
1

Resilient Scheduling of Moldable Parallel Jobs
to Cope with Silent Errors

Anne Benoit, Valentin Le Fèvre, Lucas Perotin, Padma Raghavan, Yves Robert, Hongyang Sun

Abstract—We study the resilient scheduling of moldable parallel jobs on high-performance computing (HPC) platforms. Moldable jobs
allow for choosing a processor allocation before execution, and their execution time obeys various speedup models. The objective is to
minimize the overall completion time or the makespan, when jobs can fail due to silent errors and hence may need to be re-executed
after each failure until successful completion. Our work generalizes the classical scheduling framework for failure-free jobs. To cope
with silent errors, we introduce two resilient scheduling algorithms, LPA-LIST and BATCH-LIST, both of which use the LIST strategy to
schedule the jobs. Without knowing a priori how many times each job will fail, LPA-LIST relies on a local strategy to allocate processors
to the jobs, while BATCH-LIST schedules the jobs in batches and allows only a restricted number of failures per job in each batch. We
prove approximation ratios for the two algorithms under several prominent speedup models (e.g., roofline, communication, Amdahl,
power, monotonic, and a mix model). An extensive set of simulations is conducted to evaluate different variants of the two algorithms,
and the results show that they consistently outperform some baseline heuristics. Overall, our best algorithm is within a factor of 1.6 of a
lower bound on average over the entire set of experiments, and within a factor of 4.2 in the worst case.

Index Terms—Resilient scheduling, parallel jobs, moldable jobs, speedup model, failure scenario, transient errors, silent errors, list
schedule, batch schedule, approximation ratios.

F

1 INTRODUCTION

Scheduling parallel jobs on high-performance computing
(HPC) platforms is crucial for improving the application and
system performance. In the scheduling literature, a moldable
job is a parallel job that can be executed on an arbitrary
but fixed number of processors, with an execution time
depending on the number of processors on which it is exe-
cuted. More precisely, a moldable job allows a variable set of
resources for scheduling, but requires a fixed set of resources
to execute. Hence, the job scheduler must allocate resources
before starting the job. This corresponds to a variable static
resource allocation, as opposed to a fixed static allocation
(rigid jobs) and to a variable dynamic allocation (malleable
jobs) [12]. Moldable jobs can easily adapt to the number
of available resources, contrarily to rigid jobs, while being
easy to design and implement, contrarily to malleable jobs.
Thus, many computational kernels in scientific libraries are
provided as moldable jobs that can be deployed on a wide
range of processor numbers.

Because of the importance and wide availability of mold-
able jobs, scheduling algorithms for such jobs have been
extensively studied. An important objective is to minimize
the overall completion time, or makespan, for a set of jobs
that are either all known before execution (offline setting) or
released on-the-fly (online setting). Many prior works have
published approximation algorithms or inapproximability

• A preliminary version of this work has been published in the proceedings
of the IEEE Cluster’20 conference [4]. Anne Benoit, Lucas Perotin and
Yves Robert are with the LIP laboratory at Ecole Normale Supérieure de
Lyon, France. Yves Robert is also with University of Tennessee Knoxville,
USA. Valentin Le Fèvre is with Barcelona Supercomputing Center, Spain.
Padma Raghavan is with Vanderbilt University, USA. Hongyang Sun is
with the University of Kansas, USA. Contact: anne.benoit@ens-lyon.fr

results for both settings. These results notably depend upon
the speedup model of the jobs. Indeed, consider a job whose
execution time is t(p) with p processors (1 ≤ p ≤ P , and P
denotes the total number of processors on the platform). An
arbitrary speedup model allows t(p) to take any value, but
realistic models call for t(p) non-increasing with p: after all,
if t(p + 1) > t(p), then why use that extra processor? Sev-
eral speedup models have been introduced and analyzed,
including the roofline model, the communication model, the
Amdahl’s model, the power model, and the (more general)
monotonic model, where the area of the job p × t(p) is
non-decreasing with p. Section 2 presents a survey of some
important results for all these models.

In this paper, we revisit the problem of scheduling
moldable jobs in a resilience framework. Unlike the classical
problem without job failures, we consider failure-prone jobs
that may need to be re-executed several times before suc-
cessful completion. This is primarily motivated by the threat
of silent errors (a.k.a. silent data corruptions or SDCs), which
strike large-scale high-performance computing (HPC) plat-
forms at a rate proportional to the number of floating-
point (CPU) operations and/or the memory footprint of
the applications (bit flips) [32], [41]. When a silent error
strikes, even though any bit can be corrupted, the execution
continues (unlike fail-stop errors), hence the error is tran-
sient, but it may dramatically impact the result of a running
application. Coping with silent errors is a major challenge
on today’s HPC platforms [28] and it will become even more
important at exascale [17]. Fortunately, many silent errors
can be accurately detected by verifying the integrity of data
using dedicated, lightweight detectors (e.g., [7], [15], [38]).
When considering job failures caused by silent errors, we
assume the availability of ad-hoc detectors.

To model this resilient scheduling problem, we focus

2

on a general setting, where the aim is to schedule a set of
moldable jobs subject to a failure scenario that specifies the
number of failures for each job before successful completion.
The failure scenario is, however, not known a priori, but
only discovered as failed executions manifest themselves
when the jobs complete. Hence, the scheduling decisions
must be made dynamically on-the-fly: whenever an error has
been detected, the job must be re-executed. As a result, even
for the same set of jobs, different schedules may be pro-
duced, depending on the failure scenario that occurred in a
particular execution. Intuitively, the problem lies in between
an offline problem (where all the jobs are known before the
execution starts) and an online problem (where the jobs are
revealed on-the-fly). The goal is to minimize the makespan
for any set of jobs under any failure scenario. Since the prob-
lem is NP-complete (as it generalizes the NP-complete
failure-free scheduling problem), we aim at designing ap-
proximation algorithms that guarantee a makespan within
a provable factor of the optimal makespan, independently
of the jobs’ failure scenarios.

Extending the literature on scheduling moldable jobs in
the failure-free setting, this work lays the theoretical and
practical foundation for scheduling such jobs on failure-
prone platforms. Our key contributions are the design and
analysis of two resilient scheduling algorithms with new
approximation results for various speedup models. We fur-
ther show that the two algorithms achieve good practical
performance using an extensive set of simulations. The
following summarizes our main results:
• We present a formal model for the problem of resilient

scheduling of moldable jobs on failure-prone platforms.
The model formulates both the worst-case and average-
case performance of an algorithm for general speedup
models and under arbitrary failure scenarios.

• We design a resilient scheduling algorithm, called LPA-
LIST, that relies on a local processor allocation strat-
egy and list scheduling to achieve O(1)-approximation
for some prominent speedup models, including the
roofline model, the communication model, the Am-
dahl’s model, and a mix model. For the communica-
tion model, our approximation ratio improves on that
of the literature for failure-free jobs. We also show
that the algorithm is Θ(P 1/4)-approximation for the
power model and Θ(P 1/2)-approximation for the gen-
eral monotonic model. All of these results apply to both
worst-case and average-case performance.

• We design another resilient scheduling algorithm,
called BATCH-LIST, which schedules the jobs in batches
using the list strategy, and each job is allowed only
a restricted number of failures per batch. We prove
a tight Θ(log2 fmax)-approximation for the algorithm
under arbitrary speedup model in the worst case, where
fmax is the maximum number of failures of any job in a
failure scenario. We also prove an ω(1) lower bound on
the average-case performance of the algorithm.

• We conduct an extensive set of simulations to evaluate
and compare different variants of the two algorithms.
The results show that they consistently outperform
some baseline heuristics. In particular, the first algo-
rithm (LPA-LIST) performs better for the roofline and
communication models, while the second algorithm

(BATCH-LIST) performs better for the other models.
Overall, our best algorithm is within a factor of 1.6 of
a lower bound on average and within a factor of 4.2 in
the worst case for all speedup models.

The rest of this paper is organized as follows. Section 2
surveys related work. The formal model and problem state-
ment are presented in Section 3. In Section 4, we describe the
two main algorithms and analyze their performance, pro-
viding several new approximation results. Section 5 presents
an extensive set of simulation results and highlights the
main findings. Finally, Section 6 concludes the paper and
discusses future directions.

2 RELATED WORK

We first review related work for offline scheduling of
independent moldable jobs in the failure-free setting. All
jobs are known a priori along with each job’s execution time
t(p) as a function of the processor allocation p.

With the communication model, assuming a commu-
nication overhead when using more than one processor,
Havill and Mao [16] presented a shortest execution time
(SET) algorithm, which selects a number of processors that
minimizes the job’s execution time (they use around

√
w/c

processors when t(p) = w/p + (p − 1)c), and schedules
each job as early as possible. They showed that SET has
an approximation ratio around 4. In this paper, we present
an improved algorithm with an approximation ratio of 3.
Furthermore, the algorithm is able to handle job failures.
Dutton and Mao [11] presented an earliest completion time
(ECT) algorithm, which allocates processors for each job
that minimizes its completion time based on the current
schedule. They proved tight approximation ratios of ECT for
P ≤ 4 processors and presented a general lower bound of
2.3 for arbitrary P . Kell and Havill [24] presented algorithms
with improved approximation ratios for P ≤ 3 processors.

The monotonic model assumes that the execution time
is a non-increasing function and the area (product of pro-
cessor allocation and execution time) is a non-decreasing
function of the processor allocation. Examples of this model
include Amdahl’s speedup [1], i.e., t(p) = w

(1−γ
p + γ

)
with γ ∈ [0, 1], and the power speedup t(p) = w/pδ [14],
[35] with δ ∈ [0, 1]. Belkhale and Banerjee [2] presented a
2/(1 + 1/P)-approximation algorithm by starting from a
sequential LPT schedule and then iteratively incrementing
the processor allocations. Błażewicz et al. [6] presented a 2-
approximation algorithm while relying on an optimal con-
tinuous schedule, in which the processor allocation of a job
may not be integral. Mounié et al. [30] presented a (

√
3+ ε)-

approximation algorithm using a two-phase approach and
dual approximation. Using the same techniques, they later
improved the approximation ratio to 1.5+ε [31]. Jansen and
Land [20] showed the same 1.5 + ε ratio in special cases and
proposed a PTAS.

In the arbitrary model, the execution time t(p) is an
unrestricted function of the processor allocation p. This
model can be reduced to the monotonic model by scanning
all possible allocations and discarding those with both larger
execution time and area. Turek et al. [36] presented a 2-
approximation list-based algorithm and a 3-approximation
shelf-based algorithm. Ludwig and Tiwari [27] improved

3

the 2-approximation result with lower runtime complex-
ity. When each job only admits a subset of all possible
processor allocations, Jansen [19] presented a (1.5 + ε)-
approximation algorithm, which is the strongest result pos-
sible for any polynomial-time algorithm, since the problem
does not admit an approximation ratio better than 1.5 unless
P = NP [23]. However, when the number of processors is
a constant or polynomially bounded by the number of jobs,
Jansen et al. [21] showed that a PTAS exists.

We now review work on online scheduling, where jobs
are released one by one to the scheduler, and each released
job must be scheduled irrevocably before the next job is
revealed. As some algorithms discussed in the offline case
(e.g., [11], [16], [24]) make scheduling decisions indepen-
dently for each job, their results can be directly applied
to this online problem with the corresponding competitive
ratios. In contrast, other algorithms rely on information
about all jobs to make global scheduling decisions, so these
algorithms and their approximation results are not directly
applicable to the online problem. In this online problem
under the arbitrary speedup model, Ye et al. [39] presented a
technique to transform any ρ-bounded algorithm1 for rigid
jobs to a 4ρ-competitive algorithm for moldable jobs. Then,
relying on a 6.66-bounded algorithm for rigid jobs [18], [40],
they gave a 26.65-competitive algorithm for moldable jobs.
Both algorithms are based on building shelves. They also
provided an improved 16.74-competitive algorithm [39].

The problem studied in this paper can be considered as
semi-online, since all jobs are known to the scheduler offline
but their failure scenarios are revealed online. We point out
that the transformation technique by Ye et al. [39] does not
apply here, since it implicitly assumes the independence of
all jobs, whereas the different executions of the same job in
our problem (due to failures) have linear dependence.

Finally, we discuss the problem of scheduling moldable
jobs with dependencies modeled as directed acyclic graphs
(DAGs). Under the roofline model, Wang and Cheng [37]
showed that the earliest completion time (ECT) algorithm is
a (3 − 2/P)-approximation. Feldmann et al. [13] proposed
an online algorithm that maintains a system utilization at
least α for some α ∈ (0, 1]. By choosing α carefully, they
showed that the algorithm achieves 2.618-competitiveness,
even when the job execution times and the DAG struc-
ture are unknown. Under the monotonic model, Belkhale
and Banerjee [3] presented a 2.618-approximation algorithm
while relying on the availability of an optimal processor
allocation strategy to minimize the maximum of critical path
length and total area. When assuming that the area of a job
is a concave function of the number of processors, Jensen
and Zhang [22] proposed a 3.29-approximation algorithm
via a linear programming formulation. Chen and Chu [8]
improved the ratio to around 2.95 by further assuming that
the execution time of a job is strictly decreasing in the
number of allocated processors.

For the problem studied in this paper, the jobs can
be considered to form multiple linear chains, where each
chain represents a job and the number of nodes in a chain

1. An algorithm for rigid jobs is ρ-bounded if its makespan is at most
ρ times the lower bound L = max

(∑
j tjpj
P

,maxj tj

)
, where tj is the

execution time of job Jj , and pj is its processor allocation.

represents the number of executions for the job. However,
the failure scenario (thus the complete graph) is not known
a priori, which prevents the above algorithms (except the
ones in [13], [37]) from being directly applicable, since they
all rely on knowing the complete graph in advance.

3 MODELS

In this section, we formally describe the models, and present
the resilient scheduling problem.

3.1 Job and Speedup Models
We consider a set J = {J1, J2, . . . , Jn} of n parallel jobs to
be executed on a platform consisting of P identical proces-
sors. All jobs are released at the same time, corresponding
to the batch scheduling scenario in an HPC environment.
We focus on moldable jobs, which can be executed using any
number of processors at launch time. The number of pro-
cessors allocated cannot be changed once a job has started
executing. For each job Jj ∈ J , tj(pj) denotes its execution
time when allocated pj ∈ {1, 2, . . . , P} processors2, and the
area of the job is defined as aj(pj) = pj × tj(pj).

Let wj denote the total work of job Jj (or its sequential
execution time tj(1)). The parallel execution time tj(pj)
of the job when allocated pj processors depends on the
speedup model. We consider several speedup models:
• Roofline model: linear speedup up to a bounded degree

of parallelism p̄j ∈ [1, P], i.e., tj(pj) = wj/pj for
pj ≤ p̄j , and tj(pj) = wj/p̄j for pj > p̄j ;

• Communication model: there is a communication over-
head cj ≥ 0 per processor when more than one proces-
sor is used, i.e., tj(pj) = wj/pj + (pj − 1)cj ;

• Monotonic model: the execution time (resp. area) is a
non-increasing (resp. non-decreasing) function of the
number of allocated processors, i.e., tj(pj) ≥ tj(pj + 1)
and aj(pj) ≤ aj(pj + 1);

• Amdahl’s model: this is a particular case of the monotonic
model with tj(pj) = wj

(1−γj
pj

+ γj
)
, where γj ∈ [0, 1]

denotes the inherently sequential fraction of the job;
• Mix model: this model combines Roofline, Communi-

cation and Amdahl’s models with tj(pj) =
wj(1−γj)
min(p,p̄j)

+

wjγj+(pj−1)cj , which could capture more realistically
the speedups of some complex applications;

• Power model: this is another particular case of the mono-
tonic model with tj(pj) = wj/p

δj
j , where δj ∈ [0, 1] is a

constant parameter;
• Arbitrary model: there are no constraints on tj(pj).
In all of these models, the speedup of job Jj with pj

processors is given by σj(pj) =
tj(1)
tj(pj)

.

3.2 Failure Model
We consider silent errors (or SDCs) that could cause a job to
produce erroneous results after an execution attempt. Fortu-
nately, such errors can often be detected using lightweight
detectors (e.g., [7], [15], [38]) at the end of the job execution.
The overhead of running these detectors is typically low and
can also be reduced from parallel execution. Throughout
this paper, we assume that the execution time of the job
includes the cost of running a detector. If errors are detected,

2. In this work, we do not allow fractional processor allocation, which
could otherwise be implemented by time-sharing a processor among
multiple jobs.

4

the job needs to be re-executed followed by another error
detection. This process repeats until the job completes suc-
cessfully without errors.

Let f = (f1, f2, . . . , fn) denote a failure scenario, i.e., a
vector of the number of failed execution attempts for all jobs,
during a particular execution of the job set J . Note that the
number of times a job will fail is unknown to the scheduler a
priori, and the failure scenario f becomes known only after
all jobs have successfully completed without errors.

3.3 Problem Statement
We study the following resilient scheduling problem: Given
a set of n moldable jobs, find a schedule on P identical
processors under any failure scenario f . In this context, a
schedule is defined by the following two decisions:
• Processor allocation: a collection p = (~p1, ~p2, . . . , ~pn) of

processor allocation vectors for all jobs, where vector
~pj = (p

(1)
j , p

(2)
j , . . . , p

(fj+1)
j) specifies the number of

processors allocated to job Jj at different execution
attempts until success. Note that processor allocation
can change for each new execution attempt of a job.

• Starting time: a collection s = (~s1, ~s2, . . . , ~sn) of start-
ing time vectors for all jobs, where vector ~sj =

(s
(1)
j , s

(2)
j , . . . , s

(fj+1)
j) specifies the starting times for

job Jj at different execution attempts until success.
The objective is to minimize the overall completion time

of all jobs, or makespan, under any failure scenario. Suppose
an algorithm makes decisions p and s for a job set J during
a failure scenario f . Then, the makespan of the algorithm
for this scenario is defined as:

T (J , f ,p, s) = max
1≤j≤n

(
s

(fj+1)
j + tj(p

(fj+1)
j)

)
. (1)

Both scheduling decisions should be made with the fol-
lowing two constraints: (1) the number of processors used at
any time should not exceed the total number P of available
processors; (2) a job cannot be re-executed if its previous
execution attempt has not yet been completed.

As the problem generalizes the failure-free moldable job
scheduling problem, which is known to be NP-complete
for P ≥ 5 processors [10], the resilient scheduling problem
is also NP-complete. We therefore consider approximation
algorithms. A scheduling algorithm ALG is said to be an
r-approximation3 if its makespan is at most r times that of
an optimal scheduler for any job set J under any failure
scenario f , i.e.,

sup
J ,f

TALG(J , f ,p, s)
TOPT(J , f ,p∗, s∗) = r , (2)

where TOPT(J , f ,p∗, s∗) denotes the makespan produced by
an optimal scheduler with scheduling decisions p∗ and s∗.

3.4 Worst-Case vs. Average-Case Analysis
The problem above is agnostic of the failure scenario, which
is given as an input of the scheduling problem. A schedul-
ing algorithm is an r-approximation only if it achieves a
makespan at most r times the optimal for any possible failure
scenario. This can be viewed as the worst-case analysis.

3. We consider the studied problem offline, although the failure sce-
nario is unknown to the scheduler a prior and only revealed on-the-
fly as jobs complete. One can also view the problem as semi-online, in
which case all of our obtained approximation ratios can be interpreted
as competitive ratios.

In contrast, some practical settings may call for an
average-case analysis. In practice, each job Jj ∈ J could fail
with a probability qj in each execution attempt, independent
of the number of previous failures. For instance, consider
silent errors that strike CPUs and registers during the
execution of a job: the probability of having a silent error
is determined solely by the number of flops of the job,
or equivalently, by its sequential execution time. On the
contrary, the number of processors used to execute the
job does not matter, even if the parallel execution time
depends on the number of allocated processors. Suppose
the occurrence of silent errors follows an exponential
distribution with rate λ, then the failure probability for
job Jj is given by:

qj = 1− e−λtj(1) , (3)

where tj(1) denotes the sequential execution time of job Jj .
Then, the probability that the job fails fj times before
succeeding on the fj +1-st execution is qj(fj) = q

fj
j (1−qj).

Assuming that errors occur independently for different jobs,
the probability that a failure scenario f = (f1, f2, . . . , fn)
happens can then be computed as Q(f) =

∏n
j=1 qj(fj).

In general, given the probability Q(f) of each failure
scenario f , we can define the expected approximation ratio of
an algorithm ALG for a job set J as follows4:

E
[
TALG(J)

TOPT(J)

]
=
∑
f

Q(f) · TALG(J , f ,p, s)
TOPT(J , f ,p∗, s∗) , (4)

and the algorithm is said to be an r-approximation in
expectation if its expected approximation ratio is at most r
for any job set J , i.e.,

sup
J

E
[
TALG(J)

TOPT(J)

]
= r . (5)

While the approximation ratio of a scheduling algorithm
under any failure scenario shows its worst-case perfor-
mance, the expected approximation ratio shows its average-
case performance. Note that a worst-case ratio directly
translates to the average case, because if the ratio holds for
every failure scenario, it also holds for the weighted sum.
However, the converse may not be the case: an algorithm
could have a very good expected approximation ratio, but
perform arbitrarily worse than the optimal in some (low
probability) failure scenarios.

In the theoretical analysis (Section 4), we mainly focus
on bounding the worst-case approximation ratios of the pro-
posed algorithms (except in Section 4.6, where we study the
average-case performance of the BATCH-LIST algorithm).
For the experimental evaluations (Section 5), we will instan-
tiate the failure model with the silent error probability for
each job as defined in Equation (3), and report both worst-
case and average-case performance of the algorithms under
a variety of experimental scenarios.

4. While we use expectation of ratios to define the average-case per-
formance of an algorithm, some studies in stochastic scheduling and
online algorithms (e.g., [25], [29]) have used ratio of expectations, i.e.,

E(TALG)

E(TOPT)
=

∑
f Q(f) · TALG(J , f ,p, s)∑

f Q(f) · TOPT(J , f ,p∗, s∗)
.

This approach, however, has not been favored by recent studies, since
E(TALG) could be dominated by “a few” instances with large objective
functions, thus the ratio may not reflect the actual performance of the
algorithm for “most” instances. See [33], [34] for a discussion on the
two approaches.

5

4 RESILIENT SCHEDULING ALGORITHMS

In this section, we present two resilient scheduling algo-
rithms (LPA-LIST and BATCH-LIST), and derive their ap-
proximation ratios for some common speedup models. Note
that, due to lack of space, some of the proofs can be found
in the Web Supplementary Material (WSM).

4.1 A Lower Bound on the Makespan
We first consider a simple lower bound on the makespan
of any scheduling algorithm under a given failure scenario.
This generalizes the well-known lower bound [27], [36] for
the failure-free case.

Let p denote the processor allocation decision made by
a scheduling algorithm ALG for job set J under failure
scenario f . Then, we define, respectively, the maximum cu-
mulative execution time and total cumulative area of the jobs
under algorithm ALG to be:

tmax(J , f ,p) = max
1≤j≤n

fj+1∑
i=1

tj(p
(i)
j) , (6)

A(J , f ,p) =
n∑
j=1

fj+1∑
i=1

aj(p
(i)
j) . (7)

The following quantity serves as a lower bound on the
makespan of the algorithm for job set J under failure
scenario f :

L(J , f ,p) = max
(
tmax(J , f ,p),

A(J , f ,p)

P

)
. (8)

Thus, we have:

TALG(J , f ,p, s) ≥ L(J , f ,p) , (9)

regardless of the scheduling decision s of the algorithm.

4.2 LPA-LIST Scheduling Algorithm

Our first algorithm, called LPA-LIST, adopts a two-phase
approach [27], [36]. The first phase uses a Local Processor
Allocation (LPA) strategy to decide processor allocation p
of the jobs, and the second phase uses LIST scheduling to
determine the starting time s of the jobs.

4.2.1 LIST Scheduling Strategy
We first discuss LIST scheduling for the second phase,
assuming a given processor allocation p. Algorithm 1 shows
the pseudocode. The strategy first organizes all jobs in a
list based on some priority. Then, at time 0 or whenever
a running job Jk completes and hence releases processors,
the algorithm detects if job Jk has errors. If so, the job will
be inserted back into the list, again based on its priority,
to be re-scheduled later. It finally scans the list of pending
jobs and schedules all jobs that can be executed at the
current time with the available processors. We point out
that the algorithm essentially resembles a greedy backfilling
strategy. In our analysis below, we will show that the worst-
case approximation ratio is independent of the job priorities
used, although it may affect the algorithm’s practical perfor-
mance. In Section 5, we will consider some commonly used
priority rules for the experimental evaluation.

Algorithm 1: LIST (Scheduling Strategy)
Organize all jobs in a list L according to some priority rule;
Pavail ← P ;
fj ← 0, ∀j;
when at time 0 or a running job Jk completes execution do

Pavail ← Pavail + p
(fk+1)
k ;

if job Jk failed then
L.insert with priority(Jk);
fk ← fk + 1;

end
for j = 1, . . . , |L| do

Jj ← L(j);
if Pavail ≥ p

(fj+1)

j then
execute job Jj at the current time;
Pavail ← Pavail − p

(fj+1)

j ;
L.remove(Jj);

end
end

end

The following lemma shows the worst-case performance
of the LIST scheduling strategy. Note that the job set J is
dropped from the notations since the context is clear.

Lemma 1. Given a processor allocation decision p for the jobs,
the makespan of a LIST schedule (that determines the starting
times s) under any failure scenario f satisfies:

TLIST(f ,p, s)≤
{

2A(f ,p)
P , if pmin ≥ P

2
A(f ,p)
P−pmin

+ (P−2pmin)·tmax(f ,p)
P−pmin

, if pmin <
P
2

where pmin ≥ 1 denotes the minimum number of utilized
processors at any time during the schedule.

Proof. This proof builds on the observation that LIST only
allocates and de-allocates processors upon job completions.
Hence, the entire schedule can be divided into a set of con-
secutive and non-overlapping intervals I = {I1, I2, . . . , Iv},
where jobs start (or complete) at the beginning (or end) of an
interval, and v denotes the total number of intervals. Then,
a case study on the value of pmin leads to the result (see the
Web Supplementary Material (WSM)).

While Lemma 1 bounds the general performance of
a LIST schedule for a given processor allocation p, the
following lemma shows its approximation ratio when the
processor allocation strategy satisfies certain properties.

Lemma 2. Given any failure scenario f , if the processor
allocation decision p satisfies:

A(f ,p) ≤ α ·A(f ,p∗) ,

tmax(f ,p) ≤ β · tmax(f ,p∗) ,

where p∗ denotes the processor allocation of an optimal schedule,
then a LIST schedule using processor allocation p is r(α, β)-
approximation, where

r(α, β) =

{
2α, if α ≥ β
P
P−1α+ P−2

P−1β, if α < β
(10)

Proof. This proof builds on Lemma 1, see the WSM.

4.2.2 Local Processor Allocation (LPA)
We now discuss the LPA strategy for the first phase of
the algorithm. Given the result of Lemma 2, LPA allocates
processors locally for each job. Algorithm 2 shows its pseu-
docode. For each job Jj , the strategy first computes its

6

Algorithm 2: LPA (Processor Allocation Strategy)
for j = 1, 2, . . . , n do

tmin ←∞, amin ←∞;
for p = 1, 2, . . . , P do

if tj(p) < tmin then
tmin ← tj(p);

end
if p · tj(p) < amin then

amin ← p · tj(p);
end

end
pj ← 0, rmin ←∞;
for p = 1, 2, . . . , P do

α← p · tj(p)/amin;
β ← tj(p)/tmin;
compute r(α, β) from Equation (10);
if r(α, β) < rmin then

pj ← p, rmin ← r(α, β);
end

end
end

minimum possible execution time and area. Then, it chooses
a processor allocation that leads to the smallest ratio r(α, β)
defined in Equation (10) based on the job’s local bounds
(α and β) on the area and execution time. If all jobs satisfy
the same bounds, then the bound will also hold globally.

Once the processor allocation of a job has been decided,
the same allocation will be used by the LIST scheduling
strategy in the second phase throughout the execution until
the job completes successfully without failures.

4.3 Worst-Case Performance of LPA-LIST for Some
Common Speedup Models
We now analyze the worst-case performance of the LPA-
LIST algorithm for moldable jobs that exhibit some common
speedup models, as well as for the general monotonic
model. All derived approximation ratios are independent of
the failure scenarios, hence based on Equations (4) and (5).
The same ratios also apply to the average-case performance
of the algorithm for the respective speedup models.

4.3.1 Roofline Model
In the roofline model, the execution time of a job Jj when al-
located p processors satisfies tj(p) =

wj
min(p,p̄j)

for a bounded
degree of parallelism 1 ≤ p̄j ≤ P .

Theorem 1. LPA-LIST is a 2-approximation for jobs with the
roofline model, and this bound is tight.

Proof. In the roofline speedup model, the minimum execu-
tion time of a job Jj is tmin = wj/p̄j and the minimum
area of the job is amin = wj . These two quantities can be
achieved by simply allocating pj = p̄j processors to the job.
This leads to the bounds of α = 1 and β = 1 for each job as
well as globally under any failure scenario. Hence, based on
Lemma 2, we get an approximation ratio of 2α = 2.

To show that this bound is tight, suppose P = 2K for
someK > 0, and consider two identical jobs withw = K+1
and p̄ = K + 1. Allocating K + 1 processors achieves
α = β = 1, thus clearly minimizing the ratio r(α, β) for
both jobs. Suppose jobs do not fail. The makespan will then
be T = 2, since the two jobs must be processed sequentially
one after the other. However, the optimal algorithm would
allocate K processors to both jobs and execute them in
parallel, resulting in a makespan of TOPT = 1+ 1

K . This gives

an approximation ratio of T
TOPT

= 2
1+ 1

K

= 2 − 2
K+1 , which

can be arbitrarily close to 2 when K is large enough.

4.3.2 Communication Model

In the communication model [11], [16], the execution time
of a job Jj when allocated p processors is given by tj(p) =
wj/p + (p − 1)cj , where cj ≥ 0 denotes the per-processor
communication overhead.

Theorem 2. LPA-LIST is a 3-approximation for jobs with the
communication model.

Proof. For the communication model, we consider a pro-
cessor allocation pj for a job Jj and show that it achieves
α = β = 3

2 , i.e., aj(pj) ≤ 3
2amin and tj(pj) ≤ 3

2 tmin. Hence,
based on Lemma 2, we get an approximation ratio of 2α = 3.
The detailed proof can be found in the WSM.

Remarks. Our result improves upon the 4-approximation
of the SET algorithm [16], which is the best ratio known
for the communication model5. Our result further extends
the one in [16] in two ways: (1) The model in [16] assumes
the same communication overhead c for all jobs, while we
consider an individual overhead cj for each job Jj ; (2) The
algorithm in [16] applies to failure-free job executions, while
our algorithm is able to handle job failures.

Theorem 3. The approximation ratio of LPA-LIST is at least 2.5
for jobs with the communication model.

The proof can be found in the WSM.

4.3.3 Amdahl’s Model

In Amdahl’s model [1], the execution time of a job Jj when
allocated p processors satisfies tj(p) = wj

(1−γj
p + γj

)
,

where γj ∈ [0, 1] denotes the inherently sequential frac-
tion of the job. It is a particular case of the monotonic
model as described in Section 3.1. For convenience, we
consider an equivalent form of the model in the analysis:
tj(p) =

wj
p + dj , where wj denotes the parallelizable work

of the job and dj denotes the inherently sequential work.

Theorem 4. LPA-LIST is a 4-approximation for jobs with the
Amdahl’s model.

Proof. In Amdahl’s model, the minimum execution time of
a job Jj is tmin =

wj
P + dj (achieved by allocating P proces-

sors), and the minimum area of the job is amin = wj + dj
(achieved by allocating one processor). We consider a pro-
cessor allocation of pj = min(dwjdj e, P) for the job.

For the area, we have aj(pj) = wj + pjdj ≤ wj +
dwjdj edj ≤ wj + (

wj
dj

+ 1)dj = 2wj + dj ≤ 2amin. Thus,
we get α = 2.

For the execution time, we consider two cases: (1) If
dwjdj e ≤ P , then pj = dwjdj e, and we have tj(pj) =
wj
pj

+ dj ≤ wj
wj/dj

+ dj = 2dj ≤ 2tmin. In this case, we
get β = 2; (2) If dwjdj e > P , then pj = P , and we have
tj(pj) =

wj
P + dj = tmin. In this case, we get β = 1.

Hence, based on Lemma 2, we get an approximation
ratio of 2α = 4.

5. The SET algorithm [16] minimizes the execution time of each job,
resulting in α = 2 and β = 1, hence an approximation ratio of 2α = 4.

7

Theorem 5. The approximation ratio of LPA-LIST is at least 3
for jobs with the Amdahl’s model.

The proof can be found in the WSM.

4.3.4 Mix Model

We now consider the mix model combining Roofline, Com-
munication and Amdahl’s models as follows: tj(p) =
wj(1−γj)
min(p,p̄j)

+ wjγj + (p − 1)cj , which could capture more
realistically the speedups of some complex applications. In
this model, we only need to consider p ≤ p̄j , since any
p > p̄j will obviously be a bad choice. To simplify the
analysis, and since we assume that all parameters are strictly
positive, we can factorize the function by cj and obtain the

following equivalent form: tj(p) = cj
(
w′
j

p + d′j + (p − 1)
)

,

with w′j =
wj(1−γj)

cj
and d′j =

wjγj
cj

.

Theorem 6. LPA-LIST is a 6-approximation for jobs with the
mix model.

Proof. For this mix model, we provide a processor alloca-
tion pj for a job Jj and show that it achieves α = β = 3,
i.e., aj(pj) ≤ 3amin and tj(pj) ≤ 3tmin. Hence, based on
Lemma 2, we get an approximation ratio of 2α = 6. The
detailed proof can be found in the WSM.

Theorem 7. The approximation ratio of LPA-LIST is at least 3
for jobs with the mix model.

Proof. When cj is small enough, the mix model can get
arbitrarily close to Amdahl’s model, for which LPA-LIST is
at least a 3-approximation.

4.3.5 Power Model

In the power model, the execution time of a job Jj when
allocated p processors satisfies tj(p) = wj/p

δj , where
δj ∈ [0, 1] is a constant parameter. This speedup has been
observed in some linear algebra applications [14], [35] and
it is also an example of the monotonic model.

Theorem 8. LPA-LIST is a Θ(P 1/4)-approximation for jobs with
the power model.

Proof. In the power model, the minimum execution time of
a job Jj is tmin =

wj

P δj
(achieved by allocating P processors),

and the minimum area of the job is amin = wj (achieved by
allocating one processor).

We consider a processor allocation of pj = dP δje. In
this case, we get α =

aj(pj)
amin

= p
1−δj
j ≥ P δj(1−δj) and

β =
tj(pj)
tmin

= (Ppj)δj ≤ P δj(1−δj) ≤ α. Thus, based
on Lemma 2, we get an approximation ratio of 2α =
2dP δje1−δj < 2(P δj + 1)1−δj < 2(P δj(1−δj) + 1). The last
inequality is because (x + 1)µ < xµ + 1 for any x > 0
and 0 < µ < 1. Furthermore, the value of δj(1 − δj) is
maximized at δj = 1/2. This results in an approximation
ratio of 2(P 1/4 + 1).

To show that the above ratio is asymptotically tight for
the algorithm, consider a single job with δj = 1/2, so we
have α = p

1/2
j and β = (Ppj)1/2. Clearly, LPA-LIST will

allocate at most P 1/2 processors to the job; otherwise, we
would have α > β, and according to Lemma 2, the ratio

r(α, β) = 2α = 2p
1/2
j will increase with the processor allo-

cation. Thus, the execution time of the job under LPA-LIST
will be at least T ≥ wj

P 1/4 , whereas the optimal execution
time is TOPT =

wj
P 1/2 by allocating P processors. This gives

an approximation ratio T
TOPT
≥ P 1/4.

4.3.6 Monotonic Model
We now consider the general monotonic model. Recall that
a job Jj is monotonic, if tj(p) ≥ tj(p′) and aj(p) ≤ aj(p′) for
any p ≤ p′. This means that the execution time of the job will
not increase with the processor allocation and the area will
not decrease with the processor allocation. In particular, the
area assumption implies that the speedup efficiency of the
job will not increase as more processors are allocated to it,
i.e., σj(p)/p ≥ σj(p

′)/p′, a property that has been observed
in many practical parallel applications.

Theorem 9. LPA-LIST is an O(
√
P)-approximation for jobs

with the monotonic model.

Proof. In a general monotonic model, the minimum execu-
tion time of a job Jj is achieved with P processors, i.e.,
tmin = tj(P), and the minimum area is achieved with one
processor, i.e., amin = aj(1) = tj(1).

Consider an allocation pj = b
√
P c. Based on the mono-

tonic assumption, we get aj(pj) = pjtj(pj) ≤
√
P · tj(1) =√

P ·amin, and tj(pj) ≤ P
pj
tj(P) = O(

√
P)·tmin. Thus, based

on Lemma 2, we get an approximation ratio of O(
√
P).

We show that the above ratio is asymptotically tight
for any algorithm that makes local processor allocation
decisions based on individual job characteristics. Examples
of such algorithms include the LPA algorithm considered
in this paper and the SET algorithm studied in [16]. The
result holds even under the additional assumption that the
speedup profiles of the jobs are concave [22] and that jobs do
not fail. In the next section, we will propose another algo-
rithm that overcomes this limitation by making coordinated
processor allocation decisions for a set of jobs.

Theorem 10. Any scheduling algorithm that relies on local pro-
cessor allocation for each individual job is Ω(

√
P)-approximation

for jobs with the monotonic model.

Proof. Assume that
√
P is an integer and P ≥ 4. We

consider a job with a concave speedup profile6 that contains
two piece-wise linear segments defined by three points:
σ(1) = 1, σ(

√
P) = 2 and σ(P) =

√
P (see Figure 1(a)).

Suppose the execution time of the job with one processor is
t(1) = 1. We can then derive the execution time profile of
the job as follows (see Figure 1(b)):

t(p) =

√
P−1

p+
√
P−2

if p ≤
√
P ,

P−
√
P

p(
√
P−2)+P

if p >
√
P ;

and the area profile of the job as follows (see Figure 1(c)):

a(p) =

p(
√
P−1)

p+
√
P−2

if p ≤
√
P ,

p(P−
√
P)

p(
√
P−2)+P

if p >
√
P .

6. The speedup profile is concave because σ′(p) = 1√
P−1

for any p ∈

[1,
√
P), and σ′(p) =

√
P−2

P−
√
P
<

√
P

P−
√
P

= 1√
P−1

for any p ∈ (
√
P , P].

8

(a) (b) (c)
Fig. 1. (a) Speedup, (b) execution time, and (c) area profiles of the job used in the proof of Theorem 10.

The job is obviously monotonic.
Suppose there are n identical such jobs in the system,

where n depends on the processor allocation algorithm
(denoted as ALG). Since the jobs are identical and processors
are allocated locally, the processor allocation p for each job
should be the same. We consider two cases.

Case 1: If p ≤
√
P , then there is only n = 1 job. In this

case, the algorithm has a makespan of TALG ≥ t(
√
P) = 1

2
and the optimal makespan is TOPT = t(P) = 1√

P
by

allocating P processors to the job.
Case 2: If p >

√
P , then there are n = P jobs. In this case,

the makespan of the algorithm satisfies TALG ≥ n·a(p)
P ≥

a(
√
P) =

√
P
2 , and the optimal makespan is TOPT = 1 by

allocating one processor to each job.
Thus, in both cases, we have TALG

TOPT
≥
√
P
2 .

4.4 BATCH-LIST Scheduling Algorithm
We now present the second algorithm, called BATCH-LIST.
Unlike the LPA-LIST algorithm, which allocates processors
locally for each job, BATCH-LIST coordinates the processor
allocation decisions for different jobs. While not knowing
the failure scenario in advance, the algorithm organizes the
execution attempts of the jobs in multiple batches, where
each batch executes the pending jobs (i.e., the jobs that
have not been successfully completed so far) up to a certain
number of attempts that doubles after each batch. The
idea is inspired by the doubling strategy [9] that has been
commonly applied in many online problems. The following
describes the details of the BATCH-LIST algorithm.

Let Bk denote the k-th batch created by the algo-
rithm, where k ≥ 1. Let nk denote the number of pend-
ing jobs immediately before Bk starts, and let Jk =
{Jk,1, Jk,2, . . . , Jk,nk} denote this set of pending jobs. For
convenience, we define gk = 2k−1. In batch Bk, we allow
each pending job Jk,j to have at most fk,j = gk − 1 failures,
i.e., each job is allowed to make gk execution attempts
in the batch; if the job is still not successfully completed
after that, it will be handled by the next batch Bk+1. Let
fk = (fk,1, fk,2, . . . , fk,nk) denote this worst-case failure
scenario for the jobs in batch Bk. Given fk, each job Jk,j
can be represented by a chain J

(1)
k,j → J

(2)
k,j → · · · → J

(gk)
k,j

of gk sub-jobs with linear precedence constraint, where each
sub-job represents an execution attempt of Jk,j in the batch.
Thus, all sub-jobs in batch Bk form a set of nk linear chains,
one for each pending job.

To allocate processors for all the sub-jobs (or the different
execution attempts of the pending jobs) in batch Bk, we
adopt the pseudo-polynomial time algorithm, called MT-
ALLOTMENT, proposed in [26] for series-parallel precedence
graphs (of which a set of independent linear chains is
a special case). Specifically, the algorithm determines an
allocation p(m)

k,j for each sub-job J (m)
k,j (or the m-th execution

attempt of job Jk,j). Let ~pk,j = (p
(1)
k,j , p

(2)
k,j , . . . , p

(fk,j+1)
k,j)

be the vector of processor allocations for job Jk,j , and let
pk = (~pk,1, ~pk,2, . . . , ~pk,nk) be the processor allocations
for all jobs in batch Bk. The following lemma shows the
property of the allocation pk returned by MT-ALLOTMENT
for jobs with any arbitrary speedup model.

Lemma 3. For any ε > 0, MT-ALLOTMENT can compute, with
complexity polynomial in 1/ε, a processor allocation pk for all
jobs in batch Bk that approximates the minimum makespan lower
bound as defined in Equation (8) as follows:

L(Jk, fk,pk) ≤ (1 + ε) ·min
p
L(Jk, fk,p) . (11)

We refer to [26] for a detailed description of the MT-
ALLOTMENT algorithm and its analysis7. Once the processor
allocation pk has been decided, BATCH-LIST schedules all
pending jobs in a batch Bk using the LIST strategy as shown
in Algorithm 1, while restricting each job to execute at most
gk times. After batch Bk completes and if there are still
pending jobs, the algorithm will create a new batch Bk+1

to schedule the remaining pending jobs.

4.5 Worst-Case Performance of BATCH-LIST for Arbi-
trary Speedup Model
We analyze the worst-case performance of BATCH-LIST for
moldable jobs with any arbitrary speedup model.

First, we define the following concept: a job set J ′ with
failure scenario f ′ is said to be dominated by a job set J
with failure scenario f , denoted by (J ′, f ′) ⊆ (J , f), if for
every job Jj ∈ J ′, we have Jj ∈ J and f ′j ≤ fj . The
following lemma gives two trivial properties without proof
for a dominated pair of job set and failure scenario.

Lemma 4. If (J ′, f ′) ⊆ (J , f), then we have:
(a) L(J ′, f ′,p) ≤ L(J , f ,p);

7. In a nutshell, the algorithm uses dynamic programming to decide
whether there exists an allocation p such that L(Jk, fk,p) ≤ (1+ ε) ·X
for a positive integer bound X , and performs a binary search on X .

9

(b) TOPT(J ′, f ′,p′∗, s′∗) ≤ TOPT(J , f ,p∗, s∗).

Lemma 5. Suppose a job set J with failure scenario f is executed
by BATCH-LIST. Then, any job Jj ∈ J will successfully complete
in bj = dlog2(fj + 2)e batches, and in any batch Bk, where
1 ≤ k ≤ bj , we have fk,j ≤ fj .
Proof. Since the algorithm allows the number of execution
attempts of a job to double in each new batch, the max-
imum number of execution attempts of the job in a total
of b batches is given by

∑b
k=1 2k−1 = 2b − 1. Thus, if

a job Jj fails fj times (i.e., executes fj + 1 times), then
the number of batches it takes to complete the job is
bj = dlog2(fj + 2)e = 1 + blog2(fj + 1)c.

In any batch Bk until job Jj completes, where 1 ≤ k ≤
bj , we have fk,j = 2k−1 − 1 ≤ 2blog2(fj+1)c − 1 ≤ fj .

The following theorem shows the approximation ratio of
BATCH-LIST for jobs with arbitrary speedup model.

Theorem 11. BATCH-LIST is an O((1 + ε) log2(fmax))-
approximation for jobs with arbitrary speedup model, where
fmax = maxj fj denotes the maximum number of failures of
any job in a failure scenario.

Proof. According to Lemma 5, the total number of batches
for any job set J with failure scenario f is given by bmax =
dlog2(fmax + 2)e. Further, for any batch Bk, where 1 ≤ k ≤
bmax, we have (Jk, fk) ⊆ (J , f).

Let f ′k = (f ′k,1, f
′
k,2, . . . , f

′
k,nk

) denote the actual failure
scenario for the jobs in batch Bk. Clearly, we have f ′k,j ≤
fk,j for any Jj ∈ Jk, and thus, (Jk, f ′k) ⊆ (Jk, fk).

Since BATCH-LIST uses the MT-ALLOTMENT algorithm
to allocate processors and the LIST strategy to schedule all
jobs in each batch, according to Lemmas 1, 3 and 4, we can
bound the execution time of any batch Bk as follows:

TLIST(Jk, f ′k,pk, sk) ≤ 2 · L(Jk, f ′k,pk)

≤ 2 · L(Jk, fk,pk)

≤ 2(1 + ε) · L(Jk, fk,p∗k)

≤ 2(1 + ε) · TOPT(Jk, fk,p∗k, s∗k)

≤ 2(1 + ε) · TOPT(J , f ,p∗, s∗) .
Therefore, the makespan of BATCH-LIST satisfies:

TBATCH-LIST(J , f ,p, s) =
bmax∑
k=1

TLIST(Jk, f ′k,pk, sk)

≤ 2(1 + ε)dlog2(fmax + 2)e · TOPT(J , f ,p∗, s∗) .
We now show that the approximation ratio of BATCH-

LIST is tight up to a constant factor.

Theorem 12. BATCH-LIST is Ω(log2(fmax))-approximation.

Proof. We consider a set J = {J1, J2, . . . , JK} of K jobs
and at least as many processors, so that each job can be
executed on a dedicated processor. For each job Jj , where
1 ≤ j ≤ K, its (sequential) execution time is tj = 1

2j , and
it fails fj = 2j−1 − 1 times (i.e., executes 2j−1 times). Given
this failure scenario f , the total time to complete job Jj is
given by 2j−1· 1

2j = 1
2 . The optimal makespan for this failure

scenario is therefore TOPT(J , f) = 1
2 .

In the above failure scenario, the maximum number
of failures of any job is fmax = fK = 2K−1 − 1. Based

Fig. 2. An illustration of the lower bound instance for the BATCH-LIST
algorithm shown in Theorem 12 with K = 5 jobs.

on Lemma 5, BATCH-LIST will complete each job Jj in
dlog2(fj + 2)e = j batches, and will complete all jobs
in dlog2(fmax + 2)e = K batches. Figure 2 illustrates the
execution of this failure scenario for K = 5. In each
batch Bk, where 1 ≤ k ≤ K , the set of pending jobs is
given by Jk = {Jk, Jk+1, . . . , JK}. For the first batch B1,
it takes t1 = 1

2 time to complete job J1 and thus the entire
batch. For any batch Bk, where 2 ≤ k ≤ K − 1, it takes
tk+1 = 1

2(k+1) time for each execution attempt of job Jk+1,
which will have 2k−1 execution attempts. Thus, batch Bk
will take 2k−1 · 1

2(k+1) = 1
4 time to complete. The makespan

of BATCH-LIST for the entire job set J then satisfies:

TBATCH-LIST(J , f) ≥ 1

2
+ (K − 2) · 1

4

=
K

4
=
dlog2(fmax + 2)e

2
· TOPT(J , f) .

4.6 A Lower Bound on the Average-Case Performance
of BATCH-LIST

The preceding section shows that the worst-case approxima-
tion ratio of BATCH-LIST grows linearly with the number b
of batches. However, when jobs have fixed failure proba-
bilities, the probability of having b batches tends to 0 as
b approaches infinity. Thus, one might expect a constant
approximation in expectation. In this section, we show that
it is not true by providing an ω(1) lower bound. Despite this
negative result, the experimental evaluation (in Section 5)
shows that the average-case performance of the algorithm
is very close to the optimal under many practical settings.
Deriving an upper bound on the average-case approxima-
tion ratio of BATCH-LIST remains an open question.

Theorem 13. The expected approximation ratio of BATCH-LIST
is ω(1), if all jobs have constant failure probabilities.

The proof of this theorem can be found in the WSM. We
point out that the above lower bound applies when the jobs’
failure probabilities are either arbitrarily defined or related
to their sequential execution times as defined in Equation
(3). In fact, Theorem 13 holds generally true as long as the
failure probability qj of each job Jj is upper-bounded by a
constant ρ, i.e., qj ≤ ρ < 1 for all j = 1, . . . , n.

4.7 An Illustrative Example

In this section, we provide a simple example to illustrate the
behavior of the LPA-LIST and BATCH-LIST algorithms. The
problem instance consists of a set {J1, J2, J3, J4} of n = 4
jobs to be scheduled on P = 4 processors, assuming J3

and J4 will fail exactly once while J1 and J2 will not fail.

10

time

pr
oc

es
so

rs J2

J1

J3(1)

J4(1) J4(2)

J3(2)

t=0 t=5 t=9 t=13

time

pr
oc

es
so

rs J2

J1

J3(1) J4(1)
J4(2)

J3(2)

t=0 t=7 t=10 t=13

B1 B2

time

pr
oc

es
so

rs J2

J1

J3(1) J4(1) J4(2)

J3(2)

t=0 t=7 t=10

Fig. 3. An illustrative example showing the schedules produced by LPA-
LIST (top), BATCH-LIST (middle), and the optimal algorithm (bottom).

The execution times of the jobs and the values of r(α, β)
as functions of the processor allocation are given in the
following table:

Job t(1) t(2) t(3) t(4) r(1) r(2) r(3) r(4)

J1 11 7 5 4 3.2 2.9 2.7 2.9
J2 10 9.8 9.6 9.5 2.04 3.9 5.8 7.6
J3 4 3 3 2.5 2.4 3 4.5 5
J4 3 2 1.7 1.4 2.76 2.73 3.4 3.7

Under these settings, LPA will allocate 3 processors to J1

with an execution time of 5, 1 processor to J2 with an
execution time of 10, 1 processor to J3 with an execution
time of 4, and 2 processors to J4 with an execution time
of 2, as highlighted in red in the table. The jobs will then
be scheduled using the LIST strategy. Assuming that jobs
are prioritized from J1 to J4, the schedule produced by
the LPA-LIST algorithm is shown in Figure 3 (top), with a
makespan of 13. The main drawback of this algorithm is that
the allocation of each job is fixed without considering the
state of the system nor the remaining jobs to be scheduled
at runtime. For instance, at time t = 9, only J3 remains to
be scheduled, so we could easily speed it up by allocating
more processors: using the other two available processors
would reduce the makespan by 1.

BATCH-LIST, on the contrary, will first schedule the four
jobs in a batch B1, assuming they will not fail. In this case, it
will be able to find processor allocations that minimize the
makespan lower bound by setting a small ε. Specifically,
it will allocate 2 processors to J1 and 1 processor to all
the other jobs, resulting in an optimal lower bound of 10.
The execution time for this first batch will also match this
lower bound by using the LIST strategy to schedule the
jobs. After the execution of the first batch, BATCH-LIST will
plan for both failed jobs J3 and J4 to be executed two
more times in a second batch B2. The processor allocations
in this batch that minimize the makespan lower bound
would be 2 processors for J3 and 1 processor for J4 for
both of their potential executions. However, the two jobs
complete successfully after one execution attempt, giving

an execution time of 3 for this second batch and an overall
makespan of 13, as shown in Figure 3 (middle). In contrast to
the LPA-LIST algorithm, the processor allocation of BATCH-
LIST does take into account all available jobs in a batch, but
the idle time between batches leads to an extra 3 units of
time in makespan. Indeed, for this example, scheduling the
second execution attempts of J3 and J4 as soon as possible
would lead to an optimal schedule with a makespan of 10,
as shown in Figure 3 (bottom).

5 PERFORMANCE EVALUATION

In this section, we evaluate and compare the performance of
different scheduling algorithms using simulations on syn-
thetic moldable jobs that follow various speedup models.

5.1 Simulation Setup
Evaluated Algorithms: We evaluate the performance of

our two scheduling algorithms, namely, LPA-LIST (or LPA in
short) and BATCH-LIST (or BATCH in short). For BATCH, we
set ε = 0.3 for its processor allocation procedure (Lemma 3).
Their performance is also compared against that of the
following two baseline heuristics:
• MINTIME: allocates processors to minimize the execu-

tion time of each job and schedules all jobs using the
LIST strategy (Algorithm 1). This is also known as the
shortest execution time (SET) algorithm in [16];

• MINAREA: allocates processors to minimize the area of
each job and schedules all jobs using the LIST strategy.

Priority Rules: We consider three priority rules that have
been shown to give good performance when (rigid) jobs are
scheduled with the LIST strategy [5], which is used in all
four evaluated algorithms (recall that BATCH uses LIST in
each batch). The three priority rules are:
• LPT (Longest Processing Time): a job with a longer

processing time has a higher priority;
• HPA (Highest Processor Allocation): a job with a higher

processor allocation has a higher priority;
• LA (Largest Area): a job with a larger area has a higher

priority.

Speedup Models: We generate synthetic moldable jobs
that follow six speedup models: roofline, communication,
Amdahl, mix (in two different versions) and power. Each
job Jj is defined by two parameters: the total work wj (i.e.,
the sequential execution time), which is drawn uniformly in
[5000, 4000000], and another parameter that depends on the
speedup model.
• Roofline: the maximum degree of parallelism p̄j is an

integer drawn uniformly in [100, 4000];
• Communication: the communication overhead is set as
cj = α · 2r, where r is an integer uniformly chosen in
[0, 3] and α is drawn uniformly in [1, 2].

• Amdahl: the sequential fraction is set as γj = α
10r ,

where r is an integer uniformly chosen in [2, 7] and
α is drawn uniformly in [0, 10].

• Mix: we consider two different parameter settings: the
first one, called mix-low-com, uses the same set of pa-
rameters as what is chosen for the roofline, communica-
tion, and Amdahl’s model. The second one, called mix,
uses 3cj instead of cj for the communication overhead.

• Power: the parameter δj is chosen uniformly in [0, 1].

11

Failure Distribution: To generate failures for the jobs, we
assume that silent errors follow the exponential distribu-
tion [17]. Let λ denote the error rate per unit of work, so
a job will be struck by a silent error for every 1/λ unit
of work executed on average. Following our failure model
(Section 3), we assume parallelizing a job does not change
the total number of computational operations (it may in-
crease the communication, which we consider protected).
Hence, the failure probability of a job will not depend on
its processor allocation nor its execution time, but solely on
its total work. For a job Jj with total work wj , its failure
probability is given by qj = 1− e−λwj .

In the simulations, we set λ = 10−7 by default. Given the
chosen values of wj , this corresponds to a failure probability
between 0.0005 and 0.33 for a job. We also set the default
number of processors and number of jobs to be P = 7500
and n = 500, but we will also vary all of these parameters
to evaluate their impact on the performance.

Evaluation Methodology: The evaluation is done as fol-
lows: we generate 30 different sets of jobs, and for each set,
100 failure scenarios are drawn randomly from the failure
distribution described above. For each of the failure scenar-
ios, the simulated makespan of an algorithm is normalized
by a lower bound (described below), which is then averaged
over the 100 failure scenarios to estimate the expected ratio
for the job set. Lastly, this ratio is averaged over the 30
job sets to compute the final expected performance of the
algorithm. In addition, we also estimate the worst-case per-
formance of the algorithm by using its largest normalized
makespan over all job sets and failure scenarios.

Given job set J and a failure scenario f , the makespan
lower bound given in Equation (8) depends on the processor
allocation and hence the scheduling algorithm. To ensure
that the performance of all algorithms is normalized by
the same quantity, we use the following rather loose lower
bound, which is, however, independent of the scheduling
decision:

L′(J , f) = max
(
t′max(J , f), A

′(J , f)
P

)
,

where t′max(J , f) = maxj minp(fj + 1)tj(p) is the min-
imum possible maximum execution time of all jobs, and
A′(J , f) =

∑
j minp(fj + 1)aj(p) is the minimum possi-

ble total area. Since this lower bound gives a pessimistic
estimation on the optimal schedule, the actual performance
of the algorithms is likely to be better than reported.

The simulation code for all experiments is publicly avail-
able at http://www.github.com/vlefevre/job-scheduling.
Due to lack of space, we report here mainly results for
the mix model, since it captures Roofline, Amdahl, and
Communication as special cases. Full results can be found
in the Web Supplementary Material (WSM).

5.2 Comparison of Algorithms and Priority Rules

We first compare the performance of different algorithms
and study the impact of priority rules on their performance.

Figure 4 (top) shows the normalized makespans for the
11 combinations of algorithms and priority rules under the
mix speedup model, with λ=10−7, P = 7500, and n=500.
For the MINAREA algorithm, priority rules LA and LPT

are identical, as the algorithm allocates one processor to
all jobs, so only the results of LPT are reported. As we
can see, MINAREA fares poorly in most cases, because it
allocates one processor to each job in order to minimize
the area. This results in very long job execution (and re-
execution) times, which leads to extremely large makespan.
Moreover, allocating only one processor per job also results
in idle processors thus resource inefficiency whenever the
number of processors is higher than the number of jobs.
The LPA and BATCH algorithms maintain a good balance
between the execution time and area of a job, thus they
perform well (and this remains true for all speedup models)
in terms of both expected performance (bars) and worst-case
performance (top endpoints of lines). BATCH performs the
best for the mix model. MINTIME also performs relatively
well with this set of parameters.

Figure 4 (bottom) further shows the results of four
combinations of P and n with similar performance trends.
We notice that these two parameters do have an impact
on the performance of BATCH, in particular at P = 1000
and n= 500. Indeed, when P is significantly larger than n,
BATCH tends to reduce all jobs to similar length and execute
them at the same time, which gives the best tradeoff be-
tween the area and maximum execution time. In that case,
the first batch, where all jobs are executed exactly once, is
done almost perfectly. As the makespan of the first batch is
dominant under λ = 10−7, the overall makespan is closer
to the lower bound. However, with P = 1000 and n= 500,
there are not enough processors to execute all jobs at the
same time. Thus, the performance of BATCH becomes close
to LPA.

Note also that the performance of MINTIME under the
mix models becomes better when the number of proces-
sors is large compared to the number of jobs (e.g., P =
10000, n = 100). Indeed, MINTIME is able to simultaneously
minimize the execution time of all jobs in this case with-
out using all the processors, thus achieving near-optimal
performance. This is not possible with fewer processors,
as minimizing the execution time alone for each job will
increase the total area, which also plays an important role
under such circumstance to have overall good performance.

Comparing the three priority rules, no significant dif-
ference is observed. In general, LPT and LA give similar re-
sults, and slightly better results than HPA. This is consistent
with the results observed in [5] for scheduling rigid jobs.
Given these results, we will only consider the LPT priority
rule in the subsequent evaluation. We will also omit the
MINAREA algorithm, and focus on comparing the expected
performance of the remaining algorithms.

5.3 Impact of Different Parameters

We now study the impact of different parameters on the
performance of the algorithms. We start from P = 7500,
n= 500, and λ= 10−7, and vary one of these parameters in
each experiment. We still focus on the mix model (recall that
results for other speedup models are available in the WSM.

Impact of Number of Processors (P): Figure 5(a) shows the
performance when the number of processors P is varied
between 1000 and 15000. BATCH outperforms LPA despite
the idle time at the end of each batch. This is due to BATCH’s

http://www.github.com/vlefevre/job-scheduling

12

P = 1000
n = 100

P = 1000
n = 500

P = 10000
n = 100

P = 10000
n = 500

100

101

N
or

m
al

iz
ed

m
ak

es
pa

n

mix

Fig. 4. Performance of different algorithms and priority rules under the mix model with λ=10−7, P = 7500, n=500 (left) and four other different
combinations of P and n (right). The bars represent expected performance and the top endpoints of the lines represent worst-case performance.

5000 10000 15000
P

100

101

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

(a)

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

(b)

10°8 10°7 10°6

∏

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

(c)
Fig. 5. Impact of (a) number of processors P , (b) number of jobs n, and (c) error rate λ on the performance of the algorithms for the mix model.

ability to better balance the job execution times globally,
which becomes more important in this case. Moreover, the
trend is not affected by the number of processors. Since both
algorithms tend to allocate a relatively small number of pro-
cessors for each job, the maximum degree of parallelism is
not reached and the communication cost is relatively small.
Note that the performance of MINTIME is getting better with
increasing number of processors. Indeed, the minimum exe-
cution time of a job is achieved with a reasonable number of
processors because of the communication overhead. Thus,
when P is high enough such that all jobs can be processed in
parallel while minimizing their execution times, MINTIME’s
allocation becomes close to optimal.

Impact of Number of Jobs (n): Figure 5(b) shows the per-
formance when the number of jobs n is varied between
100 and 1000. Again, we can see that BATCH has the best
performance, except for small number of jobs. The number
of jobs has a small impact for BATCH, but only impacts
MINTIME as seen with varying P . Overall, as the number
of jobs increases, the trend in the relative performance of
the algorithms is consistent with the previous results we
have observed in Figure 5(a) when the number of processors
decreases.

Impact of Error Rate (λ): Figure 5(c) shows the impact of
the error rate λ when it is varied between 10−8 (correspond-
ing to 0.03 error per job on average) and 10−6 (correspond-
ing to 12 errors per job on average). Once again, the relative
performance of the three algorithms remains the same as be-
fore. While the performance of LPA is barely affected, which

is not surprising considering that its processor allocation
is performed locally and separately from job scheduling,
the performance of BATCH gets worse with increasing error
rate λ (and hence the number of failures), which corrob-
orates the theoretical analysis (Theorem 11). In particular,
when the error rate is small, there are very few failures
and almost all jobs will complete in one batch. In this case,
the processor allocation procedure of BATCH (Lemma 3) is
very precise. With increased error rate, more failures will
occur and thus more batches will be introduced, causing
scheduling inefficiencies from both idle times between the
batches and possible imprecision in the processor allocations
(especially with a large batch, since the actual number
of failures may deviate significantly from the anticipated
values). Finally, although the processor allocation is also
performed locally for MINTIME, the effect of increasing λ
is similar to that of increasing P (or the opposite to that of
increasing n): when there are more failures, we spend more
time processing few large jobs that fail a lot, meaning that
after some time only very few jobs are not finished yet. This
effectively increases the total number of processors for these
jobs or reduces the total number of jobs.

5.4 Summary of Results
Table 1 summarizes the makespan ratios of the four algo-
rithms over the entire set of experiments, in terms of both
average-case performance (expected ratio) and worst-case
performance (maximum ratio). Overall, the results confirm
the efficiency of our two resilient scheduling algorithms

13

Table 1. Summary of the performance for the four algorithms (with LPT priority rule) under the six speedup models.

Speedup Model Roofline Communication Amdahl Mix-low-com Mix Power

LPA
Expected 1.057 1.312 1.961 1.896 1.867 1.861

Maximum 1.219 2.241 2.349 1.987 1.995 9.655

BATCH
Expected 1.158 1.434 1.529 1.548 1.571 1.549

Maximum 1.999 2.449 2.874 3.674 4.164 3.975

MINTIME
Expected 1.057 2.044 15.567 2.810 2.704 20.386

Maximum 1.219 2.666 49.795 12.611 27.174 61.726

MINAREA
Expected 114.079 122.199 23.594 16.875 9.686 2.571

Maximum 1217.13 871.38 199.572 259.163 120.9 27.109

(LPA and BATCH), which outperform the baseline heuristics
(MINTIME and MINAREA) in all settings. For the simplest
roofline model, LPA is equivalent to MINTIME, both achiev-
ing a makespan very close to the lower bound (with a
ratio around 1.06 on average). For the other models, we
can observe significant performance difference between our
best algorithm and the baseline. In particular, LPA achieves
good performance with an expected ratio around 1.3 for the
communication model, and an expected ratio less than 2
for the other models. We also notice that the maximum
ratios are only slightly larger than the ones in the average
case, and they remain much lower than those predicted by
the theoretical bounds (except for the power model where
the ratio is more than 9). BATCH also achieves excellent
results thanks to its coordinated processor allocation and
failure handling ability. It achieves a better average ratio
(less than 1.6) for all models, but has larger worst-case ratios
compared to LPA (except for the power model). On the other
hand, the two baseline heuristics, although doing well in
some scenarios, tend to have more irregular performance
that depends on the model and parameter. In contrast, our
algorithms exhibit more robust performance under various
models and parameter settings.

6 CONCLUSION AND FUTURE WORK

In this paper, we have studied the problem of scheduling
moldable parallel jobs to cope with silent errors. We present
a formal model of the problem and design two resilient
scheduling algorithms (LPA and BATCH). While not know-
ing the failure scenarios of the jobs in advance, LPA utilizes
a delicate local processor allocation strategy and BATCH
extends the notion of batches to coordinate the processor
allocations. Both algorithms use an extended LIST strategy
with failure-handling ability to schedule the jobs. On the
theoretical side, we derived new approximation results for
both algorithms under several classical speedup models. In
particular, LPA is shown to be a constant approximation for
the roofline model, the communication model, the Amdahl’s
model, as well as a mix model. We also derived its approx-
imation ratios for the power model and general monotonic
model. On the other hand, BATCH achieves Θ(log2 fmax)-
approximation for arbitrary speedup models, where fmax

is the maximum number of failures of any job in a failure
scenario. All of these results are worst-case results: they
hold for any failure scenario. We also derived an ω(1)
lower bound on the average-case performance of BATCH.
Extensive simulations show good performance of the two
proposed algorithms compared to some baseline heuristics,
demonstrating their practical usefulness and robustness un-
der common job speedups and parameter settings.

Future work will be devoted to the investigation of al-
ternative failure models, such as fail-stop errors (as opposed
to silent errors) or schedule-dependent failure probabilities
(that depend on the number of processors allocated to a job,
and hence on its area). One may also consider checkpointing
and rollback recovery for long-running jobs to avoid re-
executing a failed job from scratch. On the practical side,
we seek to validate the performance of our algorithms by
evaluating them using datasets extracted from job execution
logs with realistic speedup profiles and failure traces.

Acknowledgments

We would like to thank the anonymous reviewers for their
comments and suggestions, which greatly helped improve
the final version of the paper.

REFERENCES

[1] G. M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In AFIPS’67, pages
483–485, 1967.

[2] K. P. Belkhale and P. Banerjee. An approximate algorithm for
the partitionable independent task scheduling problem. In ICPP,
pages 72–75, 1990.

[3] K. P. Belkhale, P. Banerjee, and W. S. Av. A scheduling algorithm
for parallelizable dependent tasks. In IPPS, pages 500–506, 1991.

[4] A. Benoit, V. Le Fèvre, L. Perotin, P. Raghavan, Y. Robert, and
H. Sun. Resilient scheduling of moldable jobs on failure-prone
platforms. In IEEE Cluster, 2020.

[5] A. Benoit, V. Le Fèvre, P. Raghavan, Y. Robert, and H. Sun.
Resilient scheduling heuristics for rigid parallel jobs. IJNC, 11(1),
2021.

[6] J. Blazewicz, M. Machowiak, G. Mounié, and D. Trystram. Ap-
proximation algorithms for scheduling independent malleable
tasks. In Euro-Par, pages 191–197, 2001.

[7] C. Chen, G. Eisenhauer, M. Wolf, and S. Pande. LADR: Low-cost
application-level detector for reducing silent output corruptions.
In HPDC, pages 156–167, 2018.

[8] C.-Y. Chen and C.-P. Chu. A 3.42-approximation algorithm for
scheduling malleable tasks under precedence constraints. IEEE
Trans. Parallel Distrib. Syst., 24(8):1479–1488, 2013.

[9] M. Chrobak and C. Kenyon-Mathieu. Sigact news online algo-
rithms column 10: Competitiveness via doubling. SIGACT News,
37(4):115–126, 2006.

[10] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task
systems. SIAM J. Discret. Math., 2(4):473–487, 1989.

[11] R. A. Dutton and W. Mao. Online scheduling of malleable parallel
jobs. In PDCS, pages 136–141, 2007.

[12] D. G. Feitelson and L. Rudolph. Toward convergence in job
schedulers for parallel supercomputers. In Job Scheduling Strategies
for Parallel Processing, pages 1–26. Springer, 1996.

[13] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng. Optimal on-
line scheduling of parallel jobs with dependencies. Journal of
Combinatorial Optimization, 1(4):393–411, 1998.

[14] A. Guermouche, L. Marchal, B. Simon, and F. Vivien. Scheduling
trees of malleable tasks for sparse linear algebra. In Euro-Par,
pages 479–490, 2015.

14

[15] P.-L. Guhur, H. Zhang, T. Peterka, E. Constantinescu, and F. Cap-
pello. Lightweight and accurate silent data corruption detection
in ordinary differential equation solvers. In Euro-Par, 2016.

[16] J. T. Havill and W. Mao. Competitive online scheduling of
perfectly malleable jobs with setup times. European Journal of
Operational Research, 187:1126–1142, 2008.

[17] T. Herault and Y. Robert, editors. Fault-Tolerance Techniques for
High-Performance Computing, Computer Communications and Net-
works. Springer Verlag, 2015.

[18] J. L. Hurink and J. J. Paulus. Online algorithm for paral-
lel job scheduling and strip packing. In C. Kaklamanis and
M. Skutella, editors, Approximation and Online Algorithms, pages
67–74. Springer, 2008.

[19] K. Jansen. A (3/2 + ε) approximation algorithm for scheduling
moldable and non-moldable parallel tasks. In SPAA, pages 224–
235, 2012.

[20] K. Jansen and F. Land. Scheduling monotone moldable jobs in
linear time. In IPDPS, pages 172–181, 2018.

[21] K. Jansen and R. Thöle. Approximation algorithms for scheduling
parallel jobs. SIAM Journal on Computing, 39(8):3571–3615, 2010.

[22] K. Jansen and H. Zhang. Scheduling malleable tasks with prece-
dence constraints. In SPAA, page 86–95, 2005.

[23] B. Johannes. Scheduling parallel jobs to minimize the makespan.
J. of Scheduling, 9(5):433–452, 2006.

[24] N. Kell and J. Havill. Improved upper bounds for online malleable
job scheduling. J. of Scheduling, 18(4):393–410, 2015.

[25] E. Koutsoupias and C. H. Papadimitriou. Beyond competitive
analysis. SIAM J. Comput., 30(1):300–317, Apr. 2000.

[26] R. Lepère, D. Trystram, and G. J. Woeginger. Approximation
algorithms for scheduling malleable tasks under precedence con-
straints. In ESA, pages 146–157, 2001.

[27] W. Ludwig and P. Tiwari. Scheduling malleable and nonmalleable
parallel tasks. In SODA, pages 167–176, 1994.

[28] Marc Snir et al. Addressing failures in exascale computing. Int. J.
High Perform. Comput. Appl., 28(2):129–173, 2014.

[29] R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in
stochastic scheduling: The power of LP-based priority policies. J.
ACM, 46(6):924–942, 1999.

[30] G. Mounié, C. Rapine, and D. Trystram. Efficient approximation
algorithms for scheduling malleable tasks. In SPAA, pages 23–32,
1999.

[31] G. Mounié, C. Rapine, and D. Trystram. A 3/2-approximation
algorithm for scheduling independent monotonic malleable tasks.
SIAM J. Comput., 37(2):401–412, 2007.

[32] T. O’Gorman. The effect of cosmic rays on the soft error rate of a
DRAM at ground level. IEEE Trans. Electron Devices, 41(4):553–557,
1994.

[33] M. Scharbrodt, T. Schickinger, and A. Steger. A new average case
analysis for completion time scheduling. J. ACM, 53(1):121–146,
2006.

[34] A. Souza and A. Steger. The expected competitive ratio for
weighted completion time scheduling. In STACS, pages 620–631,
2004.

[35] G. N. Srinivasa Prasanna and B. R. Musicus. The optimal control
approach to generalized multiprocessor scheduling. Algorithmica,
15(1):17–49, 1996.

[36] J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms schedul-
ing parallelizable tasks. In SPAA, 1992.

[37] Q. Wang and K. H. Cheng. A heuristic of scheduling parallel tasks
and its analysis. SIAM J. Comput., 21(2):281–294, 1992.

[38] P. Wu, C. Ding, L. Chen, F. Gao, T. Davies, C. Karlsson, and
Z. Chen. Fault tolerant matrix-matrix multiplication: Correcting
soft errors on-line. In ScalA’11, pages 25–28, 2011.

[39] D. Ye, D. Z. Chen, and G. Zhang. Online scheduling of moldable
parallel tasks. J. of Scheduling, 21(6):647–654, 2018.

[40] D. Ye, X. Han, and G. Zhang. A note on online strip packing.
Journal of Combinatorial Optimization, 17(4):417–423, 2009.

[41] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos,
H. Muhlfeld, and C. Montrose. Cosmic ray soft error rates of
16-Mb DRAM memory chips. IEEE Journal of Solid-State Circuits,
33(2):246–252, 1998.

BIOGRAPHIES
Anne Benoit received the PhD degree from
Institut National Polytechnique de Grenoble in
2003, and the Habilitation à Diriger des Recher-
ches (HDR) from ENS Lyon in 2009. She is cur-
rently an Associate Professor in the Computer
Science Laboratory LIP at ENS Lyon, France,
and the IEEE TCPP Chair. She is Associate
Editor (in Chief) of Parco, and has been Asso-
ciate Editor of IEEE TPDS and JPDC. She is a
senior member of the IEEE, and she has been
elected a Junior Member of Institut Universitaire

de France in 2009. Her research interests include multi-criteria schedul-
ing algorithms and resilient techniques for parallel and distributed plat-
forms. See http://graal.ens-lyon.fr/∼abenoit/ for further information.

Valentin Le Fèvre is a post-doctoral researcher
at Barcelona Supercomputing Center, Spain.
He received his PhD in 2020 in the Com-
puter Science Laboratory LIP at Ecole Normale
Supérieure de Lyon. He is mainly interested in
high-performance computing, in particular re-
silience and scheduling problems. See http://
perso.ens-lyon.fr/valentin.le-fevre/ for further in-
formation.

Lucas Perotin is a PhD student in the Computer
Science Laboratory LIP at ENS Lyon. He grad-
uated from Ecole Normale Supérieure de Lyon.
He is mainly interested in scheduling techniques.
See http://perso.ens-lyon.fr/lucas.perotin/ for fur-
ther information.

Padma Raghavan is Vanderbilt’s inaugural Vice
Provost for Research and a Professor of Com-
puter Science and Computer Engineering. She
joined Vanderbilt in February 2016 from Penn
State, where she was the founding Director of
the university’s Institute for CyberScience. She
also served as the Associate Vice President
for Research and Strategic Initiatives and as a
Distinguished Professor of Computer Science
and Engineering at Penn State. She special-
izes in computational data science and high-

performance computing. Her research has been recognized by the
NSF CAREER Award (1995), the Maria Goeppert-Mayer Distinguished
Scholar Award (2002, University of Chicago and the Argonne National
Laboratory), and selection as a Fellow of the Institute of Electrical and
Electronic Engineers (IEEE, 2013). See https://engineering.vanderbilt.
edu/bio/padma-raghavan/ for further information.

Yves Robert is a Full Professor in the Computer
Science Laboratory LIP at ENS Lyon. He is a
Fellow of the IEEE and a Senior Member of
Institut Universitaire de France. He has been
awarded the 2014 IEEE TCSC Award for Ex-
cellence in Scalable Computing, the 2016 IEEE
TCPP Outstanding Service Award, and the 2020
IEEE CS Charles Babbage Award. He holds a
Visiting Scientist position at the Innovative Com-
puting Laboratory at University of Tennessee,
Knoxville, since 2011. His main research inter-

ests are scheduling techniques, parallel algorithms and resilient ap-
proaches for large-scale platforms. See http://graal.ens-lyon.fr/∼yrobert/
for further information.

Hongyang Sun is an Assistant Professor in the
Department of Electrical Engineering and Com-
puter Science of the University of Kansas, USA.
He obtained his Ph.D. in Computer Science
from Nanyang Technological University in Singa-
pore, has worked as a Postdoctoral Researcher
at ENS Lyon, INRIA (Rhône-Alpes), and IRIT
(Toulouse) in France, and held a research fac-
ulty position at Vanderbilt University, USA. His
research interests include scheduling, resilience
and algorithm techniques for high-performance

computing, cloud/edge computing, and big-data applications. See https:
//www.ittc.ku.edu/∼sun/ for further information.

http://graal.ens-lyon.fr/~abenoit/
http://perso.ens-lyon.fr/valentin.le-fevre/
http://perso.ens-lyon.fr/valentin.le-fevre/
http://perso.ens-lyon.fr/lucas.perotin/
https://engineering.vanderbilt.edu/bio/padma-raghavan/
https://engineering.vanderbilt.edu/bio/padma-raghavan/
http://graal.ens-lyon.fr/~yrobert/
https://www.ittc.ku.edu/~sun/
https://www.ittc.ku.edu/~sun/

	Introduction
	Related Work
	Models
	Job and Speedup Models
	Failure Model
	Problem Statement
	Worst-Case vs. Average-Case Analysis

	Resilient Scheduling Algorithms
	A Lower Bound on the Makespan
	Lpa-List Scheduling Algorithm
	List Scheduling Strategy
	Local Processor Allocation (Lpa)

	Worst-Case Performance of Lpa-List for Some Common Speedup Models
	Roofline Model
	Communication Model
	Amdahl's Model
	Mix Model
	Power Model
	Monotonic Model

	Batch-List Scheduling Algorithm
	Worst-Case Performance of Batch-List for Arbitrary Speedup Model
	A Lower Bound on the Average-Case Performance of Batch-List
	An Illustrative Example

	Performance Evaluation
	Simulation Setup
	Comparison of Algorithms and Priority Rules
	Impact of Different Parameters
	Summary of Results

	Conclusion and Future Work
	References
	Biographies
	Anne Benoit
	Valentin Le Fèvre
	Lucas Perotin
	Padma Raghavan
	Yves Robert
	Hongyang Sun

