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a b s t r a c t

The growth in the number of computational resources used by high-performance computing (HPC)
systems leads to an increase in failure rates. Fault-tolerant techniques will become essential for long-
running applications executing in future exascale systems, not only to ensure the completion of their
execution in these systems but also to improve their energy consumption. Although the Message
Passing Interface (MPI) is the most popular programming model for distributed-memory HPC systems,
as of now, it does not provide any fault-tolerant construct for users to handle failures. Thus, the
recovery procedure is postponed until the application is aborted and re-spawned. The proposal of the
User Level Failure Mitigation (ULFM) interface in the MPI forum provides new opportunities in this
field, enabling the implementation of resilient MPI applications, system runtimes, and programming
language constructs able to detect and react to failures without aborting their execution. This paper
presents a global overview of the resilience interfaces provided by the ULFM specification, covers
archetypal usage patterns and building blocks, and surveys the wide variety of application-driven
solutions that have exploited them in recent years. The large and varied number of approaches in
the literature proves that ULFM provides the necessary flexibility to implement efficient fault-tolerant
MPI applications. All the proposed solutions are based on application-driven recovery mechanisms,
which allows reducing the overhead and obtaining the required level of efficiency needed in the future
exascale platforms.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Many scientific computing fields rely on HPC and its super-
computers for solving their most challenging problems. Today
these machines provide high computational power, in the or-
der of 1015 floating-point operations per second, enabling the
resolution of large scientific, engineering, and analytic problems.
However, the computational demands of state-of-the-art science
grows driven by two major factors: new problems for which the
resolution time is critical (such as the design of personalized
pharmaceutical drugs, in which patients cannot wait years for
the specific molecule they need), and the exponential growth in
the amount of data that must be processed (for instance, data
generated by large telescopes, particle accelerators and detectors,
social networks, or smart cities sensors).
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The exascale era is expected to be reached in the near future
using supercomputers comprised of millions of cores and able to
perform 1018 operations per second. This is a great opportunity
for HPC applications; however, it is also a hazard for the comple-
tion of their execution. Recent studies show that, as HPC systems
continue to grow larger, the mean time to failure for a given
application also shrinks, resulting in a high failure rate overall.
Even if one compute node presents a failure every one century,
a machine with 100,000 nodes will encounter a failure every 9 h
on average [1]. More alarming, a machine built with 1,000,000 of
those nodes will be hit by a failure every 53 min on average, an
execution time too short for most scientific applications to deliver
meaningful results.

But the completion or correctness of applications’ execution is
not the only challenge raised by a decreasing mean time to fail-
ure. Di Martino et al. [2] studied the failure behavior of the Blue
Waters Cray supercomputer, reporting that failed applications
noticeably run for about 9% of the total production node hours.
The electricity cost of not using any fault tolerance mechanism
in the failed applications was estimated at almost half a million
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dollars during the studied period of time (261 days). Therefore,
the efficient exploitation of HPC resources for long-running appli-
cations will need to rely on fault tolerance techniques, not only
to ensure the completion of their execution in exascale systems
but also to guarantee correctness and save energy.

The Message Passing Interface (MPI) is the de facto stan-
dard for programming HPC parallel applications in distributed-
memory architectures. However, the current MPI standard and
its implementations lack fault tolerance support, and the default
behavior, in the event of a failure, consists of aborting the execu-
tion of the application. This is the reason why, traditionally, MPI
failures are addressed with stop & restart checkpointing solutions,
techniques where each process in the application periodically
saves its state to stable storage into checkpoint files. In case of a
failure, the application is restarted from one of the intermediate
states of execution once it is re-spawned. However, in large
parallel systems, failures frequently have a limited impact and
affect only a subset of the cores or computation nodes used by
the application. Under these circumstances, a complete cancel-
lation of the MPI application followed by a full restart yields
unnecessary overheads and particularly stresses the parallel file
system.

The User Level Failure Mitigation (ULFM) interface [3], under
discussion in the MPI Forum, proposes the inclusion of resilient
capabilities in the MPI standard. ULFM includes new seman-
tics for process failure detection, communicator revocation, and
reconfiguration—that is, what is needed to repair the communi-
cation capabilities. These new functionalities provide the minimal
set of features necessary to deliver resilience support, without
imposing a strict recovery model. Therefore, it does not include
any specialized, non-portable mechanism to recover the applica-
tion state at failed processes, providing developers of applications
or higher-level frameworks the flexibility to implement the most
optimal methodology, taking into account the properties of the
target application or domain.

The main purpose of this paper is to summarize recent ex-
periences in MPI applications’ fault tolerance using the ULFM
specification, pointing out open issues and challenges for the
exascale era with a focus on application’s perspective. The paper
includes:

• A review of the capabilities of ULFM, the most engaged
project towards the incorporation of fault tolerant support
into the MPI standard.

• The analysis of its potential through an exhaustive review
of the different ULFM application-level solutions present in
the literature to implement resilient applications.

For illustrative purposes, this paper also includes a comparison
of the resilient approaches with the traditional stop & restart
solutions to depict the performance benefits that can be obtained
exploiting the ULFM constructs in fault tolerance techniques.

The structure of the paper is as follows. Section 2 focuses
on the characterization and classification of faults to outline the
scope of this work. Section 3 summarizes related work that,
for the most part, deals with ULFM alternative fault tolerant
frameworks for MPI applications. Section 4 describes the ULFM
interface. A review of recent application-level resilience solutions
using the ULFM functionalities is covered in Section 5, while
Section 6 compares the resilient solution versus the traditional
stop and restart approach. Finally, Section 7 concludes this paper.

2. Fault tolerance coverage

The terminology used in this paper follows the taxonomy of
Avižienis and others [4–6], summarized in Fig. 1. Faults (e.g., a
physical defect in the hardware) can cause system errors, that

Fig. 1. Relation between faults, errors, and failures.

is, system’s incorrect states. Errors may propagate and lead to
failures when they cause the incorrect service of the system—in
other words, an incorrect system’s functionality and/or perfor-
mance that can be externally perceived. Faults can be active or
inactive, depending on whether or not they cause errors; and per-
manent or transient, depending on whether or not their presence
is continuous in time.

Hardware faults correspond to physical faults (i.e., permanent
or transient faults in any of the components of the system)
and can result in: (1) Detectable Correctable Error (DCE), (2)
Detectable Uncorrectable Error (DUE), and (3) Silent Error (SE)
or Silent Data Corruption (SDC). DCEs are managed by hardware
mechanisms such as error correcting codes (ECCs), parity checks,
and Chipkill-Correct ECCs, and are oblivious to the applications.
DUEs can lead to the interruption of the execution, while SDCs
can lead to a scenario in which the application does not experi-
ence a runtime failure yet returns incorrect results, and the user
might not be aware of it.

Software faults can be classified as: (1) pure software errors,
(2) hardware problems mishandled by software, and (3) software
causing a hardware problem. Pure software errors correspond
to classical correctness issues (such as incorrect control flows),
concurrency errors (concurrent code is hard to develop and de-
bug), and performance errors (originated by resource exhaustion
that can lead to actual crashes due to timeouts). Examples of
the second category include node faults not being handled by
software at other nodes, or a disk fault causing a file system
failure. Finally, software can trigger an unusual usage pattern for
the hardware, causing the manifestation of hardware errors.

Resilience is defined as the collection of techniques for keeping
applications running to a correct solution in a timely and efficient
manner despite underlying system faults. The literature covered
in this paper focuses on faults that cause process fail-stop failures
in distributed applications—that is, failures derived from hard-
ware and software errors that have the direct, drastic, impact of
unexpectedly and permanently rendering non-responsive some
of the application processes. The goal of the considered tech-
niques is thus to mitigate the effect of process failures, so that,
from the application perspective, a process failure remains at the
level of an application error because the software infrastructure
prevents the escalation to an application failure.

3. Related work

Currently, ULFM is the most active project towards integrating
fault tolerant support into the MPI standard. Previous to the ULFM
project, other attempts such as MPI-FT [7], MPI/FT [8], FT-MPI [9],
or FEMPI [10], had started this important research path. Though
none of them have been adopted into the MPI standard, and
nowadays they are no longer maintained, they certainly deserve
credit as the seed for many other projects in the field.

Several recent research studies focused on alternatives to
ULFM, making use of layers outside the MPI library itself, to
avoid the dependence on the communication pattern, and, thus,
accelerating the detection of the failures. Some of these works
have a basis in Laguna et al. [11], which proposes the conceptual
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Fig. 2. Resilient solution at low-level layers. After a failure, processes are warned
by the runtime framework or the resource manager, they stop their execution,
new processes are allocated to replace the failed ones and, finally, all the
processes perform the initialization phase to create a new communicator.

interface of Reinit. A significant difference between this proposal
and those based on ULFM is the assumption of a fault detector
within the target system (MPI and/or runtime environment, or
some additional system services). Conceptually, the Reinit model
assumes that in case of a failure, all MPI processes reinitialize
themselves, in the same state they have been after the initial
call to MPI_Init, strongly limiting the flexibility of the recovery
procedure users may implement, as all original processes must
participate. Fig. 2 illustrates this approach. This behavior can be
assimilated to a global synchronous restart of the entire parallel
application and provides realistic support only for tightly coupled
applications that belong to the bulk synchronous parallel (BSP)
type. In [12] an initial prototype of Reinit is described, as well
as a qualitative comparison with ULFM. However, a performance
comparison could not be provided due to the lack of a full
real-world implementation of the Reinit interface.

In a more recent work, Chakraborty et al. [13] use the Reinit’s
interface in terms of technical design and implementation, and
proposes EReinit (efficient Reinit), a more scalable implemen-
tation that inherits the same type of restrictions as Reinit. The
authors present scalability results comparing EReinit with Fenix
[14], a fault tolerance approach based on ULFM described in
Section 5.2. The main difference between these approaches is
that, instead of implementing the recovery functions on top of
MPI, using ULFM, EReinit aims to co-design them between MPI
and the resource managers. The experimental results show that
the EReinit implementation is faster than the Fenix approach
for detecting failures and reinitializing the execution, especially
when dealing with concurrent failures.

Emani et al. [15] propose Checkpointable MPI, also based on the
roots of Reinit, in which the MPI state is saved in a checkpoint
along with the application state and restored in case of failure.
In Checkpointable MPI the core functionalities of failure detec-
tion, notification, and spawning of replacement processes are
performed in layers below MPI, using the Process Management
Interface for Exascale (PMIx) [16] and Slurm [17] as a resource
manager.

NR-MPI [18] is a resilient MPI solution built on top of MPICH
that implements the semantics derived from the FT-MPI project.
Recently, a new proposal for NR-MPI [19] implements some fault
tolerance semantics of ULFM based on MPICH. However, it re-
lies on an external failure detector (assumed integrated into the
resource manager) instead of detecting the failures in the MPI
library, under the assumption that an external detector might
reduce the overhead of failure-free executions.

Other resilient approaches explore the use of alternative pro-
gramming solutions. Fault-Aware MPI (FA-MPI) [20,21] provides

a set of extension APIs for MPI to support a lightweight transac-
tional model for fault-awareness. However, it is restricted to non-
blocking MPI communication operations. It introduces transac-
tions around user-specified code blocks; thus, failures are not de-
tected nor recovered in each failed MPI communication operation
(in contrast to ULFM). The granularity of fault-awareness, and,
thus, the associated overhead, is configurable in FA-MPI through
transaction duration and length and hierarchically nesting trans-
actions. Likewise, Fault Tolerance Assistant MPI (FTA-MPI) [22]
is a programming model that exploits a try/catch exception-
handling syntax to enable failure detection and transparent re-
covery in MPI applications. Although more versatile than FA-MPI,
since it allows blocking MPI calls, FTA-MPI also detects and re-
pairs failures within a user-defined code block. Using FTA-MPI a
conversation is declared in a try-catch code block, so that at the
end of the conversation, all participants can detect a failure (if
it occurred). In such a case, FTA-MPI automatically recovers the
application-level state (by means of a checkpoint) and MPI-level
state (by repairing the communicators). The granularity of the
failure detection is a conversation.

A different approach is featured by FMI [23], a prototype
programming model providing a similar semantic to MPI that
issues fault tolerance, including checkpointing application state,
restarting failed processes, and allocating additional nodes as
necessary. In contrast to the solution proposed by ULFM, FMI
acts as an isolation layer and applications are unconscious of
failures. The FMI prototype demonstrates encouraging results,
achieving a very low-latency recovery by means of a survivable
communication runtime coupled with fast, in-memory check-
point/restart, and dynamic node allocation. However, the current
prototype implementation only supports a subset of MPI func-
tions. Among the missing capabilities, two stand out due to their
impact on the application scalability and efficiency: collective
functions and communicator creation via split. Collective func-
tions increase their impact at large scale. Split of communicators
is often dynamically used in order to balance the workload in
many applications. Thus, the efficient support of these functions
will be key in FMI future plans. Similarly, in MPICH-V [24], co-
ordinated checkpointing and uncoordinated checkpointing were
deployed within the MPI infrastructure in order to capture the
state of the application, and rollback to a checkpoint in case of
failure in an automatic, transparent manner. The communication
overhead of this solution is demonstrated to be acceptable; how-
ever, the automatic placement of checkpoints without regard for
the application’s structure, and the system-level process restart
prevents a wide range of checkpointing optimizations resulting in
a relatively high cost of checkpointing activities when compared
to non-automatic solutions.

Recently, high-level HPC programming systems, such as Parti-
tioned Global Address Space (PGAS) languages like Coarray For-
tran (CAF) [25] and X10 [26], are gaining popularity in production
applications. They usually rely on high-performance transport
layers, such as MPI, to achieve low communication latency, porta-
bility, and scalability on large-scale systems. In this context, sev-
eral attempts have been already made to provide fault tolerance
to these high-level systems using ULFM. Hamouda et al. [27]
describe the use of ULFM to achieve an efficient transport layer
for Resilient X10. In [28] the failed images CAF feature were im-
plemented using ULFM in the MPI-based version of OpenCoarrays.

4. The ULFM interface

Applications exhibit a wide variety of pre- and post-failure
behaviors, where the needs for the recovery procedure range
from applications that perform only point-to-point communica-
tions with a small set of close neighbors, to applications that
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Table 1
ULFM specific error codes.
Error code MPI calls involved Description

MPIX_ERR_PROC_FAILED Blocking operations & completion functions. The operation involved a dead process.
MPIX_ERR_PROC_FAILED_PENDING Non-blocking MPI_ANY_SOURCE. A potential sender has been discovered dead.
MPIX_ERR_REVOKED All MPI routines but shrinking & agreement. Communicator marked as improper for further communication.

Fig. 3. Run-through, malleable and inflexible applications have different needs in terms of restoring communication capabilities.

routinely perform collective communication. Unsurprisingly, this
wide variety of communication patterns demand a diversity of
recovery strategies. Among their key differences are (1) how
many processes are involved in managing a failure and its con-
sequences, (2) what the expectations are in terms of restoring
the mapping of processes and data onto the physical resources
(i.e., the difference between malleable jobs which can adapt on
the fly to a changing deployment topology, and inflexible jobs
for which the data distribution and process mapping have to
adhere to some predefined rules, like a cartesian grid), and (3)
how the data is to be restored after the process failure expunged
part of the dataset (e.g., from a checkpoint, by interpolating
neighboring data, with additional iterations). Each application is
likely to exhibit an original combination of these, and many other,
criteria. The ULFM interface thus provides a generic method to
restore MPI’s communication infrastructure and capabilities after
a failure, but it does not concern itself with providing a strategy
for data restoration. This rejuvenated communication capability
can then be employed at the application’s leisure to perform state
introspection and dataset restorative actions, like communicating
checkpoint data, using normal MPI primitives.

We identify three features an application may require to
restore its communication capabilities: failure notification, fail-
ure propagation and interruption, and communication context
restoration. Different types of applications, such as run-through,
malleable, and inflexible applications illustrated in Fig. 3, may
choose to use a subset, or all of those features to tolerate failures,
depending upon the intended usage pattern. Next subsections
describe in detail the basic interfaces of the ULFM interface that
provide these features, and Section 4.4 provides some examples
of their use.

4.1. Failure notification

Since ULFM does not mask process failures to the application,
it needs to provide mechanisms to produce actionable application
errors upon their occurrence. ULFM includes new error codes de-
noting the occurrence of events related to process failures, which
are summarized in Table 1. The ULFM specification follows closely
the preexisting conventions from the MPI standard and employs
the long-existing concept of MPI error handlers to report errors

to the application. Using the MPI_Comm_set_errhandler pro-
vided by MPI, the user can specify whether errors codes should be
returned to the application (MPI_ERRORS_RETURN) or whether a
user-defined error handler procedure should be invoked.

By default, ULFM reports an error only for operations whose
semantic cannot be fulfilled because of the failure (i.e., a fault
that could result in an observable defect). A notable example
is when the communication operation involves a failed process
as a peer (as a source, destination, or a member of the group
on which the operation is collective). Consider a point to point
communication: if the destination process specified in a send
operation or the source process in a receive operation have failed,
the operation cannot be completed anymore and needs to report
an appropriate error to the caller. For collective communications,
a process reporting any type of error, including process failures,
does not imply that the collective operation will complete with
the same error at all participants. For example, in a broadcast
that follows a tree topology, all processes in the subtree rooted
at a failed process will report an error, while the rest of the
processes may complete the operation successfully (given that
they have fulfilled the local semantic of the operation and that the
message is locally available in the reception buffer). In the case
of non-blocking communications – point to point or collective –
the same rationale applies, but raising errors is postponed until
the corresponding completion routine is invoked.

Note that the fact that the error notification is restricted only
to those operations whose semantic cannot be fulfilled avoids
imposing limits to the wide variety of post-failure behaviors
that programmers may choose to deploy. Operations that do not
directly involve failed processes will complete normally, which
enables the implementation of run-through failures strategies
(exemplified in Fig. 3). Consider the case of a master–worker
type of workload, in which a master dispatches work to worker
processes. In this context, it is clear that the failure of an inde-
pendent worker is not an important event from the perspective of
another independent worker, and only the master process should
be informed that a failure occurred so as to dispatch the work to
another worker. Disturbing the communication of independent
processes simply adds noise and complexity to the design of
simple resilient patterns.

Unnamed receptions (i.e., operations using the MPI_ANY_
SOURCE peer) add a bit of extra complexity and require special
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Table 2
ULFM minimal set of fault tolerance routines.
Function Description

MPIX_Comm_failure_ack(comm) Acknowledgment of reported process failure errors. Resumes matching for
MPI_ANY_SOURCE.

MPIX_Comm_failure_get_acked(comm, &group) Obtains the group of processes acknowledged to have failed.

MPIX_Comm_agree(comm, &mask) Collective, agrees on the AND value on binary mask, ignoring failed processes
(reliable AllReduce).

MPIX_Comm_revoke(comm) Non-collective with effect on the entire comm, communications on comm
(future or active, at all ranks) are interrupted with MPIX_ERR_REVOKED.

MPIX_Comm_shrink(comm, &newcomm) Collective, creates a new communicator without failed processes (identical at
all ranks).

handling due to the message delivery order imposed by MPI (for
any pair of processes the message delivery order matches the
sending order.) It is not possible for the MPI implementation
to determine with certainty whether the operation would block
infinitely when a potential sender has failed; thus, in ULFM, such
operations are also interrupted with a special error code. The op-
eration MPIX_Comm_failure_ack enables users to acknowledge
all locally notified failures in the communication context.1 When
using unnamed communications, this routine provides the appli-
cation a way to resume any-source operations, as long as the list
of failed processes does not change. MPIX_Comm_failure_ack
can be used in tandem with MPIX_Comm_failure_get_acked
to introspect the current state of the MPI processes, and build the
list of failed processes.

4.2. Failure propagation and interruption

Another feature provided by ULFM for the recovery of the
communication infrastructure is error propagation and interrup-
tion. Obviously, not all applications follow the master–worker
paradigm, and it is likely that most applications will need a
more tightly coupled global recovery strategy. One possible pro-
gramming technique for resilient distributed applications is to
progress in macro-steps, or transactions, that have to be validated
before the program moves forward to the next step. The routine
MPIX_Comm_agree delivers a resilient operation that performs
consensus on the knowledge about faults. It provides a reliable
reduce-like operation (similar to an MPI_Allreduce) on a syn-
chronization variable, however, MPIX_Comm_agree guarantees
uniform failure reporting across the participating peers. Typical
use cases include validating the success or failure of one or
more iterations during an iterative process, or of a collective
operation, or more generally validating the commit of checkpoint
files. The agreement operation permits programmatic reasoning
on the progress of the application and the explicit propagation
of error condition in a structured manner. Therefore, it can be
used for global error detection in a given communication context
for some applications. However, the agree operation has a higher
cost than an MPI_Allreduce operation and should, therefore,
be used in a parsimonious manner. The current state-of-the-art
agreement algorithm [29] has a complexity of 2 logδ n parallel
steps if no failures happen and at most O(2 logδ n + f δ) parallel
steps if f failures happen, with δ being the maximum degree
of the tree defined by the Parent/Children functions, and n the
number of nodes in the tree. And although this strategy for error
propagation may be sufficient in some applications, it requires
that all processes not affected by the failure reach the agreement
operation, which might not always happen if the application is
not reasonably well tightly coupled. In some applications with

1 A communication context can be a communicator, window or file. We will
use communicator and communication context interchangeably without loss of
generality.

Fig. 4. A transitive dependence in the communication can be interrupted with
the explicit error propagation call MPIX_Comm_revoke when the recovery of the
application requires global failure notification in the communication context.

a neighborhood communication pattern, a failure in a group
may remain unreported to processes in other groups, and it
thus could be necessary to interrupt that ongoing communica-
tion pattern before all processes can proceed with the recovery
procedure. Consider the case presented in Fig. 4 of a chain of
processes moving a token from the lowest rank to the highest
rank. In such a program, all processes except 0 have posted a
named reception to obtain the token from their predecessor in
the chain. When a failure occurs, the immediate successor of a
failed process will receive an error from the posted reception
operation. However, the remaining processes are still waiting
on a reception from a live process, and have no reason yet to
interrupt that call. Nevertheless, if the remainder of the recov-
ery procedure requires these processes to participate, they need
to be released from the ‘‘failed communication pattern’’ where
they expect a message from a predecessor that will not send
it anymore. This can be done programmatically by sending all
the remaining messages, but this approach is cumbersome, error-
prone, and inefficient. The ULFM interface provides the explicit
revocation call MPIX_Comm_revoke as a better alternative to pre-
vent ‘‘failed communication pattern’’ deadlocks. When a process
calls this function, the operation triggers an error at all ranks in
the communication context and invalidates that communicator
for further communication, so that pending and future API calls
on this communicator will return an error code without blocking.
Thus, this operation effectively achieves the propagation of errors
under the exclusive control of the application.

4.3. Communication context restoration

Some applications, such as malleable and inflexible appli-
cations illustrated in Fig. 3, need to restore a fully functional
communication context. This implies not only being able to suc-
cessfully perform point-to-point operations between live pro-
cesses, but also restoring the capability to carry out collective
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Fig. 5. Example of a master–worker application that can run through failures.

communications. To that end, all failed processes need to be
entirely removed from the group of processes in the commu-
nication context. The interface MPIX_Comm_shrink produces a
new communicator in which all processes that are known to have
failed before (or during) the operation are expunged. This new
communicator is thus a fully functional communicator in which
all processes are presumed live (barring the occurrence of sup-
plementary failures). Collective communication can be employed
normally in this new, currently sane, communicator. Note that
obtaining a sane communicator is critical in the case of inflexible
applications, as the existence of a fully functional communicator

is a prerequisite to permit employing the MPI_Comm_spawn op-
eration to spawn supplementary processes and reconstruct the
application world.

Table 2 summarizes the minimal set of routines necessary to
deliver recovery capabilities. It could be tempting to provide more
elaborate constructs to facilitate other types of recovery support,
but it is important to retain one of the major characteristics
of MPI: being a toolbox with which more complex algorithms
can be built. Thus, instead of limiting how the MPI library can
react to a fault by providing a strict recovery model, the three
conceptual features described above provide a basic toolset of
global recovery capabilities that represent a minimalist base for
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Fig. 6. Example of a simple iterative application with failures handled at the end of each iteration, that can resume the execution on a reduced set of processes.

higher-level constructs, or even domain-specific approaches that
can now be provided by additional libraries or frameworks.

4.4. Typical patterns

Here we present a set of examples of use for the functions
described above. Note that these examples are presented for
illustrative purposes, but they are not the sole use cases for
each routine, nor the only means to deploy a particular strategy.
More code examples can be found in the Supercomputing tutorial
material [30].

An example of application that can run through failures is il-
lustrated in Fig. 5. This figure shows the master code of a master–
worker application that handles failures by ignoring failed pro-
cesses and rebalancing the workload dynamically. It illustrates
how the routines MPIX_Comm_failure_ack and MPIX_Comm_
failure_get_acked are used in tandem to acknowledge the
failure and to obtain the group of failed processes, which per-
mits counting how many workers are still active and requeue
the failed tasks in the pool of pending work. It also demon-
strates the different failure cases that may occur when posting re-
ceptions from MPI_ANY_SOURCE. Both MPIX_ERR_PROC_FAILED
and MPIX_ERR_PROC_FAILED_PENDING can be reported to the
applications, and they represent slightly different scenarios. For
MPIX_ERR_PROC_FAILED_PENDING, the request is still pending
and once the failure is acknowledged, the request can be reused;
while for MPIX_ERR_PROC_FAILED it has matched a message
from a process that failed and completed and thus needs to be
reposted.

A template for applications that can continue their execu-
tion on a reduced set of processes is shown in Fig. 6. In this
code, at the end of each iteration, a collective operation is per-
formed. The return code is obtained from the operation, and the
MPIX_Comm_agree routine is used to verify whether any other
process has returned an error. Then, the MPIX_Comm_shrink
routine is used to create a new communicator excluding the failed
processes. An example of this kind of applications is found in [31],
where an iterative application is rendered moldable by redis-
tributing the rest of the dataset among the surviving processes.

Though the previous examples of embarrassingly and loosely
coupled applications may need a small effort to incorporate re-
silience support to their codes, there are other – usually tightly

coupled – parallel applications that need a more sophisticated
failure handling and restorative actions to be able to resume the
execution. A frequent solution, in this case, is the use of error
handler routines to encapsulate the notification and restoration
operations needed. Fig. 7 shows an example of a general parallel
application that uses an error handler routine to revoke the com-
municator after a failure is detected and invoke an application-
specific repair procedure. This example illustrates the usage of the
MPIX_Comm_revoke to ensure that all processes will be notified
of a process failure. In the application-specific repair procedure, it
also exemplifies the use of the MPIX_Comm_shrink routine com-
bined with the MPI_Comm_spawn and MPI_Comm_Intercomm_
merge to create a new version of the ‘‘world’’ communicator with
the same number of ranks.

5. Application-level resilient solutions using ULFM

As presented above, ULFM includes new semantics for failure
notification, failure propagation and interruption, and commu-
nication context restoration. However, no recovery mechanism
is mandated. Instead, ULFM provides a set of basic interfaces to
allow the users to adapt the recovery method to the characteris-
tics of their applications. This flexibility has led researchers and
production teams to propose different recovery strategies at the
application level. Resilience proposals can be classified into:

• Shrinking or Non-Shrinking: In shrinking approaches, the
failed processes are not replaced; thus, the number of pro-
cesses running the application decreases after each failure.
Shrinking solutions are restricted to applications that tol-
erate modifying the number of processes at runtime, the
so-called malleable applications. On the other hand, non-
shrinking recoveries preserve the number of running pro-
cesses after a failure by replacing the failed processes with
spare ones. Fig. 8 illustrates the differences between both
strategies.

• Backward or Forward: In backward solutions, after a failure,
the application is restarted from a previously saved state.
Forward recovery solutions, in contrast, attempt to find a
new state to successfully continue the execution of the
application.
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Fig. 7. Example of a general application using an error handler to manage failures and repair the world communicator.

• Global or Local: In the global approaches, the application
repairs a global state to survive the failure. In MPI SPMD
applications that means restoring the state of all application
processes to a saved state, in order to obtain the neces-
sary global consistency to resume the execution. On the
contrary, local recovery solutions attempt to repair failures
by restoring a small part of the application—for example, a

single process. Due to inter-process communication depen-
dencies, these solutions require the use of message logging
techniques for its general application.

The rest of this section surveys and classifies the different
ULFM-based fault tolerance methodologies proposed in the liter-
ature, remarking on their applicability and scalability.
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Fig. 8. Shrinking vs. non-shrinking using ULFM. After a failure, all processes are made aware of the fault and the communicator is shrunk. In the shrinking approach
the execution continues from this point, while in the non-shrinking approach new processes are spawned to replace the failed ones and the communicator is
reconstructed by merging the shrunken and the new one.

5.1. Shrinking solutions

Some proposals exploit the particular characteristics of the
applications to avoid the re-spawning of replacement processes.
To support such an approach it is clear that the underlying al-
gorithms must have some desirable properties compatible with
such a dynamic world. There are many examples of such applica-
tions: for instance, iterative asynchronous algorithms where the
input of dead processes is not critical for the algorithm to con-
verge and it can be dismissed in exchange for a relative increase
in the number of iterations or potentially a loss of accuracy in the
results.

This is the case for the proposal of Pauli et al. [32,33] for
the Monte Carlo (MC) and the multi-level MC methods, where
a shrinking, forward, local recovery is implemented. MC methods
rely on repeated random sampling to obtain numerical results.
The fault-tolerant version uses ULFM to detect failures and con-
tinue with the computation using only the survivor processes. In
case of failure, the final result is computed using the samples
unaffected by failures, while the samples affected by failures
are disregarded. In this way, neither checkpoint/restart nor re-
computation of lost samples is needed. The proposal obtains a
fault-tolerant version with a very low overhead at the expense
of potential qualitative degradation of the results when failures
occur.

Another shrinking, forward, local recovery implementation is
proposed in Strazdins et al. [34]. They present an algorithm-
based resilient solution for partial differential equation (PDE)
solvers using ULFM. In this approach, a numerical method called
the Sparse Grid Combination Technique (SGCT) is employed to
approximate the solution to PDEs. Instead of solving the PDEs in
a regular full grid, it solves several grids, called components grids,
with fewer grid points. Each component grid is run in a subset
of processes, and solutions on these components are combined
to obtain an approximate global solution. Upon fault detection,
the faulty communicator is shrunk, and the data structures of
the processes that compute a component grid affected by the
failure are updated to adjust the whole range of grid points of that
component to the new number of available processes. The pro-
cesses that compute components not affected by failures continue
running without disruption. The component grids associated with
the failed processes are not taken into account when building the
combined global solution. The redistribution of data is unneces-
sary, but depending on which components grids are disregarded
due to failures, the loss of accuracy will be more or less important.
The proposal is compared with a resilient version where the
failed processes are replaced by newly spawned ones and with a
classical stop & restart solution. Results prove that the shrinking

approach leads to better application performance, especially for
a high number of cores. Both resilience approaches (with re-
placement and shrinkage regimes) outperform the stop & restart
version.

Rizzi et al. [35] use a similar approach to implement a resilient
task-based domain-decomposition preconditioner for PDEs. The
algorithm transforms the original PDE problem into many local
sampling problems, followed by a regression stage where the
local pieces are linked to construct the final global solution.
To guarantee a resilient computation, the number of samples
generated within each subdomain is the number needed for the
fault-free execution multiplied by an oversampling factor. Thus,
upon failure, crashed tasks do not need to be recomputed and
the application simply discards them and continues the execution
using the processes that are alive.

Forward recovery is not the only approach compatible with
shrinking solutions; in some cases, a backward recovery can
also be applied. In these cases, load computation has to be re-
distributed among the remaining processes, which introduces
an overhead dependent on the particular redistribution algo-
rithm. This is the case shown in [36], where a backward, global,
shrinking recovery model is implemented to convert a molecular
dynamics program, ddcMD, in a resilient application. ULFM is
used to detect failures, revoke, and shrink the communicator. A
shrinking recovery can be applied to ddcMD because its load can
be easily rebalanced at runtime. The implementation uses an in-
memory checkpointing mechanism in which each MPI process
stores a checkpoint in local memory and replicates it on an
adjacent process (similar to buddy checkpointing). In case of
failure, the application is restarted from the last checkpoint, and
the process that contains the replicated in-memory checkpoint
is responsible for the recovery of the data of the failed process.
Then, the load is rebalanced and the application continues with
its execution.

The re-spawning can be also avoided in MPI master–worker
codes. In these applications, ULFM can be used to detect failed
workers so that the associated tasks are put back to the queue to
be reassigned to other workers. Thus, a shrinking, backward, local
recovery can be implemented: only the failed tasks are recom-
puted using the available resources and the load is automatically
redistributed by the master among the available workers. This is
the working principle of Falanx [37], a middleware infrastructure
for the development of exascale applications. In Falanx, parallel
applications are described as a set of tasks, and resilience is
achieved by taking the tasks as partial rollback units. It uses ULFM
to detect failures and it is equipped with a resource management
system for task scheduling and a mechanism for data protection
based on data replication.
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ULFM is also used in Lemarinier et al. [38] to build malleable
MPI applications—that is, those able to dynamically expand or
shrink to adapt themselves to the number of available resources.
In this work, the ULFM approach is compared with a traditional
stop & restart mechanism where the Scalable Checkpoint Restart
(SCR) library [39] is used to relaunch the application with a new
number of processes after saving the state. Experimental results
prove that the ULFM solution enables faster reconfiguration.

Shrinking solutions avoid the overhead associated with the re-
spawning of replacement processes to take over the failed ones.
However, the execution time of the application may be nega-
tively affected by the use of a smaller number of computational
resources.

Ashraf et al. [31] compare a shrinking and a non-shrinking
solution for a fault-tolerant version of the generalized minimal
residual (GMRES) algorithm. The algorithm already offers pro-
tection against silent data corruptions, and protection against
hard errors is implemented combining ULFM and a backward
global recovery using diskless checkpointing. In the shrinking
solution, upon a failure, the workload is redistributed among
the survivor processes. Due to the characteristics of the appli-
cation, the workload redistribution overheads are negligible and
thus, the recovery overheads of the shrinking and non-shrinking
approaches are comparable. On the other hand, replacement pro-
cesses are usually mapped to far nodes, which can lead to higher
communication overheads. Nevertheless, the time-to-solution is
larger in the shrinking solution due to the smaller number of
processes to carry out the computation. Authors conclude that
the shrinking approach can be a good alternative when spares are
not available, or at a large scale when there are enough workers
to share the workload of the failed processes.

5.2. Non-shrinking solutions

Although shrinking strategies avoid the extra cost of setting up
replacement processes to take over the failed ones, they can neg-
atively impact the performance when multiple processes are lost.
Moreover, an unbalanced distribution of computation among the
survivor processes can further penalize the performance of the
application. In addition to this, the implementation of a dynamic
adjustment of the workload across survivor processes may not be
feasible in many applications, as it may imply large programming
efforts from the user. On the other hand, non-shrinking solutions
preserve the number of processes running the application after
a failure. Once a failure has been detected and the communi-
cation engine is repaired, replacement processes will take over
the failed one’s workload. Replacement processes can be spawned
on demand for each failure, using the MPI spawning capabilities.
Alternatively, a pool of spare processes can be created at the
beginning of the execution, avoiding the spawning overhead dur-
ing the recovery. Such a reconstruction of the parallel execution
setup comes with its own overheads: data lost due to the dead
processes must be recovered and transferred to the replacement
processes before the execution can continue.

Ali et al. [40] focus on non-shrinking recovery of PDE-based
applications, re-spawning replacement processes on the same
node, when they are still available, or otherwise in pre-allocated
spare-nodes. As in their shrinking proposal [34], they use the
SGCT Algorithm-Based Fault Tolerance (ABFT) strategy to ap-
proximate recovery of multiple failures, rather than the exact
recovery through checkpointing. Data from failed processes is
recovered using an alternate component grid combination for-
mula by adding some redundancy to recover the data from lost
processes in a local forward recovery.

Teranishi et al. [41] propose the Local Failure Local Recovery
(LFLR) framework. LFLR uses ULFM capabilities to detect failures

and repair the communication engine. Then, failed processes are
substituted by warm spare ones from a pool of processes, which
run a skeletonized version of the application code (the program
logic execution, but skipping the real computation). The recovery
is based on checkpointing but, to minimize the performance
impact, the framework makes use of the spare processes to im-
plement diskless checkpointing. The framework is tested with
the MiniFE application, a parallel finite element analysis code
for thermal PDEs, which enables failure detection by using the
MPIX_Comm_agree routine to stop all the processes in the same
iteration.

Cantwell et al. [42] also target non-shrinking resilient PDE
solvers. In this case, they focused on reducing the amount of
checkpointed data and minimizing the amount of instrumen-
tation in the application code by using message logging. The
authors distinguish between static data, which is fixed during
the simulation after an initialization phase, and dynamic data, or
time-evolving data. The user is responsible for marking the ini-
tialization phase of the application by annotating the code. During
the initialization phase, the outcome of each MPI communication
is logged. Then, once the initialization phase is completed, the
dynamic data is periodically checkpointed. Both the log and the
checkpointed data are backed up in a buddy process. After a
failure, the ULFM functionalities are used to repair the commu-
nication engine, and warm spare processes are used to replace
the failed ones. During the recovery, survivor processes roll back
to the last dynamic checkpoint. On the other hand, replacement
processes re-execute the initialization phase of the code; how-
ever, MPI communication calls are intercepted and their results
are obtained directly from the log. After the initialization phase,
the dynamic state of the replacement processes is recovered from
the last dynamic checkpoint, and the execution resumes.

Bland et al. [43] study the performance gain of using a non-
shrinking resilience strategy instead of traditional checkpoint/
restart on an iterative refinement stencil code using the Monte
Carlo Communication Kernel, showing that the total time to
completion can improve by as much as 75% using ULFM. The
use of the ULFM functionalities avoids the interruption of the
application, allowing the checkpointed data to be kept in memory
of the neighbor processes. Exploiting the particularities of this
code, at the end of each iteration the checkpointed data is sent
to a neighbor process, and processes check for failures using the
MPIX_Comm_agree routine.

Gamell et al. [44] propose a local backward recovery proposal
for stencil-based applications. In this case, taking into account
the particular characteristics of the target applications, only the
failed processes have to roll back. The experimental results prove
that the local recovery obtains important performance benefits as
compared to the global recovery. This work involved non-trivial
refactoring of the message passing capability to keep one-to-one
communication alive for the survived processes.

The previous proposals consider the particular characteristics
of the applications to simplify the recovery process. A customized
solution allows reducing the recovery overhead upon failure—
for example, simplifying the detection of failures by checking
the status of the execution in specific points or recovering the
application data by means of its properties as an alternative
to checkpointing. However, this also restricts their applicability,
making them not suitable to be generally applied to any MPI
application

On the other hand, CRAFT (Checkpoint-Restart and Automatic
Fault Tolerance) [45] builds upon ULFM to provide a generic
library for application-level checkpointing and dynamic process
recovery not restricted to a particular type of application. It
provides multithreaded multi-level coordinated checkpointing. It
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Table 3
Recovery operations in traditional stop & restart solutions vs. ULFM proposals.

Failure detection Stop & restart Application aborted due to failures

Resilience Notification of failures to all live processesa

Reconstruction

Stop & restart Relaunching of the application

Resilience

Shrinking
Agreement about failed processes
Shrinking of the communicator
Load rebalancing

Non-shrinking

Agreement about failed processes
Shrinking of the communicator
Re-spawning of failed processesb
Communicator reconstruction

Restart

Stop & restart Global backward Recomputation from the last checkpoint

Resilience
Global backward Recomputation from the last checkpoint
Local backward Recomputation of failed tasks
Local forward Recomputation is not needed

aIn some cases, it is enough to notify a subset of live processes.
bOr activation of warm spare processes.

supports both non-shrinking recovery, spawning new replace-
ment processes to take over, rolling back all processes to a pre-
vious state, and shrinking recovery, which relies on the user for
the recovery procedure.

In the same vein, Fenix [14] is a library that facilitates the
implementation of resilient MPI applications. It uses ULFM to
detect failures and recover communicators, and implements, with
the help of the user, an application-aware implicitly coordinated
diskless checkpointing. It follows a non-shrinking global back-
ward model: in case of failure, failed processes are re-spawned
and all processes go back to the last checkpoint. This idea was
extended to the specification of application programming inter-
faces [46] of the Fenix library, which accommodates abstraction
of MPI fault tolerance and shields the users calling ULFM inter-
faces by hiding all capabilities inside the MPI profiling (PMPI)
layer.

A local rollback protocol that can be generally applied to
single program, multiple data (SPMD) applications is proposed
in [47]. It combines the ComPiler for Portable Checkpointing
(CPPC) tool, message logging, and ULFM. The application code
is automatically instrumented to add fault tolerance support.
After a failure, replacement processes are re-spawned to take
over the failed ones. During the recovery, only the replacement
processes are rollbacked to the last checkpoint, while consistency
and further progress in the execution is achieved through a two-
level message logging process. Point-to-point communications
are logged by the Open MPI VProtocol [48] component at the
library level. On the other hand, collective communications are
optimally logged at the application level, thereby decoupling the
logging protocol from the particular collective implementation.
Besides, the spatially coordinated checkpointing protocol applied
by CPPC reduces the log size, the log memory requirements, and
overall the resilience impact on the applications.

6. Resilient vs. stop and restart solutions

The previous section reviews the application-driven solutions
exploiting the ULFM functionalities that have been proposed in
the last years. In order to give a global overview of the perfor-
mance benefits that can be obtained in fault tolerance techniques
exploiting the ULFM constructs, this section compares traditional
stop & restart and resilient strategies to cope with faults in
the applications. Table 3 provides a schematic overview of the
alternative recovery operations to tolerate failures in resilient so-
lutions using ULFM, comparing them with the actions performed
in stop & restart approaches. The next paragraphs provide some
insights into the performance of both strategies, focusing on the

recovery operations involving ULFM. Although the main objective
of this paper is providing a survey of the ULFM capabilities and
it is not an experimental work, we have included in this section
some results from our previous works [47,49] for illustrative
purposes. Note that these results do not intend to experimentally
evaluate the overheads of ULFM, but highlight the potential of the
ULFM approach.

In the failure detection stage, stop & restart techniques cause
the entire application to abort when one or several processes
fail, while the ULFM resilience constructs enable failure notifica-
tion to some or all the remaining live processes without global
cancellation of the application. Besides, the existence of a well-
defined propagation mechanism (i.e., communication revocation),
exposed through the ULFM API, allows for highly optimized im-
plementations, as proposed in [50]. Such implementations take
advantage of underlying MPI capabilities and the structure of
applications to improve the speed at which process faults are
detected and to deliver a fast and reliable multicast using the
same high-speed interconnect as the MPI library itself. Thus, the
failure propagation constructs in ULFM enable faster global failure
detection. To illustrate this, we compared a stop & restart solution
to an equivalent resilient approach when scaling out three appli-
cations with different checkpoint file sizes and communication
patterns. The Advanced Simulation and Computing (ASC) Sequoia
Benchmark SPhot [51] is a physics package that implements a
Monte Carlo Scalar PHOTon transport code, the Himeno [52]
benchmark is a Poisson equation solver using the Jacobi method,
and MOCFE-Bone [53] simulates the main procedures in a 3D
method of characteristics (MOC) code for the numerical solution
of the steady-state neutron transport equation. Fig. 9 represents
the percentage reduction in the global detection times achieved
using ULFM with respect to a stop & restart solution using MPI
default detection mechanisms. On average, ULFM reduces by 47%
and 79% the global detection times for one-process failure and for
a full-node failure respectively, and the benefit increases as the
applications scale out. More details about the applications and the
experimental environment can be found in [49].

Once a failure is detected, the communication environment
needs to be reconstructed. In the case of stop & restart tech-
niques, the entire application needs to be relaunched, all pro-
cesses need to be restarted, and the MPI communication capa-
bilities set up (time spent in the MPI_Init routine). On the
other hand, resilience strategies allow further communication
between the live processes by identifying the failed ones and
excluding them from the MPI communicators (using the ULFM
routine MPIX_Comm_shrink). Then, the application continues
with a lesser number of processes (shrinking approach), or the
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Fig. 9. Percentage of reduction in the global failure detection time when using ULFM with respect to the stop & restart solution for one-process failure and for a
full-node failure.

failed processes are replaced (non-shrinking approach). In the
first case, the computational load must be rebalanced among the
survivor processes. In the second case, the communicator must be
reconstructed to include the replacement processes (from spares,
or dynamically added to the allocation).

Fig. 10 illustrates the reduction in reconstruction time that
can be achieved when using a non-shrinking resilience strategy
instead of a stop & restart one. The benefits obtained with the
resilience approach are reduced when increasing the number of
running processes and the number of failed ones. Most of the
reconstruction overhead is due to the cost of spawning new
processes to replace the failed ones and the reconfiguration of the
communicator so that each spare takes over a failed process. As
shown in Fig. 11, the shrinking operation is negligible, while the
cost of the spawn and reconfiguration increases when scaling out
and when increasing the number of failed processes. Such subop-
timal behavior is, at least in part, due to the lack of optimization
in the underlying spawn mechanisms used by MPI implementa-
tions. It must be noted that the dynamic processing capabilities
of MPI are rarely necessary outside resilience (at least in the
context of HPC), and even in such rare cases, the extremely small
number of potential users lead MPI implementors to provide
workable but suboptimal solutions. As with most MPI features,
a growing number of potential users has a positive impact on the
willingness of MPI implementors to put effort into design and
to improve the needed features. However, this is not the only
solution to reduce the overhead of restoring all processes. The
overhead due to the re-spawning can also be reduced by out-of-
band management of spare processes, either by allocating spare
processes during initialization or by asynchronously paying the
cost of maintaining a set of spares during execution. There are
two options in the management of spare processes: the use of
warm or hot spare processes. Warm spares are kept in standby
until the occurrence of a failure, whereas hot spares imply the
replication of the application processes, that is, they perform
active execution. The use of hot spares requires substantially
more hardware resources which, depending on the replication
factor, might rapidly become prohibitively expensive.

Lastly, the application’s state needs to be recovered in or-
der to reach a consistent point from which the execution can
be resumed. Traditional stop & restart relies on global rollback
checkpointing: the application state is recovered from the last
consistent checkpoint, repeating the computation from that point
to the failure, and then resuming the execution. A global rollback
can also be applied to a resilience approach after handling the
failure using the ULFM constructs. However, in many instances,
the failure has a localized scope and its impact is restricted to a
subset of the resources being used. The usage of the ULFM con-
structs avoids the complete loss of the state in the processes not

affected by the failure. Therefore, enabling the implementation of
more efficient strategies to recover a consistent application state
from which the execution can resume. The usage of local rollback
recoveries, in which only a subset of the processes rollback to
a previously saved state, introduces both performance and en-
ergy saving benefits. For illustrative purposes, Fig. 12 shows the
performance improvement obtained by using the local rollback
protocol build over ULFM in [47]. It reports the percentage re-
duction in the restart times when one process in the application
is recovered using the local rollback protocol instead of a global
rollback. In the local rollback protocol, only the processes affected
by the failure rollback and repeat computation, while consistency
and progress in the execution are achieved through message log-
ging. At the cost of logging, the recomputation performed by the
recovering processes results in a more efficient execution of the
computation: no communications waits are introduced, received
messages are rapidly available, and unnecessary message emis-
sions from past states of the computation are skipped. Therefore,
contributing to reduce the overall failure overhead. An extended
evaluation of the local rollback protocol and more details about
the message logging cost are available at [47,54]. Additionally, in
certain applications [32–35,40], forward recoveries can be imple-
mented, avoiding the recomputation state altogether, by building
a new application state from which the execution can resume.

7. Concluding remarks

Due to the increase in the number of computational resources
in IT infrastructures, failures become the norm, and, therefore,
the need for resiliency at the programming level surges for long-
lasting and large scale applications. Thus, the lack of resilience
support in MPI becomes a major handicap for the adoption of MPI
as a communication infrastructure outside the HPC niche.

Though the research studies and attempts to incorporate fault
tolerance into the MPI standard go back almost two decades,
the most auspicious active project towards this end is nowadays
ULFM. It supports a variety of fault tolerance models, and with
its low-level API provides a complete set of basic constructs for
building resilient algorithms.

The first fully fledged implementation of the ULFM extensions
was available in Open MPI since 2012, and new releases have
been regularly issued since. The convenience of this implemen-
tation has led to its broad adoption, at least in the research
community, in a large range of domains and scenarios. Moreover,
several efforts have also been made to integrate and use ULFM
into libraries and frameworks that help users leverage resilience
capabilities on their programs.
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Fig. 10. Percentage of reduction in the reconstruction operations time when using ULFM with respect to the stop & restart solution.

Fig. 11. Time of the reconstructing step in a non-shrinking resilience solution.

Fig. 12. Percentage of reduction in the restart times when using local rollback with respect to the global rollback recovery.

This paper describes the resilience constructs provided by
the ULFM interface and reviews a wide variety of fault toler-
ance solutions for MPI applications using ULFM, pointing out
trends and issues expected in the next computing milestones.
As a concluding remark, it could be stated that ULFM provides
the necessary support for application-driven recovery—a portable
approach that can work both at the scales expected from future
exascale platforms, and in more volatile settings such as cloud
computing.
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