random number

generator
SEGMENTS NW, N, NE,W, I, E, SW, S, and SE

Fig. 1. General redistribution problem; matrix is stored in tile format,
each color represents a different process, and rectangle circled in red is
the submatrix to be redistributed.

CAO ET AL.: EVALUATING DATA REDISTRIBUTION IN PARSEC 1859

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



Hence, all possible cases of general redistribution prob-
lems are extensions of these nine categories, including sev-
eral N, S,W, E or I, e.g., Fig. 2 is an extension of Fig. 3 (8).

Algorithm 1. Serial Algorithm of Redistribution

formt = disp rowt/MBt to (size row +disp rowt-1)/MBt do
for nt = disp colt/NBt to (size col +disp colt-1)/NBt do
Calculatems start,ms end, ns start, and ns end that (mt,
nt) associated with
forms =ms start toms end do
for ns = ns start to ns end do
if Remote then
Send SEGMENTS

end if
end for

end for
if Remote then
Receive SEGMENTS

else
Copy SEGMENTS

end if
end for

end for

The serial algorithm, revealed in Algorithm 1, follows the
idea that for tiles in TG, send/receive (when remote) or copy
(when local) SEGMENTS. Memory copy is the additional
overhead, but it is necessary.

! SRC and TG are two different data descriptors with
exclusive data storage; therefore, memory copy is
necessary to connect different memory pieces, i.e.,
SEGMENTS, between SRC and TGwhen they are local.

! When SEGMENTS in SRC and TG are remote, the
shape (or memory layout) for each of the SEGMENTS

that needs to be transmitted varies on both the
sender and receiver side; this shape is problem-
dependent, determined during runtime by a combi-
nation of size row, size col, MBs, NBs, MBt, NBt,
disp rows, disp cols, disp rowt, and disp colt, and is
hardly predicted in advance. If a new MPI data type
(typically MPI_Type_vector) is committed for every
shape of data, it will be very expensive [53], [54],
because each new derived data type may be utilized
only once and possibly tens of thousands have been
created (the maximum number of potential derived
data types is minðMBs;MBtÞ "minðNBs;NBtÞ).
Hence, memory copy is utilized to send from a con-
tiguous buffer and receive to a contiguous buffer in
this case.

The benefits of this design are that it

! is capable for coarse- and fine- grained redistribu-
tion problems for tile- or block- based matrix
partition;

! isolates distribution and tile size; actually, it could
solve a redistribution problem with absolute flexibil-
ity on distribution, tile size and displacement;

! suits tile format libraries with either ScaLAPACK

memory layout or DPLASMA memory layout (details
in Section 8.7.2).

In this way, all possible redistribution problems could be
reduced to a combination of these nine SEGMENTS, and
operations on these SEGMENTS could be considered as tasks
which thus could be efficiently handled by a multi-threaded
task-based runtime system.

4 THE PARSEC RUNTIME SYSTEM

PaRSEC [34] is a generic task-based runtime system for asyn-
chronous, architecture-aware scheduling of fine-grained tasks
on distributed many-core heterogeneous architectures. It is
capable of dynamically unfolding a concise description of a
graph of tasks on a set of resources and satisfying all data
dependencies by efficiently shepherding data between mem-
ory spaces (between nodes but also between different memo-
ries on different devices) and scheduling tasks across
heterogeneous resources. Overall, the PaRSEC runtime sys-
tem is designed to overcome the four challenges towards
algorithm scalability and efficiency:

1) starvation, a problem encountered in concurrent
computing, when there is insufficient concurrent
work available to maintain high utilization of all
resources;

2) latency, the time-distance delay intrinsic to access
remote resources and services and causing delays
due to oversubscribed shared resources;

3) overhead, any additional work required for the man-
agement of parallel actions and resources on the crit-
ical path of execution, which is not necessary for a
sequential variant;

4) heterogeneity, systems that use more than one kind
of processor or core, supporting for specialized

Fig. 2. The red rectangle represents one target TG tile while black rectan-
gles are the corresponding source SRC tiles.

Fig. 3. All possible nine categories; red rectangles represent one TG tile
while black rectangles are the corresponding SRC tile(s).

1860 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



hardware to maximize performance (accelerators)
and minimize overheads (smart communication
hardware/NIC).

Like most task-based runtime systems, algorithms are
described to PaRSEC through computations and the corre-
sponding data by means of tasks and dependencies: compu-
tations become entities (a.k.a., tasks, a set of instructions that
access and modify an explicit and bounded amount of data),
and the data flowing among them are the dependencies;
therefore, algorithms can be represented as a DAG with ver-
tices as tasks and edges as dependencies. Several domain-
specific languages (DSLs) [55] in PaRSEC are used to
express the DAG, which helps domain scientists to focus
only on their domain knowledge instead of low-level com-
puter science aspects, such as the complex hardware archi-
tectures, hierarchical memory layout, different types of
communication prototypes, etc.

The DSL, Parameterized Task Graph (PTG) [56], used
to describe our redistribution algorithm, utilizes a con-
cise, parameterized task-graph description called Job
Data Flow (JDF) to represent the dependencies between
tasks, which could be considered as a collection of task
classes containing information that enables the creation
and execution of the task instances. Different types of
communications, one-to-one, one-to-many, and many-to-
many, are supported in PTG to enhance the productivity
of the application developers. These types are implicitly
inferred by the expression of the tasks in PTG. Algo-
rithms written in PTG are capable of delivering a signifi-
cant percentage of the hardware peak performance on
many hybrid distributed machines in many scientific
applications. Among the successful usages of PaRSEC

and PTG, we can enumerate a linear algebra library for
dense matrices, DPLASMA, that yields superior perfor-
mance compared with the most widely used library,
ScaLAPACK [30], or compared with state-of-the-art in
computational chemistry [57], [58] and in climate and
weather prediction [13], [33], [59].

Other DSLs, such as Dynamic Task Discovery (DTD) [38],
are less domain science–oriented and provide alternative
programming models to satisfy more generic needs by
delivering an API that allows for sequential task insertion
into the runtime instead of expressing in a parameterized
manner. This programming model is simple and straight-
forward and delivers good performance on small and
medium-sized platforms, but it suffers from the same high
overhead due to the sequential discovery of tasks that hin-
ders the scalability of other distributed task-insertion run-
times, such as StarPU or QUARK.

5 IMPLEMENTATION IN PARSEC RUNTIME SYSTEM

The PTG DSL is adopted along with data descriptor in PaR-

SEC and DPLASMA, forming the following interface:

int parsec_redistribute(

parsec_context_t *parsec,

parsec_tiled_matrix_dc_t *source,

parsec_tiled_matrix_dc_t *target,

int size_row, int size_col,

int disp_row_s, int disp_col_s,

int disp_row_t, int disp_col_t)

Because PaRSEC is an event-driven system, to implement
Algorithm 1 in PaRSEC and expose all potential parallelism,
four different types of tasks (a.k.a task classes) are specified:

! Init: initialize event and prepare TG data for tasks
in task classes Receive and Finish;

! Send: on SRC process, send SEGMENTS to the other
process if remote or pass the address on shared mem-
ory if local;

! Receive: on TG process, receive SEGMENTS from
other process if remote or copy SEGMENTS on shared
memory if local;

! Finish acts as synchronization/finalization for
each tile in TG with multiple SEGMENTS to finish all
related tasks in Receive and serves for control
dependency optimization.

Fig. 4 presents an example detailing the dependencies
between tasks for a simple redistribution problem to dem-
onstrate the case in Fig. 3 (8): redistributing SRC having 3"
3 tiles with distribution 2DBCDD of Ps " Qs ¼ 2" 2 to TG

having 1 tile on process ID 0, size of SRC, TG and Asub are
the same, and displacements disp rows, disp cols, disp rowt

and disp colt are 0. There is only one tile in target TG (0, 0),
so one task in Init and Finish respectively; however,
nine tiles are involved in SRC, indexing from (0, 0) to (2, 2),
hence there are nine correlated tasks in Send and Receive

respectively.
For the purpose of data locality, Send is local to SRC’s

tiles, while Init, Receive, and Finish reside on TG’s
tiles. In addition, to increase computational resources occu-
pancy and network bandwidth, two kinds of control depen-
dencies are utilized to re-configure the DAG to (1) maximize
the parallelism exposed to the runtime on the receiver side
if there are multiple SEGMENTS within a TG tile, and (2)
reduce runtime overheads for task management. Moreover,
to efficiently utilize network bandwidth on the sender side,
as much data movements as possible should be exposed to

Fig. 4. Corresponding DAG for an example detailing the dependencies between tasks. Arrow ! represents dependency between tasks; red means
local and blue remote. ) shows data or control dependency (ctl) between tasks. Init, Send, Receive and Finish are the four task classes;
Init and Finish with parameters ðmt; ntÞ, and Send and Receive with ðms; ns;mt; ntÞ. Besides the nine SEGMENTS, Y and T represent tiles of
SRC and TG respectively.

CAO ET AL.: EVALUATING DATA REDISTRIBUTION IN PARSEC 1861

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



the communication library as early as possible, to provide
both overlap between data copies to/from multiple peers,
and allow the runtime to aggregate ”multiple send exposed
simultaneously”. More details are described in the follow-
ing Section 6.

6 RUNTIME SUPPORT AND OPTIMIZATIONS

In this section, we detail the runtime-level support and opti-
mizations. Runtime support extends the redistribution
implementation to a novel field in the runtime world, and
the three runtime-level optimizations deliver more efficient
performance. We believe the runtime support and optimiza-
tions could go beyond the scope of this paper.

6.1 Runtime Support: Random Distribution
In addition to the traditional regular distributions BCDD on
which the dense linear algebra community has been relying
for more than two decades, PaRSEC supports any type of
irregular data distribution. This includes the hybrid data
distribution [13], which logically superposes two inter-
twined 2DBCDDs of different process grids together, to mit-
igate the load imbalance of a 2DBCDD towards the sparse
linear algebra algorithms. In addition, PaRSEC supports
random distribution (process ID for each tile is randomly
generated), which is an extreme case of irregular data distri-
butions. Fig. 5 shows an example of 2DBCDD and random
distribution: (a) with process grid 2" 4, and (b) the process
ID for each tile randomly generated by seed 2783. This sup-
port of random distribution demonstrates the ability of our
redistribution algorithm to tackle redistribution problems
with irregular data distributions and extends the implemen-
tation to an untouched field.

In PaRSEC, the function rank of allows the user to define
the data distribution in a flexible way. The user can supply
anymapping of data to processes, or any random function of
the multi-dimensional tile index (e.g.,m, n for a 2D space) to
indicate at which rank the indexed data block is to be located.
Similarly, the data of function returns the corresponding
data descriptor (i.e., a handle to the data memory block) for
the related task when invoked at that rank. From a distrib-
uted-memory perspective, tiles on each process should be
capable of retrieving their own information (e.g., location of
data of stored on that process). Therefore, in order to repre-
sent a random distribution, we implement these functions
using a global structure table tile, with respect to the number
of tiles, which stores rank and data information needed for
each tile. Take SRC for instance; the size of table tile will be
ceilð Ms

MBs
Þ " ceilð Ns

NBs
Þ to store information for every tile; for

each element in table tile, every process will check its locality
based on rank of , and only set information / allocate mem-
ory when it is local to avoid redundant memory allocation.
Therefore, no data coherency condition can occur, and a
globally unique key could be used for the retrieval.

6.2 Runtime Optimizations

6.2.1 Control Dependency

In a data flow task-based runtime like PaRSEC, the number
of classes of input/output flow/data is determined in the
PTG DSL, and data of each input flow is unique for each
task (i.e., one input flow in one task could not receive multi-
ple data simultaneously). This is generally true for most of
parallel programming models based on data-flow. Task par-
allelism is discovered using data dependencies between
tasks, leading to two issues.

! PaRSEC, as a general runtime system, enables tasks as
soon as all their dependencies are available, and can
therefore enable maximum parallelization, whose
efficiency has been proven by DPLASMA and in many
scientific fields [13], [57], [58], [60], [61]. Redistribu-
tion is a particular algorithmwhere there is no prede-
cessor for all tasks in Send, which means all these
tasks will be exposed to the runtime system simulta-
neously. The number of these tasks is no less than
ceilð size row

minðMBs;MBtÞÞ " ceilð size col
minðNBs;NBtÞÞ. Hence, millions

or even billions of tasks will be exposed to the run-
time system simultaneously, leading to higher over-
heads to maintain the list of ready tasks, higher risk
of inappropriate decisions made by runtime with
fewer possibilities of reusing temporary buffers, and
unnecessarily increasing the cost of scheduling.

! A TG tile could contain multiple SEGMENTS in redis-
tribution as shown in Fig. 2. Ideally, these SEGMENTS
within a tile should be received and written indepen-
dently of the proper memory location to maximize
parallelism on the receiver side. However, the mini-
mal data unit in PaRSEC is a tile, resulting in tasks
written on the same tile being serialized, limiting the
potential parallelism.

Applications are complex entities, their requirements can
not be enumerated into the design principles of a program-
ming paradigm or runtime system. Therefore, a well-
designed runtime system should limit the number of con-
straints it imposes on developers and instead provide fun-
damental, hopefully efficient, capabilities supported by a
flexible control. As mentioned before, PaRSEC enables tasks
as soon as all their dependencies are available and therefore
enables maximum parallelization; meanwhile, the concept
of control dependency in PaRSEC allows users to dynami-
cally control the workflow. This control dependency is an
artificial dependency without data encapsulated and can be
used to guide the task execution order and priorities, as
well as to limit the number of tasks revealed to the runtime
at a given time. Using this control dependency, we optimize
the redistribution workflow in the following two ways on
the sender and receiver side respectively.

! The first is a batch parameter (or columns of tiles)
to limit the number of concurrent tasks exposed to

Fig. 5. 2DBCDD and random distribution with matrix size 4" 8 on 8 pro-
cesses; each number indicates the process ID for that tile. (a) 2DBCDD
with process grid of 2" 4; (b) process ID of each tile generated by a ran-
dom number generator with seed 2783.

1862 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



the runtime system on the sender side. It batches the
number of SRC columns of data being under transfer
at the same time, because there is no predecessor for
tasks in Send and they could be exposed to runtime
simultaneously. By adding control dependencies
between tasks in Finish and tasks in the next
batch of Send, we prevent tasks beyond the col-
umn scope of the current batch from being discov-
ered. To maximize hardware occupancy, batch

could be the lowest common multiple (LCM) of Qs "
SNBs and Qt " SNBt for the normal 2DBCDD distri-
butions, while for redistribution between random dis-
tributions, a suitable batch could be chosen, e.g.,
minðceilðsizecol=NBtÞ; num of nodesÞ.

! The other is to maximize parallelism on the receiver
side for cases of multiple SEGMENTS within a TG tile.
That is to add a local control dependency between
tasks in task classes Receive and Finish that iso-
late tasks to receive data—there are control depen-
dencies between every task in Finish and task/
tasks in Receive with SRC data related to TG data
in that task. For instance, in Fig. 3 (8), the task in
Finish with the TG tile circled in red has nine
dependencies with tasks in Receive receiving the
nine SEGMENTS, as shown in Fig. 4. Therefore, with
this control dependency, all tasks to receive SEG-

MENTS within a TG Tile are independent, maximiz-
ing the parallelism exposed to the runtime system.

6.2.2 Dynamic Communication Volume

As mentioned above, the size of each SEGMENTS in Fig. 2
varies, so messages of variable size would be sent/received.
Hence, if data is communicated in full dense tiles like in
DPLASMA, there will be a significant communication over-
head, especially for a redistribution algorithm which is by
nature communication-bound. PaRSEC supports sending
variable-sized data to remote processes even when this size
is dynamically decided when the task produces the corre-
sponding data, by specializing the information about the
data to the communication engine in the activation message.
This feature is common in communication libraries such as
MPI, but it is relatively new in task-based runtimes so far, as
most of the runtimes mentioned in related work are still try-
ing to cope with mostly regular, dense cases. We used this
feature in Lorapo [13] and extended it to the redistribution
implementation. Taking advantage of this PaRSEC capabil-
ity makes it possible to minimize the data transfers to the
actual size, providing a possible path toward communica-
tion optimality. Moreover, such a feature may alleviate the
bandwidth saturation and communication overhead, while
releasing temporary memory pressure on the receiver side.

6.2.3 Multiple Send Exposed Simultaneously

In the PaRSEC runtime, communication is implicit and pro-
duced from the resolution of dependencies between data
flows. When a task completes, it issues control messages to
the target ranks that will execute the successor tasks (as
described by the user-supplied process affinity of the task).
Then, the target rank will issue the communication orders
asynchronously and mark the target task ready when all

data movement has been satisfied. In order to maximize the
overlap between computation and communication and to
enable the asynchronous progress, the PaRSEC runtime del-
egates the issue of control messages and data movement to
a separate, runtime-internal thread. Control orders are
passed to that thread through a thread-safe command
dequeue. In our early experiments, we discovered that this
thread-funneled access to the communication engine could
limit the rate of control messages and small data messages
issued [62], and that will restrict the effective bandwidth
achieved by the redistribution algorithm which consists of
pure communication, except the index computation of very
low arithmetic intensity, and possible small SEGMENTS.

To address this issue, we have enabled the computational
threads to directly issue communication orders for control
messages and short data messages (assuming a thread-safe
communication library). Thus, instead of funneling commu-
nications, when a thread completes a task, it will directly
issue the communication for the control active messages
needed to notify the dependent ranks of the task completion.
When the data payload is small enough (user-configurable
threshold), the payload may also be aggregated inside the
control message as piggyback, completely removing the
need for further communications. The reception of messages
remains single-threaded at this point with a single progress
thread managing incoming active messages and issuing the
data transfers orders as needed. This helps improve commu-
nication performance in two ways: first, this optimization
bypasses the serialization at the command queue, which
improves latency and reduces the number of atomic opera-
tions performed to ensure thread-safe access to that queue.
Second, a single thread is incapable of saturating the injec-
tion rate of modern high-performance networks; thus,
enabling multiple threads to access the network improves
the resource utilization of network bandwidth.

7 COST MODEL

7.1 Cost Analysis
Data redistribution in HPF assumes two kinds of costs:
index computation cost Tindex and inter-processor communi-
cation cost Tcommunication [19], which is also true for the redis-
tribution algorithm proposed in this paper.

! Tindex is incurred on both the sender and receiver side
in calculating source and target processor and the
location of the element within that processor, includ-
ing displacements and shape for each SEGMENTS.

! Tcommunication is incurred when data is exchanged
between processors, which could be represented
using an analytical model of typical distributed-
memory machines, the General purpose Distributed
Memory (GDM) model [63]. The GDM model repre-
sents the communication time of a message passing
operation using two parameters: the start-up time
Tstartup and the unit data transmission time Ttrans.
The Tstartup is the dominant overhead for small mes-
sages, while the Ttrans becomes significant as the
message size increases.

Besides these two costs, in our redistribution implemen-
tation in PaRSEC task-based runtime system, we introduce

CAO ET AL.: EVALUATING DATA REDISTRIBUTION IN PARSEC 1863

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



two extra costs: memory copy cost Tmemcpy and runtime
cost Truntime.

! Tmemcpy comes from two aspects (as detailed in Sec-
tion 3.2): copying data from SRC to TG if local; and
copying data from SRC to a temporary buffer and
from a temporary buffer to TG if remote.

! Truntime is caused by those such as spawning, main-
taining and scheduling tasks, dependency resolu-
tion, and memory management, which is N"CT

P"n as
shown in [38] where N as the total number of tasks,
CT as the cost/duration of each task, P as total num-
ber of process and n as the number of actual cores in
each process. [64] provides interesting evaluations
when Truntime could be overlapped by computation/
communication in a runtime system; as to date redis-
tribution with pure communication bound, the
larger Tcommunication, i.e., message size, the more pos-
sible Truntime could be overlapped.

Combining all costs together, the cost of redistribution is

T ¼ Tindex þ Tcommunication þ Tmemcpy þ Truntime (1)

7.2 Bound Declaration
Suppose n is the total number of processes, i is the process
ID, and T i is the execution time for process Pi. Then, the total
time for a parallel program is defined by the execution time
of the slowest process [2]: T ¼ maxn'1

i¼0 ðT iÞ. Hence, renaming
T i
extra ¼ T i

runtime þ T i
index allows us to re-write Eq. (1) as

T ¼ maxn'1
i¼0 ðT

i
communication þ T i

memcpy þ T i
extraÞ (2)

Assume remote message size that process Pi sends and
receives areMi

send andMi
receive respectively. Because all com-

munications in the redistribution algorithm are peer-to-
peer, the actual bandwidth achieved is the maximal amount
of messages that is sent or received among processes in a
certain time period

actual bandwidth ¼ maxn'1
i¼0 ðmaxðMi

send; Mi
receiveÞÞ=T;

(3)

which is what we use in the following experiments.
For the bound of actual bandwidth, suppose Mi

remote ¼
maxðMi

send; Mi
receiveÞ, Mi

local is local message size for Pi, Bnet

and Bmemcpy are the theoretical network bandwidth between
two processes and thememory bandwidth respectively, then

T ¼ maxn'1
i¼0

Mi
remote

Bnet
þ 2" Mi

remote

Bmemcpy
þ Mi

local

Bmemcpy
þ T i

extra

! "

(4)

where on process Pi,
Mi

remote
Bnet

represents the communication

cost, 2" Mi
remote

Bmemcpy
shows the two remote memory copy costs

(details in Section 7.1), and
Mi

local
Bmemcpy

depicts the local memory
copy cost.

Suppose Mremote ¼ maxn'1
i¼0 ðMi

remoteÞ, Mlocal ¼ maxn'1
i¼0 ðMi

localÞ,
Textra ¼ maxn'1

i¼0 ðT i
extraÞ and r ¼ Mlocal=Mremote, then accord-

ing to Eq. (4)

bound ¼ ð1' Textra=T Þ "Bnet "Bmemcpy

ð2þ rÞ "Bnet þBmemcpy
(5)

where bound is the maximum network bandwidth that this
redistribution algorithm could be achieved. It shows the
smaller extra overheads (Textra=T ) and memory copy over-
heads (Bnet=Bmemcpy), the higher network bandwidth could
be gained towards the theoretical network bandwidth Bnet,
which makes sense: with the smaller ratio of additional
overheads (caused by index computation, memory copy
and runtime), higher network bandwidth is achieved.

8 PERFORMANCE RESULTS AND ANALYSIS

8.1 Experiments Settings
Experiments are conducted on two HPC clusters with dif-
ferent ratios of computational capacity to network band-
width: NaCL and Shaheen II.

! NaCL includes 66 compute nodes connected by
InfiniBand QDR, and each node has two 2.8 GHz
Intel Xeon X5660.

! Shaheen II is a Cray XC40 system with 6,174 com-
pute nodes; each node is equipped with two 16-core
Intel Haswell CPUs running at 2.30 GHz and 128 GB
DDR4 RAM; the interconnect is Cray Aries with
Dragonfly topology.

The actual achieved bandwidth in experiments is calcu-
lated by Formula 3 where maxn'1

i¼0 ðmaxðMi
send; Mi

receiveÞÞ is
problem-dependent and T is actual execution time. This
actual bandwidth is compared with bound in Formula 5,
and we assume there is no memory constrain for data redis-
tribution. Here are some common settings used for the
experiments.

! Communication relies on OpenMPI 4.0.0 on NaCL and
Cray MPICH 7.7.0 on Shaheen II (both initialized
in threadmultiplemode).

! For better performance, a hybrid model (MPI +
Pthreads) is deployed in PaRSEC, i.e., one process
per physical node, guaranteeing for each process the
same maximum bandwidth.

! Bnet in Formula 5 is measured by the NetPIPE [65],
a widely used benchmark to get upper-bound of net-
work bandwidth for different message sizes between
two processes, and one process is deployed on each
node for fair comparison. It is worth noting that all
communications in redistribution are peer-to-peer,
and that is where the cost model in Section 7.2 is
based. Hence, we conduct experiments in Section 8.2
and 8.3 on two processes (a.k.a., nodes in PaRSEC) to
better show the effect of optimization itself and com-
parison to bound because Bnet is produced between
two nodes.

! Bmemcpy in Formula 5 utilizes the theoretical memory
bandwidth, which potentially leads to a lax bound.

! The bound is calculated by setting Textra=T ¼ 0, because
runtime overheads are hard to quantify, especially
considering the potential overlap of computations,
communications and runtime overheads [64]; so bound
may be increased again by this setting.

! We use weak and strong scaling. The number of tiles
of each node is maintained for weak scaling, while the
total number of tiles is maintained for strong scaling.

! If not specified, we present the average over 20 runs.

1864 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



! To simplify settings but without losing generality, in
experiments, the entire matrix is redistributed, i.e.,
Ms ¼ Mt ¼ sizerow, Ns ¼ Nt ¼ sizecol, and displace-
ments are 0; if not specified, tiles are square, that is
MBs ¼ NBs andMBt ¼ NBt.

! Data is stored as two dimensional matrix using the
data descriptor in PaRSEC, and all calculations and
communications are performed in double-precision
floating-point arithmetic, so the message size is
nb elms" 8 Bytes (nb elms is the number of elements
in each SEGMENTS).

8.2 Incremental Effect of Runtime Optimizations
This section details the incremental effects of runtime-level-
related optimizations hereinbefore. As a summary, the tar-
get of each optimization is listed here.

! Control dependency (control_dependency, Sec-
tion 6.2.1): (1) batch limits the number of concurrent
tasks exposed to the runtime system on the sender
side so that it benefits cases with a huge amount of
tiles to be redistributed; (2) the second type is iso-
late_segments which isolates SEGMENTS within a
TG tile to receive data to maximize parallelism on the
receiver side, so that it has effects when multiple
SEGMENTS are within a TG tile.

! Dynamic communication volume (dynamic_vo-
lume, Section 6.2.2): suits almost all cases except
those only reshuffling distributions like the most in
the related work, i.e., the whole matrix is redistrib-
uted, tile sizes of SRC and TG are the same, and dis-
placements are 0.

! Multiple Send Exposed Simultaneously (multi-
ple_send, Section 6.2.3): targets cases with small
messages that could not hide the runtime overheads
Truntime.

8.2.1 Effect of Control Dependency

Two kinds of control_dependency are proposed, and
their incremental evaluations are shown in Fig. 6 on NaCL

when redistributing between two different 2DBCDDs.
Fig. 6a shows the effect of batch. As mentioned before,
batch is especially beneficial for redistributing a huge
amount of tiles; hence, in this figure, matrix column size Ns

increases while other settings, except distributions, remain
constant, i.e., Ms ¼ Mt ¼ 2000 and tile sizes of SRC and TG

are 100" 100, so that the number of tiles within each batch

is the same. Fig. 6b shows the effect of isolate_seg-

ments. In this case, matrix size and SRC tile size stay the
same, i.e., matrix size of SRC and TG is 10000" 10000 and

SRC tile size MBs = NBs =100, while the TG tile size MBt =
NBt varies, so that an increasing number of SEGMENTS exist
within a TG tile.

Figs. 6a and 6b show the great improvement achieved
when using control_dependency, which is more signifi-
cant in terms of performance and fluctuation as Ns (i.e., the
number of tiles) and MBt (i.e., the number of SEGMENTS in
a TG tile) increase when using batch and isolate_seg-

ments, respectively.

8.2.2 Effect of Dynamic Communication Volume

PaRSEC can dynamically handle variable-sized data by
sending only the necessary size. During redistribution for
each SEGMENTS, only the actual data is transmitted instead
of sending all the MBs " NBs elements associated in an
SRC tile. This significantly decreases the communication
volume and thus the cost of Ttrans, as well as the memory
usage on the receiver, because the receiver buffers can now
be tightly allocated with the real target tile size. Fig. 7 shows
the performance comparison with and without dynami-

c_volume on NaCL and Shaheen II. To better show the
effect, a large message size is chosen to minimize the run-
time overhead. Thus MBt (NBt) is fixed to 400, and MBs

(NBs) is increased from 400 to 2000 by increments of 400.
The redistribution pattern of this experiment is to convert
the tile size of a matrix fromMBs to MBt, while keeping the
data distribution constant (2DBCDD).

Usually, the speedup of the dynamic_volume for a gen-
eral redistribution problem with arbitrary displacement is
NUM"MBs"NBs

SIZE , where NUM is the total number of remote
SEGMENTS, and SIZE is the total size of remote SEGMENTS.
In this particular setting along with displacements being
zero, the speedup achieved is about MBs

MBt
" NBs

NBt
. As seen in

Fig. 7, dynamic_volume significantly improves the perfor-
mance of redistribution and is able to achieve 80% of the
theoretical speedup on both systems (ratio of Experimental
to Theoretical speedups).

8.2.3 Effect of Multiple Send Exposed Simultaneously

In PaRSEC, multiple sends can be exposed simultaneously
by enabling the computational threads to issue direct com-
munication for control and short data messages thereby
reducing latency and improving saturation of the network.
Fig. 8 evaluates the effect of multiple_send when vary-
ing the number of nodes. This experiment uses strong scal-
ing, so that the total number of tasks remains constant for
the different tests. The redistribution pattern in this case
converts the original matrix between two distributions,

Fig. 6. Effect of control_dependency; lower is better.

Fig. 7. Effect of dynamic_volume; lower is better.

CAO ET AL.: EVALUATING DATA REDISTRIBUTION IN PARSEC 1865

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



while keeping the tile size constant. The multiple_send

optimization is designed to reduce the runtime overhead
Truntime when sending data, especially when dealing with
small data sizes. Hence, to reproduce the case when Truntime

is the dominant overhead due to small messages, we use a
small tile size for SRC and TG, i.e., 10" 10 (message size 800
Bytes). As observed in Fig. 8, there is always a positive effect
of multiple_send, although this effect decreases as the
number of nodes increases. This happens because there is
less parallelism and more communication overhead when
increasing the number of nodes for strong scaling.

8.3 Evaluation of Nine Categories
For a general redistribution problem, the number of possible
combinations are innumerable, making it impossible to test
them all; however, any scenario can be classified into one of
the nine categories shown in Fig. 3. In this section, we evalu-
ate these nine categories—which could literally cover all
redistribution problems. Fig. 9 shows the performance of
these nine categories on NaCL by reporting performance
along with fluctuations and ratio to bound at different mes-
sage sizes. In this experiment, the source tiles are square, i.e.,
MBs ¼ NBs, andwe vary the target tile sizes by

! MBt ¼ MBs ( ðcid=3þ 1Þ,
! NBt ¼ NBs ( ðcid%3þ 1Þ,
where the category ID cid, 0' 8, represents the nine cate-

gories in Fig. 3 (0)-(8), respectively. MBs varies from 10 (800
Bytes) to 400 (1,280,000 Bytes). Ds and Dt are two different
kinds of 2DBCDDs. In Fig. 9, performance improves as mes-
sage size increases, and so does the achieved ratio to bound
in most cases, which makes sense because for small message
size,

! Tstartup is the dominant overhead;
! overheads of runtime system matters (Textra=T ¼ 0

when calculating bound), since the smaller the mes-
sage size, the smaller the possibility for the runtime
to hide its own overheads [64];

! Bmemcpy is set to the theoretical memory bandwidth,
which may not be reached by small message size
without cache reuse.

As the message size increases, it could achieve more than
80% efficiency of the theoretical bound for large message
sizes.

8.4 Scatter and Gather Patterns
To provide a comprehensible evaluation of different redis-
tribution patterns, we evaluate two extreme cases, scatter
and gather, where all data starts or ends on a single process.

Scatter and gather are two collective communication pat-
terns useful in many parallel algorithms, such as parallel
sorting and searching, and are provided in MPI via MPI_S-
catter and MPI_Gather. Scatter involves a designated root
process equally distributing different chunks of data among
all processes in a communicator. Gather is the inverse oper-
ation, taking elements from all processes and gathering
them into a single process. It is worth noting that these two
collective patterns consist of point-to-point communication
in this redistribution implementation in PaRSEC.

The scatter and gather patterns described in this section
are not exactly the same as their definitions in MPI, but simi-
lar. Instead of having a designated root, in this experiment,
each process act as the root to distribute data onto other pro-
cesses. Fig. 10 describes scatter and gather patterns
deployed on four processes (a.k.a., nodes in PaRSEC). There
is only one tile on each process on the SRC of the scatter pat-
tern and on the TG of the gather pattern. With scatter, the
Ds is a 1DBCDD: 1" num nodes, and Dt follows normal
2DBCDD, and vice versa for gather. The other settings of
the experiment are:

! MBs is a multiple of MBt in scatter pattern and MBt

a multiple of MBs in gather pattern to ensure mes-
sage size through the network is constant to get the
actual bound;

! MBt (NBt) for scatter andMBs (NBs) for gather vary
from 10 to 400 (message size from 800 to 1,280,000
Bytes).

Fig. 11 shows the performance of the redistribution imple-
mentation in PaRSEC for the scatter and gather pattern using
weak and strong scaling. Theoretically, the actual bandwidth

Fig. 8. Effect of multiple_send; higher is better.

Fig. 9. Performance of the nine redistribution categories on NaCL. Left
shows the bandwidth, and the corresponding ratio to bound is depicted
on the right.

Fig. 10. Left, scatter pattern; right, gather pattern. The process ID is
shown in figures; for scatter (or gather), one tile per process in SRC (or
TG).

1866 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



is the same on different numbers of nodes for messages of
specific sizes, ignoring all additional overheads resulting
from network fluctuations, communication injections, run-
time manipulations, etc. In practice, the performance
presents slight variations on different numbers of nodes, as
shown in Fig. 11, but it loosely follows NetPIPE/ bound
trend for both scatter and gather.

When the message size is small, the maximal ratio (actual
bandwidth over bound/NetPIPE) is low, around 80% for
scatter and 60% for gather, because of Textra=T and Bmemcpy

as analyzed in Section 8.3. It is interesting to note that the
ratio could go over 100% at medium message sizes. Net-
PIPE may not reach the maximum point-to-point network
bandwidth with one process per node with such message
sizes; however, multiple_send in PaRSEC allows multi-
ple concurrent communications to saturate the network,
practically increasing messages transferred simultaneously.
Another possible reason may be the optimized eager proto-
col in PaRSEC.

As the message size increases further, the portion of run-
time overheads decreases. Therefore, for big message sizes
such as 1M Bytes, our redistribution implementation could
achieve about 90% of NetPIPE and bound. Performance of
the gather is a little worse than that of the scatter. This is
explained by the fact that there is only one communication
thread on the receiver side to manage and receive data in
PaRSEC, and control dependencies between Receive and
Finish tasks exist in the gather but not in the scatter.

8.5 Performance on Randomly Distributed Matrices
Random distribution is an extreme case for irregular dis-
tributions as shown in Section 6.1, and such a feature
differentiates PaRSEC from other task-based runtimes.

Maintaining a high efficiency on such data distributions is a
desirable capability, providing ground for better perfor-
mance for low-rank and sparse algorithms. Fig. 12 depicts
performances of redistribution between two random distri-
butions (seed 2873 and 3872) and compares them to redistri-
bution between two regular 2DBCDD distributions, by
showing actual bandwidth (left y-axis, solid line) and
speedup of ”2DBCDD” to ”random distribution” (right
y-axis, dashed line). The performance of random distribution
is worse than 2DBCDD mainly because of (1) the more opti-
mized 2DBCDD than random distribution where each pro-
cess in 2DBCDD only cares about its own data without
retrieving the global structure; (2) the more optimized
batch parameter for 2DBCDD asmentioned in Section 6.2.1.
It is noteworthy to explain the bell shape of the speedup of
”2DBCDD” to ”random distribution”. When the message size
is small, Tstartup and Truntime=T dominate (see Section 7.1); as
the message size increase, the overheads caused by random
distribution compared to 2DBCDDmay be critical; however,
when themessage size continues to grow, Ttrans becomes sig-
nificant, and performances of 2DBCDD and random distribu-
tion are similar.

8.6 Comparison to ScaLAPACK

ScaLAPACK is a high-performance library for linear algebra
routines. ScaLAPACK’s data format is inherited fromLAPACK

[66], but it targets parallel distributed memory machines
instead. It should be noted that HPF is not maintained any-
more and is out-of-date, and that is also the case of all
research on redistribution mentioned in the related work for
HPF. In the scope of our implementation inPaRSEC, targeting
dense matrices, the only implementation of redistribution
that is still actively developed and widely used is ScaLA-

PACK. It also should be noted that ScaLAPACK only supports
redistribution between regular, block-cyclic data distribu-
tions, so we restrict the scope of this evaluation to such data
distributions. As mentioned in the related work, all previous
research on the array or data redistribution: (1) focused on a
simplified problem, i.e., the regular distributions BCDD; (2)
tried to address load imbalance caused by the data distribu-
tion but ignored the impact of the data size, and we are first
to (1) extend the scope of redistribution to the task-based run-
time systems, (2) support irregular distributions, and (3)
explicitly take data size into account. Therefore, in this

Fig. 11. Scatter and gather pattern on NaCL. For each figure, upper is actual bandwidth; while maximum ratio to NetPIPE and bound about different
message sizes is shown below.

Fig. 12. Random distribution on 16 nodes NaCL. Actual bandwidth: left
y-axis, solid line; speedup of ”2DBCDD” to ”random distribution”: right
y-axis, dashed line.

CAO ET AL.: EVALUATING DATA REDISTRIBUTION IN PARSEC 1867

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



section, we only compare our implementation in PaRSEC to
redistribution routines in ScaLAPACK on regular data distri-
butions BCDD.

Fig. 13 shows a weak-scaling experiment for the gather
pattern on NaCL, therefore, using the same matrix size per
node for all number of nodes, to maintain a similar runtime
overhead on each node. Fig. 13a presents ScaLAPACK execu-
tion time for the redistribution process, while Fig. 13b the
speedup of our implementation compared to ScaLAPACK.
These results show ScaLAPACK behaves better for small
message sizes, especially with a larger number of nodes.
This happens because Truntime exists in task-based runtime
systems like PaRSEC, while it is not present on ScaLAPACK.
The actual execution time is very small (Fig. 13b), so Truntime

becomes increasingly dominant in the weak scaling experi-
ment. In fact, small task granularity is not the most suitable
setup for task-based runtime systems [64]. However, as the
message size grows, the redistribution implementation in
PaRSEC introduces a positive speedup that is almost con-
stant for the different number of nodes (there is an unknown
issue for ScaLAPACK on 64 nodes).

8.7 Evaluation in Applications

8.7.1 Redistribution Effect on Cholesky and QR
Factorization

Cholesky and QR factorizations are two widely used algo-
rithms to solve linear systems of equations (Ax ¼ B). We use
tiled dense Cholesky and QR factorization from DPLASMA

and TLR Cholesky from Lorapo [13], both using the PaR-

SEC runtime system, to evaluate the benefits and overheads
of redistribution with the assumption that enough memory
is available to perform it. We evaluate cases where the data
generator provides a distribution that is not optimal and
would result in an inefficient execution, while the redistribu-
tion of the data can result in a more efficient execution. The
following figures present the effects of redistribution on two

different setups, converting data distribution and tile size.
These optimizationsmay be combined in practice [13], [33].

Figs. 14a and 15a showcase the effect of data distribution
maintaining the tile size (MBs ¼ MBt ¼ 320). Running the
algorithm directly using the source matrix, a 1DBCDD with
Ds: ðP;QÞ ¼ ð1; 64Þ, does not expose enough parallelism,
and thus exhibits poor performance. On the other hand, a
much more suitable distribution for this case, known theo-
retically but also highlighted in the figures, corresponds to
2DBCDD with Dt: ðP;QÞ ¼ ð8; 8Þ. Redistributing from Ds to
Dt, tagged as “REDISTRIBUTION” on the graphs, redistrib-
utes from Ds to Dt, executes the QR/Cholesky factorization,
and then redistributes the result matrix back toDs, such that
the entire redistribution is transparent to the caller. On the
other hand, Figs. 14b and 15b illustrate redistribution when
varying the tile size. In this case, the data distribution is fixed
to 2DBCDD. The source matrix uses MBs ¼ 1280, which is
suboptimal especially for small matrices as it reduces the
parallelism and hinders performance. Similar to above, the
experiment tagged as “REDISTRIBUTION” redistributes the
matrix from MBs to more appropriate MBt ¼ 320 when
matrix size is small, executes the QR/Cholesky factorization,
and redistributes matrix back to MBs. For both algorithms,
QR or Cholesky factorization, the “REDISTRIBUTION” can
automatically convert the matrix into a more suitable data
distribution or tile size, with little overheads (less than 10%
inmost cases), which allows the execution to unfold to be the
most favorable setup on the platform and introduces rele-
vant speedups (up to 3.42X).

TLR Cholesky factorization proposed in Lorapo con-
tains dense tiles near the diagonal, i.e., within scope of the
band size. Hence, redistribution is a very appropriate mech-
anism to address the load imbalance issue caused by the
discrepancy of dense and low-rank tiles in TLR Cholesky
factorization, redistributing these dense tiles to a more bal-
anced workload. Fig. 16 depicts a similar experiment using
TLR Cholesky factorization where both distribution [13]
and tile size [33] are critical. Fig. 16a shows the impact of
the data distribution while maintaining the tile size, where
the Ds is 2DBCDD and Dt is less regular, a 2DBCDD distri-
bution with a band of tiles around the diagonal in a
1DBCDD distribution (”band distribution”, the benefits for
such a distribution are analyzed in [33]). A kind of modified
”weak scaling” in terms of memory constrain is deployed
on 16, 64, 128 and 256 nodes Shaheen II for st-3D-sqexp
[13] with matrix size up to 5:4M " 5:4M. On the other hand,
Fig. 16b depicts the impact of tile size changes (MBs varies

Fig. 13. Comparison to ScaLAPACK of gather pattern on NaCL.

Fig. 14. QR factorization on Shaheen II (64 nodes).

Fig. 15. Cholesky factorization on Shaheen II (64 nodes).

1868 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



while MBt ¼ 5400) while maintaining a similar data distri-
bution (”band distribution”) for a matrix of 2:16M " 2:16M
elements on 16 nodes Shaheen II for syn-2D [13]. From
these two figures, the overheads of data redistribution (the
execution time of only calling data redistribution, i.e.,
parsec redistribute) are small compared to the benefits
introduced (the execution time of ”Ds 'Dt” in Fig. 16a and
”MBs 'MBt” in Fig. 16b). In all the testbed settings, the
benefits of the redistribution are positive and introduce an
improvement of several orders of magnitude in most cases.
The only exception is MBs ¼ 6000 in Fig. 16b, where the
benefits are reduced becauseMBs is close toMBt.

8.7.2 ScaLAPACK Format Over DPLASMAWith
Redistribution

The benefits on applications of this new redistribution fea-
ture in PaRSEC are not limited to the flexibility for re-map-
ping of data items onto processors and varying the tile size
or the submatrix displacements. This extension also enables
the conversion between different matrice’s memory layouts
or storage formats.

In recent works, a ScaLAPACK-like interface was imple-
mented on DPLASMA to enable its usage by applications
using ScaLAPACK [30]. These extensions are presented as
an independent library that contains a wrapped version of
the ScaLAPACKAPI and hides the PaRSECAPI, while it con-
structs the structures necessary for the operation with matri-
ces represented on ScaLAPACKmemory layout. As mention
earlier, ScaLAPACK’s data format is inherited from LAPACK

[66] in which the entire local matrix is stored in column-
major order. On the other hand, in DPLASMA, which is inher-
ited from PLASMA [31], each tile of thematrix is contiguously
stored in memory in column-major order. Fig. 17 illustrates
the differences between the two memory layouts. Although
the wrappers enable the operation of the algorithms using
the input data representation (i.e., ScaLAPACK layout), there
exist situations in which DPLASMA blocking algorithms can-
not be run directly. Some ScaLAPACK kernels (e.g., GEMM,
TRSM) can operate on submatrices non-uniformly aligned or
with different block sizes, therefore, preventing the use of
DPLASMA blocking algorithms that rely on compatible block-
ing factors across the inputs matrices. Therefore, performing

a redistribution of the data becomes key for the support of
those ScaLAPACK kernels. Furthermore, redistributing the
data can also improve performance, as the data distribution
can be adjusted to achieve better exploitation of the available
hardware resources. In this scenario, the DPLASMA wrapper
first redistributes the input matrices on ScaLAPACK format
to DPLASMA memory layout, runs DPLASMA kernels, and
redistributes outputmatrices back to ScaLAPACK format.

Fig. 18 showcases the effect of data redistribution on
DPLASMA format over ScaLAPACK format for two widely
used linear algebra algorithms, dense Cholesky factoriza-
tion and dense GEMM. For these experiments of Cholesky/
GEMM, the data distribution is fixed to 2DBCDD. We mea-
sure different scenarios related to the tile/block size of
ScaLAPACK format and DPLASMA format:

! Figs. 18a and 18b, where the tile size is the same (i.e.,
960) for DPLASMA and ScaLAPACK formats;

! Figs. 18c and 18d, where the tile size of ScaLAPACK
format (i.e., 960) is larger than that of DPLASMA for-
mat (i.e., 400);

Fig. 16. TLR Cholesky on Shaheen II.

Fig. 17. ScaLAPACK versus DPLASMA memory layout for a matrix with
four local tiles.

Fig. 18. Effect of redistribution to enable running ScaLAPACK over
DPLASMA on 64 nodes Shaheen II; a ! b with a tile size of ScaLA-
PACK format and b tile size of DPLASMA format.

CAO ET AL.: EVALUATING DATA REDISTRIBUTION IN PARSEC 1869

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



! Figs. 18e and 18f, where the tile size of ScaLAPACK
format (i.e., 400) is smaller than that of DPLASMA for-
mat (i.e., 960).

The graphs report the performance using the native
ScaLAPACK library, the native DPLASMA algorithm,
and ScaLAPACK over DPLASMA version (tagged as “RE-
DISTRIBUTION”, redistributes from ScaLAPACK format to
DPLASMA format, executes the corresponding DPLASMA ker-
nel, and redistributes back from DPLASMA format to ScaLA-

PACK format). For all experiments of both algorithms, the
ScaLAPACK over DPLASMA version, when taking advan-
tage of the redistribution to automatically convert the
matrix format, introduce a speedup up to 4.25X with
respect to the native ScaLAPACK with as little overhead as
1% over the native DPLASMA. This allows the execution to
unfold to the most favorable setup on the platform and
introduces important performance benefits. There is very
little overhead when the block/tile size is the same in
ScaLAPACK and DPLASMA format, because in this case no
communication exists, and only local memory copy are
needed to redistribute.

All in all, these results show that domain scientists do not
have to stick anymore with predefined data distributions
that impact the data generation potential, but instead, for a
reasonable overhead, can allow a mismatch between data
generators and users.

8.7.3 Other Applications

The data redistribution algorithm proposed in this paper
could also be adopted in other applications, but it is out of this
paper’s scope.Herewe briefly list other potential utilizations.

! Distributed AMR. AMR is a method in numerical
analysis to adapt the accuracy of a solution within
certain sensitive or turbulent regions of simulation,
performed dynamically during the time the solu-
tion is being calculated, and it is applied in many
scientific domains [67]. The redistribution algo-
rithm proposed in this paper and AMR could be
seamlessly connected, as domains that need to be
refined in AMR could be redistributed for load bal-
ancing purposes. In addition, for its implementa-
tion in a task-based runtime system, multiple
domains could be refined (redistributed) simulta-
neously, and PaRSEC supports this functionality as
task pool topology.

! Distributed Matrix Transpose. Matrix Transpose is a
linear algebra operator to flip a matrix over its diag-
onal. Research about matrix transpose on distrib-
uted memory usually depended on the assumption
of 2DBCDD [68], which is not always true espe-
cially targeting complicated algorithms in sparse
linear algebra, e.g., TLR Cholesky mentioned above.
The data redistribution proposed in this paper is
not limited by a predefined data distribution, there-
fore it could be an alternative to solve matrix trans-
pose problems, because matrix transpose in its
nature is a data redistribution problem. Besides, a
more complicated case, i.e., submatrix transpose,
could also be tackled by this data redistribution
algorithm.

! Distributed Irregular GEMM. GEMM (C ¼ a"A"
Bþ b" C) is one of the most used BLAS routines and
contributes the most performance for algorithms like
Cholesky and QR factorization. In GEMM, the square
matrix usually achieves higher performance than the
non-square matrix because of the minimum amount of
data to load [61]. Hence, in addition to the data format
demonstrated in Section 8.7.2, the data redistribution
algorithm in this paper could benefit two irregular
GEMM, i.e., (1) GEMMwith irregular tile size as in [60]
and (2) GEMM of submatrix multiply, as well as the
combinations of these two cases. Utilizing data redistri-
bution, tiles ofA,B, andC could automatically be con-
verted to square tiles on the fly, so that little additional
cost will be posted on the original GEMMalgorithm.

9 CONCLUSION AND FUTURE WORK

This paper presents a flexible data redistribution algorithm
for the task-based runtime system, targeting a general redis-
tribution problem and supporting any regular and irregular
data distributions without constrain of data size and mem-
ory layout, which is a pioneer taking irregular data distribu-
tions and explicitly data size effect into account in task-
based runtime systems. Besides the proposed cost model,
we provide an implementation in a task-based runtime
PaRSEC, together with a set of runtime extensions and opti-
mizations. The practical evaluations of our implementation
show it can achieve impressive performance compared
with the theoretical peak and existing tools supporting
some level of data redistribution, ScaLAPACK. Moreover,
utilization in real applications highlights great benefits and
negligible overheads in terms of data distribution, tile size,
and data format with significant improvement in applica-
tion time-to-solution.

For future work, we plan to explore the applicability of
this redistribution algorithm to other runtime systems;
while in the context of PaRSEC, we plan to further reduce
communication overheads and make the redistribution a
completely transparent process, an operation that could be
fused with the ensuing computation to hide all overheads
related to the redistribution in terms of memory and time-
to-solution. We also plan to extend the scope in terms of the
algorithm itself and the utilization not only on dense matrix,
but also on more broadly used applications.

ACKNOWLEDGMENTS

The authors would like to thank Aurelien Bouteiller for
multi-threaded supports in PaRSEC Cray Inc. and Intel in
the context of the Cray Center of Excellence and Intel Paral-
lel Computing Center awarded to the Extreme Computing
Research Center at KAUST.

REFERENCES

[1] R. Garg and P. De, “Impact of noise on scaling of collectives: An
empirical evaluation,” Proc. Int. Conf. High Perform. Comput., 2006,
vol. 4297, pp. 460–471.

[2] D. Tsafrir, Y. Etsion, D. Feitelson, and S. Kirkpatrick, “System
noise, OS clock ticks, and fine-grained parallel applications,” in
Proc. 19th Annu. Int. Conf. Supercomput., New York, NY, USA:
2005, pp. 303–312.

1870 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 



[3] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “Operating sys-
tem issues for petascale systems,” SIGOPS Oper. Syst. Rev., vol. 40,
no. 2, pp. 29–33, 2006.

[4] E. Agullo et al., “Numerical linear algebra on emerging architec-
tures: The PLASMA and MAGMA projects,” J. Phys. Conf. Ser.,
vol. 180, 2009, Art. no. 012037.

[5] G. Bosilca et al., “Flexible development of dense linear algebra algo-
rithms on massively parallel architectures with DPLASMA,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp, 2011, pp. 1432–1441. [Online].
Available: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber¼6008655

[6] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multi-
core architectures,” Concurrency Comput. Pract. Exper., vol. 23,
pp. 187–198, 2011.

[7] A. Duran, R. Ferrer, E. Ayguad!e, R. Badia, and J. Labarta, “A pro-
posal to extend the OpenMP tasking model with dependent
tasks,” Int. J. Parallel Program., vol. 37, no. 3, pp. 292–305, 2009.

[8] E. Chan, E. Quintana-Ort!ı, G. Quintana-Ort!ı, and R. van de Geijn,
“Supermatrix out-of-order scheduling of matrix operations for
SMP and multi-core architectures,” in Proc. 19th Annu. ACM
Symp. Parallel Algorithms Archit., New York, NY, USA 2007,
pp. 116–125.

[9] X. Lacoste, M. Faverge, G. Bosilca, P. Ramet, and S. Thibault,
“Taking advantage of hybrid systems for sparse direct solvers via
task-based runtimes,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops, May 2014, pp. 29–38. [Online]. Available: doi.
ieeecomputersociety.org/10.1109/IPDPSW.2014.9.

[10] H. Jagode, A.Danalis, and J. Dongarra, “AcceleratingNWchemcou-
pled cluster through dataflow-based execution,” Int. J. High Perform.
Comput. Appl., vol. 32, no. 4, pp. 540–551, 2018. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1094342016672543

[11] M. Tillenius, E. Larsson, E. Lehto, and N. Flyer, “A task parallel
implementation of a scattered node stencil-based solver for the
shallow water equations,” in Proc. 6th Swedish Workshop Multi-
Core Comput., 2013, pp. 33–36.

[12] V. Martinez, F. Dupros, M. Castro, and P. Navaux, “Performance
improvement of stencil computations for multi-core architectures
based on machine learning,” Procedia Comput. Sci., vol. 108, no.
Supplement C, pp. 305–314, 2017. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S1877050917307408

[13] Q. Cao et al., “Extreme-scale task-based cholesky factorization
toward climate and weather prediction applications,” in Proc.
Platform Adv. Sci. Comput. Conf., 2020, pp. 1–11.

[14] D. B. Loveman, “High performance fortran,” IEEE Parallel Distrib.
Technol. Syst. Appl., vol. 1, no. 1, pp. 25–42, Feb. 1993.

[15] A. Wakatani and M. Wolfe, “A new approach to array redistribu-
tion: Strip mining redistribution,” in Proc. Int. Conf. Parallel Archit.
Lang. Eur., 1994, pp. 323–335.

[16] A. Wakatani and M. Wolfe, “Optimization of array redistribution
for distributed memory multicomputers,” Parallel Comput., vol. 21,
no. 9, pp. 1485–1490, 1995.

[17] S. Kaushik, C.-H. Huang, J. Ramanujam, and P. Sadayappan,
“Multi-phase array redistribution: Modeling and evaluation,” in
Proc. 9th Int. Parallel Process. Symp., 1995, pp. 441–445.

[18] R. Thakur, A. Choudhary, and J. Ramanujam, “Efficient algo-
rithms for array redistribution,” IEEE Trans. Parallel Distrib. Syst.,
vol. 7, no. 6, pp. 587–594, Jun. 1996.

[19] Y. W. Lim, P. B. Bhat, and V. K. Prasanna, “Efficient algorithms for
block-cyclic redistribution of arrays,” Algorithmica, vol. 24, no. 3–4,
pp. 298–330, 1999.

[20] C.-H. Hsu, S.-W. Bai, Y.-C. Chung, and C.-S. Yang, “A generalized
basic-cycle calculation method for efficient array redistribution,”
IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 12, pp. 1201–1216,
Dec. 2000.

[21] T. Marrinan, J. A. Insley, S. Rizzi, F. Tessier, and M. E. Papka,
“Automated dynamic data redistribution,” in Proc. IEEE Int. Paral-
lel Distrib. Process. Symp. Workshops, 2017, pp. 1208–1215.

[22] C. Foyer, A. Tate, and S. McIntosh-Smith, “Aspen: An efficient
algorithm for data redistribution between producer and consumer
grids,” in Proc. Eur. Conf. Parallel Process, 2018, pp. 171–182.

[23] D. W. Walker and S. W. Otto, “Redistribution of block-cyclic data
distributions usingMPI,” Concurrency: Pract. Experience, vol. 8, no. 9,
pp. 707–728, 1996.

[24] A. Reisner, L. N. Olson, and J. D. Moulton, “Scaling structured
multigrid to 500k+ cores through coarse-grid redistribution,”
SIAM J. Sci. Comput., vol. 40, no. 4, pp. C581–C604, 2018.

[25] M. Hofmann and G. R€unger, “Fine-grained data distribution oper-
ations for particle codes,” in Proc. Eur. Parallel Virtual Machine/
Message Passing Interface Users’ Group Meeting, 2009, pp. 54–63.

[26] M. Hofmann and G. R€unger, “Flexible all-to-all data redistribu-
tion methods for grid-based particle codes,” Concurrency Comput.
Pract. Experience, vol. 30, no. 13, 2018, Art. no. e4421.

[27] J. Dongarra, L. Prylli, C. Randriamaro, and B. Tourancheau,
“Array redistribution in scalapack using PVM,” Proc. EuroPVM,
1995, vol. 95, pp. 271–276.

[28] L. Prylli and B. Tourancheau, “Efficient block cyclic data redistrib-
ution,” in Proc. Eur. Conf. Parallel Process, 1996, pp. 155–164.

[29] M. Hofmann and G. R€unger, “Efficient data redistribution meth-
ods for coupled parallel particle codes,” in Proc. 42nd Int. Conf.
Parallel Process, 2013, pp. 40–49.

[30] L. Blackford et al., ScaLAPACK Users’ Guide. Philadelphia, PA,
USA: Soc. Ind. Appl. Math., 1997.

[31] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of paral-
lel tiled linear algebra algorithms for multicore architectures,”
Parallel Comput., vol. 35, no. 1, pp. 38–53, 2009.

[32] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra, “Implementation
and tuning of batched Cholesky factorization and solve for NVI-
DIA GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 7,
pp. 2036–2048, Jul. 2016.

[33] Q. Cao et al., “Performance analysis of tile low-rank cholesky fac-
torization using parsec instrumentation tools,” in Proc. IEEE/ACM
Int. Workshop Program. Perform. Vis. Tools, 2019, pp. 25–32.

[34] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J.
Dongarra, “PaRSEC: A programming paradigm exploiting hetero-
geneity for enhancing scalability,” Comput. Sci. Eng., vol. 15, no. 6,
pp. 36–45, Nov./Dec. 2013.

[35] Q. Cao, G. Bosilca, W. Wu, D. Zhong, A. Bouteiller, and J. Don-
garra, “Flexible data redistribution in a task-based runtime sys-
tem,” in Proc. IEEE Int. Conf. Cluster Comput., 2020, pp. 221–225.

[36] A. YarKhan, “Dynamic task execution on shared and distributed
memory architectures,” Ph.D. dissertation, Dept. Comput. Sci.,
Univ. Tennessee, Knoxville, Tennessee, 2012. [Online]. Available:
http://trace.tennessee.edu/utk_graddiss/1575

[37] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’ guide:
QUeueing and runtime for kernels,” Innov Comput. Lab., Univ.
Tennessee, Knoxville, Tennessee, Tech. Rep. ICL-UT-11–02, 2011.

[38] R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic task
discovery in PaRSEC: A data-flow task-based runtime,” in Proc.
8th Workshop Latest Adv. Scalable Algorithms Large-Scale Syst., 2017,
pp. 6:1–6:8.

[39] E. Agullo et al., “Achieving high performance on supercom-
puters with a sequential task-based programming model,”
IEEE Trans. Parallel Distrib. Syst., to be published, doi: 10.1109/
TPDS.2017.2766064.

[40] R. Lopes, S. Thibault, and A. Melo, “MASA-StarPU: Parallel
sequence comparison with multiple scheduling policies and
pruning,” in Proc. SBAC-PAD IEEE 32nd Int. Symp. Comput. Archit.
High Perform. Comput., 2020, pp. 225–232.

[41] F. Lordan et al., “Servicess: An interoperable programming frame-
work for the cloud,” J. Grid Comput., vol. 12, no. 1, pp. 67–91, 2014.

[42] OpenMP, “OpenMP 4.0 complete specifications,” 2013. [Online].
Available: http://www.openmp.org/wp-content/uploads/
OpenMP4.0.0.pdf

[43] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing locality and independence with logical regions,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2012,
pp. 1–11.

[44] S. Treichler, “Realm: Performance portability through composable
asynchrony,” Ph.D. dissertation, Dept. Comput. Sci., Stanford
Univ., Stanford, CA, USA, 2014.

[45] T. Heller, H. Kaiser, and K. Iglberger, “Application of the parallex
execution model to stencil-based problems,” Comput. Sci. - Res.
Develop., vol. 28, no. 2–3, pp. 253–261, 2013.

[46] J. M. Perez, R. M. Badia, and J. Labarta, “A dependency-aware
task-basedprogramming environment formulti-core architectures,”
in Proc. IEEE Int. Conf. Cluster Comput., 2008, pp. 142–151.

[47] J. Dokulil, M. Sandrieser, and S. Benkner, “Implementing the open
community runtime for shared-memory and distributed-memory
systems,” 24th Euromicro Int. Conf. Parallel, Distrib., Netw.-Based
Process., 2016, pp. 364–368.

[48] A. P. Petitet and J. J. Dongarra, “Algorithmic redistribution meth-
ods for block-cyclic decompositions,” IEEE Trans. Parallel Distrib.
Syst., vol. 10, no. 12, pp. 1201–1216, Dec. 1999.

CAO ET AL.: EVALUATING DATA REDISTRIBUTION IN PARSEC 1871

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008655
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008655
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008655
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/IPDPSW.2014.9
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/IPDPSW.2014.9
http://journals.sagepub.com/doi/10.1177/1094342016672543
http://www.sciencedirect.com/science/article/pii/S1877050917307408
http://www.sciencedirect.com/science/article/pii/S1877050917307408
http://trace.tennessee.edu/utk_graddiss/1575
http://dx.doi.org/10.1109/TPDS.2017.2766064
http://dx.doi.org/10.1109/TPDS.2017.2766064
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf


[49] M. Guo and I. Nakata, “A framework for efficient data redistribu-
tion on distributed memory multicomputers,” J. Supercomput., vol.
20, no. 3, pp. 243–265, 2001.

[50] R. Sudarsan and C. J. Ribbens, “Efficient multidimensional data
redistribution for resizable parallel computations,” in Proc. Int.
Symp. Parallel Distrib. Process. Appl, 2007, pp. 182–194.

[51] J. Herrmann, G. Bosilca, T. H!erault, L. Marchal, Y. Robert, and J.
Dongarra, “Assessing the cost of redistribution followed by a
computational kernel: Complexity and performance results,” Par-
allel Comput., vol. 52, no. C, pp. 22–41, 2016.

[52] S. Iserte, R. Mayo, E. S. Quintana-Orti , and A. J. Pe~na,
“DMRlib: Easy-coding and efficient resource management for
jobmalleability,” IEEE Trans. Comput., vol. 70, no. 9, pp. 1443–1457, 1
Sep. 2021.

[53] T. Schneider, F. Kjolstad, and T. Hoefler, “MPI datatype process-
ing using runtime compilation,” in Proc. 20th Eur. MPI Users’
Group Meeting, 2013, pp. 19–24.

[54] T. Prabhu and W. Gropp, “Dame: A runtime-compiled engine for
derived datatypes,” in Proc. 22nd Eur. MPI Users’ Group Meeting,
2015, Art. no. 4.

[55] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault,
and J. Dongarra, “PaRSEC: Exploiting heterogeneity to enhance
scalability,”Comput. Sci. Eng., vol. 15, no. 6, pp. 36–45, Nov. 2013.

[56] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra,
“PTG: An abstraction for unhindered parallelism,” in Proc. 4th Int.
Workshop Domain-Specific Lang. High-Level Frameworks High Per-
form. Comput., 2014, pp. 21–30.

[57] A. Danalis, H. Jagode, G. Bosilca, and J. Dongarra, “PaRSEC in
practice: Optimizing a legacy chemistry application through dis-
tributed task-based execution,” in Proc. IEEE Int. Conf. Cluster .,
Sep. 2015, pp. 304–313.

[58] H. Jagode, A. Danalis, G. Bosilca, and J. Dongarra, Accelerating
NWChem Coupled Cluster Through Dataflow-Based Execution. Berlin,
Germany: Springer , 2016, pp. 366–376.

[59] Q. Cao et al., “Leveraging parsec runtime support to tackle chal-
lenging 3D data-sparse matrix problems,” 2020. [Online]. Avail-
able: http://hdl.handle.net/10754/665738

[60] T. Herault, Y. Robert, G. Bosilca, and J. Dongarra, “Generic matrix
multiplication for multi-GPU accelerated distributed-memory
platforms over parsec,” in Proc. IEEE/ACM 10th Workshop Latest
Adv. Scalable Algorithms Large-Scale Syst., 2019, pp. 33–41.

[61] T. Herault et al., “Distributed-memory multi-GPU block-sparse
tensor contraction for electronic structure,” Inria, Rocquencourt,
France, Res. Rep. RR-9365, Oct. 2020.

[62] T. Patinyasakdikul, D. Eberius, G. Bosilca, and N. Hjelm, “Give
MPI threading a fair chance: A study of multithreaded MPI
designs,” in Proc. IEEE Int. Conf. Cluster Comput., 2019, pp. 1–11.

[63] C.-L.Wang, P. B. Bhat, andV. K. Prasanna, “High-performance com-
puting for vision,” Proc. IEEE, vol. 84, no. 7, pp. 931–946, Jul. 1996.

[64] E. Slaughter et al., “Task bench: A parameterized benchmark for
evaluating parallel runtime performance,” The Int. Conf. High Per-
form. Comput., Netw., Storage, Anal., 2020. [Online]. Available:
http://arxiv.org/abs/1908.05790

[65] Q. O. Snell, A. R. Mikler, and J. L. Gustafson, “NetPIPE: A net-
work protocol independent performance evaluator,” Proc. Int.
Conf. Intell. Inform. Manage. Syst., 1996, vol. 6, Art. no. 49.

[66] E. Anderson et al., LAPACK Users’ Guide. Philadelphia, PA, USA:
Siam, 1999, vol. 9.

[67] Wikipedia, “Adaptive mesh refinement,” Accessed: Jan. 18, 2019.
[Online]. Available: https://en.wikipedia.org/wiki/Adaptive_
mesh_refinement

[68] J. Choi, J. J. Dongarra, and D. W. Walker, “Parallel matrix trans-
pose algorithms on distributed memory concurrent computers,”
Parallel Comput., vol. 21, no. 9, pp. 1387–1405, 1995.

Qinglei Cao received the BS degree in information
and computational science from Hunan University
and the MS degree in computer application tech-
nology from the Ocean University of China. He is
currently working toward the PhD degree with the
Innovative Computing Laboratory, University of
Tennessee, Knoxville. He was a software engineer
with the National University of Defense Technology
for more than three years. His research interests
include distributed or parallel computing, task-
based runtime system and linear algebra, including
PaRSEC, DPLASMA,HiCMA, andOpenMPI.

George Bosilca is currently the research director
and an adjunct assistant professor with the Inno-
vative Computing Laboratory, University of Ten-
nessee, Knoxville. His research interests include
concepts of distributed algorithms, parallel pro-
gramming paradigms, and software resilience,
from both a theoretical and practical perspective.

Nuria Losada received the BS, MS, and PhD
degrees in computer science from the Universidade
daCoru~na, Spain, in 2013, 2014, and 2018, respec-
tively. She is currently a postdoctoral researcher
with the Innovative Computing Laboratory, Univer-
sity of Tennessee, Knoxville. Her research interests
include fault-tolerance, distributed computing, and
parallel programming paradigms.

Wei Wu received the BE degree in software engi-
neering from the Beijing Institute of Technology,
the MS degree in computer engineering from Pur-
due University, and the PhD degree in computer
science in 2017 from the University of Tennessee,
Knoxville. He is currently a research scientist with
Los Alamos National Laboratory. His research
interests include runtime systems and program-
mingmodels in high performance computing.

Dong Zhong received the BS degree in computer
science fromTongji University and theMSdegree in
information science and electronic engineering from
the Zhejiang University of China. He is currently
working toward the PhD degree with the Innovative
Computing Laboratory, University of Tennessee,
Knoxville. His research interests include distributed
computing, parallel programming paradigms includ-
ing Open MPI, PMIx and PRRTE, failure detection
and notification, and long vector extension analysis
and usage of ArmSVEand Intel AVXs.

Jack Dongarra (Fellow, IEEE) holds an appoint-
ment with the University of Tennessee, Oak Ridge
National Laboratory, and the University of Man-
chester. He specializes in numerical algorithms
in linear algebra, parallel computing, use of
advanced-computer architectures, programming
methodology, and tools for parallel computers. He
was the recipient of IEEE Sid Fernbach Award in
2004, first IEEE Medal of Excellence in Scalable
Computing in 2008, SIAM Special Interest Group
on Supercomputing’s Award for Career Achieve-

ment in 2010, IEEE Charles Babbage Award in 2011, and the ACM/IEEE
Ken Kennedy Award in 2013. He is a fellow of the AAAS, ACM, and SIAM
and a foreignmember of the Russian Academy of Science and a member
of the U.S. National Academy of Engineering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1872 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 15,2021 at 02:02:26 UTC from IEEE Xplore.  Restrictions apply. 

http://hdl.handle.net/10754/665738
http://arxiv.org/abs/1908.05790
https://en.wikipedia.org/wiki/Adaptive_mesh_refinement
https://en.wikipedia.org/wiki/Adaptive_mesh_refinement

