
Predicting MPI Collective Communication
Performance Using Machine Learning

Sascha Hunold∗, Abhinav Bhatele†, George Bosilca‡, Peter Knees∗

∗Faculty of Informatics, TU Wien, Vienna, Austria
†Department of Computer Science, University of Maryland, College Park, MD, USA
‡Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA

E-mail: ∗hunold@par.tuwien.ac.at, †bhatele@cs.umd.edu, ∗peter.knees@tuwien.ac.at

Abstract—The Message Passing Interface (MPI) defines the
semantics of data communication operations, while the imple-
menting libraries provide several parameterized algorithms for
each operation. Each algorithm of an MPI collective operation
may work best on a particular system and may be dependent
on the specific communication problem. Internally, MPI libraries
employ heuristics to select the best algorithm for a given com-
munication problem when being called by an MPI application.
The majority of MPI libraries allow users to override the default
algorithm selection, enabling the tuning of this selection process.
The problem then becomes how to select the best possible
algorithm for a specific case automatically.

In this paper, we address the algorithm selection problem
for MPI collective communication operations. To solve this
problem, we propose an auto-tuning framework for collective
MPI operations based on machine-learning techniques. First, we
execute a set of benchmarks of an MPI library and its entire
set of collective algorithms. Second, for each algorithm, we fit
a performance model by applying regression learners. Last, we
use the regression models to predict the best possible (fastest)
algorithm for an unseen communication problem. We evaluate
our approach for different MPI libraries and several parallel
machines. The experimental results show that our approach
outperforms the standard algorithm selection heuristics, which
are hard-coded into the MPI libraries, by a significant margin.

Index Terms—Message Passing Interface, Performance Predic-
tion, Auto-tuning, Machine Learning, GAM, XGBoost, KNN

I. INTRODUCTION

Taking in account the ongoing trends, high performance

computing (HPC) applications are and will, for the foreseeable

future, be built on top of the Message Passing Interface (MPI).

MPI defines the syntax and semantics for various types of

communication operations between processes in a distributed

application. An important part of the MPI standard are the

so-called collective operations, i.e., communication applicable

between a group of processes. An example of a collective

operation is the broadcast operation (MPI_Bcast), where one

process sends a specific data item to all other participating

processes. There are several open-source libraries implementing

the latest MPI standard, such as OpenMPI [1], MVAPICH [2],

and MPICH [3], as well as vendor provided libraries, usually

derived from one of the open-source libraries. It is well known

that there is no single best algorithm for a specific MPI

collective operation such as the broadcast. In fact, the number

of processes, the number of compute nodes, and the message

size are all decisive factors to select an efficient algorithm.

For example, for small message sizes, the number of point-to-

point communication steps (latencies) has to be minimized to

minimize the overall running time, whereas for large message

sizes, the throughput needs to be maximized [4].
Internally, all MPI libraries have a set of algorithms imple-

mented for a particular MPI collective operation [5]. When an

MPI collective is called, a heuristic of the library will select

the probably best possible algorithm. The selection process

decision is made by taking into account the message size and

the number of processes for which the collective was called,

the process placement and bindings, as well as characteristics

of the underlying architectures, such as processor features,

network infrastructure and topology. Yet, the decision of which

algorithm to choose strongly depends on the actual machine.

Therefore, several attempts have been made to automate the

process of selecting the best possible algorithm for a collective

operation [6], [7], [8]. The existing approaches have several

shortcomings, such as limited accuracy or long training time.

Hence, the decision logic of which algorithm to select is most

often hard-coded into the MPI libraries.
Previously, we had proposed a method to select algorithms

for MPI collectives using machine-learning techniques [9]. In

this paper, we build upon our previous work and propose a

novel method to solve the algorithm selection problem for

MPI collectives. Although the new approach has a similar

overall prediction scheme, the mechanics and the techniques

are completely different. In [9], we built our prediction

model on relative speed-up values, whereas now we directly

predict running times, which has tremendous advantages for an

improved model error. Our initial tests with Random Forest (RF)

models worked reasonably well in [9], but for a larger number

of datasets, it turned out that other regression learners produce

better predictions (e.g., XGBoost, KNN, or GAM). Another

significant difference is that we are now able to consider

algorithmic parameters in the prediction. For example, for

large messages, it is often advantageous to segment messages

in order to improve the throughput, and these segment sizes

are now incorporated into our models.
In summary, this paper makes the following contributions:

1) We show how to collect training data for MPI collectives in

a completely predictable manner. Having an upper bound

259

2020 IEEE International Conference on Cluster Computing (CLUSTER)

978-1-7281-6677-3/20/$31.00 ©2020 IEEE
DOI 10.1109/CLUSTER49012.2020.00036

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

on the duration of the experiments is extremely important

when benchmarking MPI collectives on unknown systems,

to avoid spending the compute-hour budget on large

supercomputers.

2) We propose an algorithm selection approach for MPI

collective operations. Our selection method internally uses

a set of regression models. Since our approach should be

as robust and as practically applicable as possible, we show

that our general approach works with different supervised

learning techniques, such as XGBoost, KNN, and GAM.

It works out-of-the-box without a lengthy search for the

best hyper-parameters.

3) We evaluate our algorithm selection strategy by comparing

the performance of the predicted algorithm to the perfor-

mance of the default algorithm, which was selected by

the hard-coded decision logic. The experimental results,

which have been obtained on different parallel machines

and for different MPI libraries, show a strong evidence that

our approach outperforms the standard selection strategies

by a large extent.

The paper is structured as follows. We introduce the algo-

rithm selection problem for MPI collectives and our notation

in Section II. Then, we outline our approach to solve this

problem by fitting a series of regression models in Section III.

The experimental analysis is divided into two parts: the setup

is detailed in Section IV, and the discussion of the results

can be found in Section V. We summarize related works in

Section VI and discuss the main results in Section VII.

II. THE ALGORITHM SELECTION PROBLEM FOR MPI

COLLECTIVES

Let us start by introducing the main terminology used in this

paper. The main goal of this work is to find the best algorithm

for a specific instance, according to a set of optimization

criterion. Instances in the MPI context are communication

problems of the following type: What is the fastest algorithm

on machine M to perform an MPI_Bcast operation of m
Bytes over p processes? An instance I is characterized by the

actual collective call F , a message size m, and the number

of processes p. MPI libraries contain a set of algorithms AF

for “solving instance” I for a collective operation F . For

MPI_Bcast, MPI libraries typically provide implementations

of the binary-tree, the binomial-tree, or the chain algorithm.

Each of these algorithms for MPI_Bcast may have its own

set of parameters p1, . . . , pk that influence its performance,

such as the segment size or the tree fanout.

Given an instance I of a collective communication problem,

our goal is to select the algorithm AF,j from the set AF

that completes this communication operation with the shortest

execution time overall (which means that for rooted collective

it is not enough to simply delegate the heavy work of the

collective away from the root process), where j denotes one

of the algorithm implementations available for collective F ,

i.e., 0 ≤ j < |AF |. It is important that AF,j may only be the

fastest algorithm when all its parameters p1, . . . , pkj
have been

set correctly.

In the literature, these problems are known as the algorithm
selection [10] and the algorithm configuration problem [11].

In an algorithm configuration problem, the goal is to find a

well-performing allocation of an algorithm’s parameters, such

that some performance metric is optimized (e.g., minimizing

the running time). The algorithm configuration problem is also

commonly known as parameter tuning, and finding the best

block size of linear algebra routines on GPUs is one example of

this problem type. Note that the configuration problem focuses

on one specific algorithm only. In contrast, in an algorithm

selection problem, we want to pick the best algorithm from a

set of algorithms for a specific instance of the problem.

Now, let us take a closer look at tuning in the context

of MPI collectives. As mentioned before, all MPI libraries

already use some sort of decision logic to select the fastest

implementing algorithm and its parameters. The logic in

OpenMPI, for example, is based on the work of Pjesivac-

Grbovic et al. [8], in which decision trees were built upon a

set of benchmark instances and these decision trees were later

translated into C code. In addition to the internal selection

process, most MPI libraries (e.g., OpenMPI and IntelMPI)

allow a user to select the actual implementing algorithm for

an instance I and collective F depending on the message size

and the number of processes. The problem is that selecting

the best algorithm is highly dependent on the machine and its

architectural characteristics (e.g., the network).

Basic Tuning Options: Since the best algorithm depends on

the architecture of machines and their software stack, libraries

provide tools to override the default decision logic. IntelMPI,

for example, offers tools to auto-tune the algorithm selection

decisions for MPI collectives. There are two main problems

with these approaches: First, these tuning runs effectively

perform an exhaustive search over all algorithms and message

sizes for a pre-selected number of processes, which is often

given as a tuple p = n×N , where n denotes the number of

compute nodes and N the number of processes per compute

node (often called ppn). This exhaustive search is an expensive

process, and its running time is also unpredictable, since the

tuning tools rely on benchmarking tools like the OSU Micro-

Benchmarks [12] or the Intel MPI Benchmarks [13]. These

benchmarking suites repeat the measurements for a pre-defined

number of times. This can become very costly in a tuning

run, as some algorithms, such as the linear alltoall, may take

a very long time to complete, especially with larger number

of processes.

Second, when using the tuning results (e.g., in IntelMPI),

only the best seen algorithm for all messages sizes and process

counts for which the benchmarking was conducted will be

returned. Hence, if the tuning run was made on 32× 32
processes (32 compute nodes, 32 processes per compute node),

it will override the internal algorithm selection strategy for

this process count. But if we run the MPI program on 34× 32
processes, the default decision logic will be used, as the

benchmarking has not been done for this process count. This

is also part the problem that we are trying to solve in this

260

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

paper. Our hypothesis is that if we know an efficient algorithm

for an collective communication problem with instance Ii, the
same algorithm will most likely also be efficient for another

instance Ik, if Ii and Ik are relatively similar.

Problem Statement: In the present paper, we propose a

solution to the algorithm selection problem for MPI collective

operations, for cases, where the number of processes per node

N is the same on all compute nodes. This is the typical

default setting for most batch schedulers like SLURM. While

the approach detailed in this paper is generic and could be

applied to all collective communications, we focus on blocking

MPI collectives, such as MPI_Bcast, MPI_Alltoall,
MPI_Allreduce, which are currently the most frequently

used collectives according to the study by Chunduri et al. [14].

In particular, we do not consider collectives of the v- or w-type,

where the buffer sizes may vary between processes, as for

these collective most often only a few algorithms are available

(often one or two).

Figure 1 depicts the algorithm selection problem that we

consider. Our approach starts with obtaining a training dataset.

To that end, we benchmark the internal algorithms of MPI

blocking collectives for different messages sizes, numbers of

nodes, and numbers of processes per node. For each case and

algorithm, we obtain a performance value, i.e., measure the

running time of that algorithm. We use this labeled dataset, our

training dataset, to instantiate an algorithm selection strategy.

In this paper, we propose one such selection strategy, but there

are also other possible strategies (e.g., portfolio builders like

AutoFolio [15]). Once the model has been fitted, we apply

it to unseen (unknown) instances (e.g., a different number of

processes). The overall goal is that the running time of the

predicted algorithm (the algorithm identifiers) is as close as

possible to the best possible running time of any algorithm.

Our entire approach is an offline strategy, as the bench-

marking and the model building have to be done separately

before they can be applied. We can apply our model before

an MPI application is about to be executed. Once we know

how many compute nodes and processes per node have been

requested, we query the model for a set of message sizes (10–

15 message sizes is enough) and create a configuration file

for the different MPI collectives, which can be loaded when

starting the application. Hence, the prediction time for a specific

instance has not the highest priority. If predictions can be done

in the order of seconds, the approach will work seamlessly

with SLURM. However, when targeting online approaches, the

prediction time needs to be in the microsecond range, as the

overhead of MPI collectives would be too large otherwise.

III. APPROACH TO SOLVE MPI ALGORITHM SELECTION

PROBLEM

Before devising a strategy for selecting the best algorithm

and its parameters for a given MPI collective communication

problem, we summarize the essential requirements that such

an algorithm selection strategy for MPI collectives must fulfill.

Algorithm Selection
(using Regression

Models)

(MPI collective c,
message size m,

number of nodes n,
processes per node ppn)

Algorithm ID
for MPI collective c

Set of Problem Instances
(e.g. , Allgather,

n=16,ppn=8,m=128B)

Machine Learning
Task

Benchmarking
Task

Dataset of Performance
(e.g., Allgather,n=16,

ppn=8,m=128B,
algid=1,84µs)

Fig. 1: Overall framework to solve the algorithm selection

problem for MPI collectives.

A. Essential Requirements

Practical Applicability of Training Data Selection: A stan-

dard procedure for obtaining a training dataset would be

randomization. In our context, it would mean that for a

given MPI collective, say MPI_Bcast, we would measure

the performance for a random set of input features, such

as message size, number of nodes, or processes per node.

This strategy might work for shared-memory systems, but

certainly not for supercomputers and compute clusters. On

such systems, a batch scheduler will assign our benchmarking

job to a subset of machines, whose size is specified as a job

parameter. Therefore, our training dataset will comprise the

most commonly used input features on a machine, e.g., we

train with 16 or 32 compute nodes, as these numbers are

commonly used. Moreover, once we have obtained a compute

node allocation from the scheduler, we will run as many training

runs as possible within a given time frame.

Predictable Training Time: Another requirement is a pre-

dictable training time. As mentioned before, literally all MPI

benchmark suites measure a collective for a certain number of

times (cf. [16]). Yet, the tuning expert wants to precisely define

how much time is spent on the training task. For that reason, we

need to employ a measurement scheme which allows for setting

a benchmarking timer. If the timer is up, the benchmarking

run will stop.

Avoid Bias in Training Data: In our previous work [9] on

the algorithm selection problem for MPI collectives, we used

regression models (random forests) to predict the relative

improvement of algorithm AF,j (j > 1) with respect to the

default strategy AF,0. We found two disadvantages with this

approach: First, AF,0 is not an actual algorithm but a strategy,

and thus, the actual algorithm behind AF,0 changes depending

on the feature vector. It may be that two selected algorithms for

AF,0 perform not equally well, e.g., one algorithm performs

very well for small messages sizes, but the selected one for large

messages sizes is not performing well. Thus, the ratio between

some algorithm AF,j , j > 0 and the strategy (algorithm 0 or

AF,0) may behave irregularly, which complicates the learning

process. The second downside is that the ratios are in the range

261

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

seg. 1K seg. 4K seg. 16K seg. 64K seg. 128K

1 16 25
6
10
24
40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24
40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24
40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24
40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24
40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4

0

10

20

30

40

50

Message size [Byte]

S
p
ee

d
u
p
w
rt

A
lg
o
ri
th
m

1

chains

2

4

8

16

Fig. 2: Speed-up of various algorithmic configurations of alg. 2 (chain algorithm) with respect to alg. 1 (linear) of MPI_Bcast;
“seg.” denotes the segment size while “chains” denotes the number of chains; 32× 32 processes, OpenMPI 4.0.2, Hydra.

(0,∞), where improvements are ratios with values < 1. This
introduces some bias into the learning processes, as several

methods try to split the space equally.

Another possible attempt for solving the problem would be

to directly predict the algorithm ID for a given feature vector.

Each feature in the training data could be labeled with the ID of

the best algorithm for that case. The problem is that—in many

cases in MPI—a small number of algorithms will perform best

on most instances. In these scenarios, the number of different

labels in the training datasets would be very heterogeneous,

and thus, the final prediction models would be biased towards

the heavily used algorithms.

Achieving Robustness and Applicability: A very important,

yet often overseen requirement is that our approach should

produce good results regardless of the actual machine learning

method used. The goal is that by applying a standard regression

method, we can get improvements out-of-the-box. In particular,

we do not set out to perform any hyper-parameter tuning. Of

course, for the final model on a given machine, tuning the hyper-

parameters of a specific method (e.g., XGBoost) can improve

the model’s accuracy. However, in this proof-of-concept, we

do not want to rely on hyper-parameter tuning, as the risk of

drawing wrong conclusions to due over-fitting the data would

be too high.

B. Algorithm Selection and Regression Approach

For a better comprehension of our final algorithm selection

strategy, Figure 3 shows an illustration of our method. The

basic idea of our approach is to create a regression model for

every algorithm AF,j , j > 0 that is available for a collective

operation F . The goal is to obtain a regression model for each

algorithm, which predicts its running time, and then, we select

the algorithm that minimizes the running time for an unseen

feature vector.

A problem that still needs to be solved is the algorithm con-

figuration problem. As said above, some algorithmic variants

possess parameters that effect their performance, e.g., the seg-

ment size. In our approach, we combine the ID j of algorithm

Algorithm ID

Regression Model
for Algorithm 0

Regression Model
for Algorithm 1

Regression Model
for Algorithm k

Runtime Predictions

 A0:T0
 A1:T1
 ..
 Ak:Tk

input

output

(MPI collective F,
message size m,
number of nodes n,
processes per node N) ArgMin(Runtime)

Fig. 3: General algorithm selection strategy for MPI collectives.

The running time of each algorithm (1 . . . k) is predicted for a

given instance (F,m, n,N). The algorithm with the smallest

predicted runtime is selected.

AF,j and a certain allocation of its parameters p1,j , . . . , pk,j
to form a unique algorithm identifier uj,l, 1 ≤ l ≤ q, where we

assume that the number of different parameter allocations is q.
For example, if we consider three segment sizes s1, s2, and
s3 for algorithm AF,j , the combination of p1,j ∈ {s1, s2, s3}
and j, i.e., (j, s1), (j, s2), and (j, s3), would be mapped to a

unique identifier uj,l. By using this approach, we merge the

algorithm configuration and the algorithm selection problem.

The limitation is that we need to define the possible values of

the algorithms’ parameters beforehand. However, in practice,

this is rather straight-forward. For example, segmentation is

only useful for larger messages, and the segment sizes should

not be too small. A reasonable set of segment sizes (e.g., 1K,

4K, 16K, or 64K) is small enough to apply this approach. It is

important to consider and to model the different algorithmic

parameters. Figure 2 shows the importance of modeling these

parameters. Here, we plot the performance ratio of algorithm 2

with respect to algorithm 1 for MPI_Bcast. Algorithm 1 in

OpenMPI is the basic linear algorithm, where the root process

sends a message to one process at a time and which has no

further parameters. Algorithm 2, the chain algorithm, has two

parameters: the segment size and the number of chains. The

figure shows that the right choice of these parameters has a

significant performance impact, especially for large message

262

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Hardware overview.

Machine Name n Max ppn Processor Interconnect MPI library

Hydra 36 32 Intel Xeon Gold 6130, 2.1 GHz Intel OmniPath OpenMPI 4.0.2
Dual socket Dual-rail, dual-switch IntelMPI 2019

Jupiter 35 16 AMD Opteron 6134 Mellanox InfiniBand (QDR) OpenMPI 4.0.2

SuperMUC-NG 6336 48 Intel Skylake Platinum 8174 Intel OmniPath OpenMPI 4.0.2

sizes. For large (4MB) messages, the speed-up of algorithm 2

is between 10 to 50, depending on the values of the parameters.

Next, all algorithms with their respective IDs uj,l (all algo-

rithmic configurations) are benchmarked. For each algorithm,

we fit a regression model to predict the running time of a

problem instance. To apply our selection approach, we query

each regression model and predict the running time of each

algorithmic configuration uj,l, and the configuration that leads

to the shortest running time prediction is finally selected. That

means that the resulting algorithm ID not only encodes the

selected algorithm AF,j but also the parameter configuration.

C. Regression Model for Running Times

We now explain how to fit a regression model to predict

the running time of MPI collectives. As stressed before, our

main motivation was to get a working tuning framework that

can be applied to any MPI library. Thus, we intentionally omit

a rigorous hyper-parameter tuning of the various regression

models.

Nonetheless, we tried out several methods from the toolbox

for supervised learning, such as Random Forests, Neural

Networks, or Linear Regressions. However, they all showed

several weaknesses, which is why we finally settled for three

other regression methods, which are: XGBoost, K-nearest

Neighbor, and generalized additive models (GAM). While

testing the prediction quality on our datasets, we noticed that

all three performed reasonably well and could all be used

inside a practical framework. For the sake of completeness,

we opted to show results with all three methods.

Before moving forward with the description of our approach,

we describe the selected regression methods. With the exception

of XGBoost, a more extended description of these regression

methods can be found in Hastie et al. [17].

XGBoost: The XGBoost library (eXtreme Gradient Boost-

ing) [18] uses an ensemble method that combines several

weaker classifiers to create a better classifier. The essential

method used in XGBoost is a gradient boosting decision

tree algorithm.

Generalized additive models (GAM): Several processes,

such as the MPI algorithm selection problem, are non-linear

and therefore linear regression models fail to provide the

necessary prediction accuracy. The GAM method [19] performs

a regression on each dependent variable using a scatterplot

smoother (e.g., a spline or kernel smoother). These individual

functions model possible nonlinearities in the response variable

and are then combined (added) into a prediction model.

K-nearest Neighbor (KNN): The KNN algorithm computes

distances between points (samples) in the training and test

datasets [20]. A common metric is the Euclidean distance. For

regression tasks, the KNN algorithm determines the k closest

points to an unknown point in the feature space. To determine

the final output, the target values of all k closest neighbors are

combined (e.g., the mean value is computed).

IV. EXPERIMENTAL SETUP

The following section depicts the technical details of our

framework. Since we logically perform two different steps, 1)

the benchmarking to obtain the datasets, and 2) the building and

evaluation of the model, we refer to these steps in the following

as the benchmark step and the tuning step, respectively.

A. Machines

We perform experiments on three different parallel machines,

which are called Hydra, Jupiter, and SuperMUC-NG. An

overview of their basic properties is shown in Table I. The

machines Hydra and Jupiter are smaller cluster installations at

the Vienna University of Technology. SuperMUC-NG is in the

top ten of the TOP500 list and is located at LRZ Munich. The

most obvious differences are the number of cores per compute

node and the interconnect. For example, Hydra has a dual-rail

Intel OmniPath while Jupiter has an older single-rail Infiniband

interconnect. While being of similar size, Hydra has about

twice as much bandwidth as Jupiter but also twice as many

cores. Additionally, the compute nodes vary significantly in the

number of cores per compute nodes (from 16 to 48), which

is helpful to examine how sensitive the algorithm selection

strategy is to the number of cores.

B. Software

In the benchmarking step, we rely on the ReproMPI bench-

mark [16]. There are two main features that sets it aside from

other MPI benchmarking suites. First, it allows for measuring

collectives for a predefined benchmarking time. Second, it

supports accurate clock synchronization schemes and measuring

collectives using a time-window process synchronization [21].

We examine two different MPI libraries: OpenMPI and

IntelMPI. We use the same version of OpenMPI (4.0.2) on

all three machines, to avoid drawing wrong conclusions, as

the library version would be an additional experimental factor.

Our techniques are also applicable to other MPI libraries like

MPICH and potentially also to MVAPICH, although MVAPICH

uses a slightly different concept for the algorithm selection,

where the algorithm for small, medium, or large messages can

be altered.

263

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Overview of datasets.

Dataset MPI routine MPI Version Machine #algorithms #nodes #ppn #msg. sizes #samples

d1 MPI_Bcast OpenMPI 4.0.2 Hydra 9 11 10 10 255200
d2 MPI_Allreduce OpenMPI 4.0.2 Hydra 7 11 10 10 39600
d3 MPI_Bcast OpenMPI 4.0.2 Jupiter 9 10 7 10 162400
d4 MPI_Allreduce OpenMPI 4.0.2 Jupiter 7 10 7 10 25200
d5 MPI_Allreduce IntelMPI 2019 Hydra 16 11 10 10 70400
d6 MPI_Alltoall IntelMPI 2019 Hydra 5 11 10 8 17600
d7 MPI_Bcast IntelMPI 2019 Hydra 12 11 10 10 52800
d8 MPI_Bcast OpenMPI 4.0.2 SuperMUC-NG 9 5 5 8 23184

In the tuning step, we use the following R packages:

xgboost 1.0.0.2 for XGBoost, mcgv 1.8 for GAM, and

caret 6.0 for KNN. As emphasized, we do not perform

an extensive tuning of the hyper-parameters. Therefore, we

use the default K = 5 for the KNN. We use scaled inputs for

KNN, although we found that our regression models worked

slightly better with unscaled inputs. However, that was mostly

coincidence, since the message size turned out to be the most

important factor in many cases, whose values also happened

to be of largest magnitude. Nonetheless, for the sake of a

general applicability, we scaled the inputs when using KNN.

Since a regression based on linear models, as expected, did

not work in XGBoost, we use the Tweedie regression (the

Gamma regression also worked well). We train the model with

XGBoost for 200 rounds. For the generalized additive models

of mcgv, we choose the Gamma family for positive, real-valued

data and the log link function. For more information on these

parameters, see Hastie et al. [17].

C. Datasets

In order to evaluate our approach, we measured the perfor-

mance (running time) of different MPI collective operations

for a large number of cases. These datasets are summa-

rized in Table II. Let us take a look at dataset d1 as

an example. This dataset only contains performance mea-

surements of MPI_Bcast on Hydra using OpenMPI 4.0.2,

which implements 9 different algorithms to execute the

broadcast. We recorded measurements on various numbers

of compute nodes n, i.e., 4, 7, 8, 13, 16, 19, 24, 27, 32, 35,
and 36 (hence, #nodes=11). Similarly, we varied the num-

ber of processes per node, i.e., d1 contains values for

N ∈ {1, 4, 8, 10, 16, 17, 20, 24, 28, 32} (#ppn=10). We used

the following message sizes (in Bytes) for the fixed-

sized buffer collectives (Allreduce, Bcast) on all machines:

1, 16, 256, 1024, 4096, 16 384, 65 536, 524 288, 1 048 576, and
4 194 304. Due to space limitations, we cannot provide the

full details of the other datasets. The last column “#samples”

contains the number of distinct measurements in the dataset.

Note that the number in this column is larger than the cross

product of #algid × #nodes × #ppn × #msize. The reason

is that we also take into account algorithmic parameters

such as the segment size or the fanout in the dataset. A

specific algorithm AF,j , j > 0 is benchmarked on all process

configurations (#nnodes × #ppn), all message sizes, but also

for all combinations of realistic algorithmic parameters. For

example, we tested MPI_Bcast in d1, with the following

TABLE III: Training and test datasets by machine and number

of compute nodes (n).

Machine Full training Small training Test dataset (n)
dataset (n) dataset (n)

Hydra 4, 8, 16, 20, 24, 32, 36 4, 16, 36 7, 13, 19, 27, 35
Jupiter 4, 8, 16, 20, 24, 32 4, 16, 32 7, 13, 19, 27
SuperMUC-NG 20, 32, 48 20, 32, 48 27, 35

segment sizes in KB: 1, 4, 16, 64, and 128, if segmentation is

supported by an algorithm.

V. EXPERIMENTAL RESULTS

Before we examine the results for each machine separately,

we would like to comment on the overall evaluation strategy.

In a typical machine learning setting, the prediction error

of regression models would be analyzed by metrics like the

mean absolute error (MAE) or the root mean squared error

(RMSE). Moreover, we would need to perform some sort of

cross-validation. While generating our regression models, for

example with XGBoost, we have continuously monitored our

errors on the training and test datasets to avoid overfitting.

However, from an HPC perspective, the most important metric

is the eventual performance improvement of the method, i.e.,

we would like to answer whether the machine learning effort

improves the running time of our MPI collectives.

For that reason, we evaluate our approach in the following

way. We select a reasonable subset of compute nodes, which

will be used for the training of our regression models. The

idea is that we usually get an allocation of compute nodes

from the batch scheduler. When we have such an allocation,

we perform MPI benchmarking runs on all compute nodes.

Table III gives an overview of the training and test datasets

used in our analysis.1 For example, on Hydra, we train our

regression models for MPI_Bcast with the seven different

numbers of compute nodes. Then, we apply our model on the

test dataset, which in this case only includes odd numbers of

compute nodes. Of course, we could have fully randomized

these datasets in this paper, which we had also tested in our

study. The results were very similar to the ones we present here.

Still, we believe that this choice of training and test datasets is

very realistic in practice. Usually, a scientist runs some MPI

benchmark on a few different, but commonly used numbers

1https://github.com/hunsa/mpi-collective-prediction

264

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

nodes: 35

ppn: 1

nodes: 35

ppn: 16

nodes: 35

ppn: 32

nodes: 27

ppn: 1

nodes: 27

ppn: 16

nodes: 27

ppn: 32

1 16 25
6

10
24

40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24

40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24

40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0

1

2

3

4

5

0

2

4

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

message size [Byte]

N
o
rm

al
ze
d
ru
n
n
n
in
g
ti
m
e

Strategy Exhaustive Search (Best) Default Prediction

Fig. 4: Comparison of the algorithm selection strategies for MPI_Bcast; OpenMPI 4.0.2; Hydra.

KNN GAM XGBoost

0
7
x
0
1

0
7
x
0
4

0
7
x
0
8

0
7
x
1
0

0
7
x
1
6

0
7
x
1
7

0
7
x
2
0

0
7
x
2
4

0
7
x
2
8

0
7
x
3
2

1
9
x
0
1

1
9
x
0
4

1
9
x
0
8

1
9
x
1
0

1
9
x
1
6

1
9
x
1
7

1
9
x
2
0

1
9
x
2
4

1
9
x
2
8

1
9
x
3
2

3
5
x
0
1

3
5
x
0
4

3
5
x
0
8

3
5
x
1
0

3
5
x
1
6

3
5
x
1
7

3
5
x
2
0

3
5
x
2
4

3
5
x
2
8

3
5
x
3
2

0
7
x
0
1

0
7
x
0
4

0
7
x
0
8

0
7
x
1
0

0
7
x
1
6

0
7
x
1
7

0
7
x
2
0

0
7
x
2
4

0
7
x
2
8

0
7
x
3
2

1
9
x
0
1

1
9
x
0
4

1
9
x
0
8

1
9
x
1
0

1
9
x
1
6

1
9
x
1
7

1
9
x
2
0

1
9
x
2
4

1
9
x
2
8

1
9
x
3
2

3
5
x
0
1

3
5
x
0
4

3
5
x
0
8

3
5
x
1
0

3
5
x
1
6

3
5
x
1
7

3
5
x
2
0

3
5
x
2
4

3
5
x
2
8

3
5
x
3
2

0
7
x
0
1

0
7
x
0
4

0
7
x
0
8

0
7
x
1
0

0
7
x
1
6

0
7
x
1
7

0
7
x
2
0

0
7
x
2
4

0
7
x
2
8

0
7
x
3
2

1
9
x
0
1

1
9
x
0
4

1
9
x
0
8

1
9
x
1
0

1
9
x
1
6

1
9
x
1
7

1
9
x
2
0

1
9
x
2
4

1
9
x
2
8

1
9
x
3
2

3
5
x
0
1

3
5
x
0
4

3
5
x
0
8

3
5
x
1
0

3
5
x
1
6

3
5
x
1
7

3
5
x
2
0

3
5
x
2
4

3
5
x
2
8

3
5
x
3
2

1

16

256

1024

4096

16384

65536

524288

1048576

4194304

Configuration

m
si
ze

[B
y
te
]

alg.id

1

2

3

4

5

6

7

9

Fig. 5: Overview of the predicted algorithm for various process configurations (#nodes × ppn) for MPI_Bcast with each of

the regression learners; OpenMPI 4.0.2; Hydra.

of compute nodes, e.g., 8, 16, and 32, and these result should

then form the foundation of the model.

We note that we have measured the performance for the entire

dataset beforehand, i.e., we do not need to run benchmarks

on-the-fly. If our models predict a certain algorithm and its

configuration for an unseen feature vector, we already know the

actual running time of that algorithm with this configuration.

We also know the (empirically) best algorithm for this feature

vector, which will serve as a reference point. We would like

to beat the baseline, which is the default algorithm selected by

the decision logic. In OpenMPI, the default strategy is called

algorithm 0, and in IntelMPI the decision logic is used if no

explicit algorithm is set by the user.

It is also important to discuss the training time. Since

we utilize ReproMPI, we configured it to benchmark each

individual configuration for a maximum of either 500 values or

0.5 s on SuperMUC-NG and 1 s on Hydra and Jupiter, whatever

condition is satisfied quicker. For small message sizes, record-

ing 500 measurements usually takes much less than one second.

For example, on SuperMUC-NG, the training would require a

maximum of 23184 · 0.5 s, which amounts to roughly 3 hours.

However, in practice, the actual measurements on SuperMUC-
NG took only about 56 minutes on all compute nodes.

A. Prediction Results for Hydra

Finally, let us inspect the experimental results starting with

Hydra. Due to space limitations, we can only show a subset of

prediction results for OpenMPI in Figure 4. Here, we compare

the MPI library performance for three cases: (1) the best

possible algorithm, found by an exhaustive search, (2) the

default algorithm, decided by the decision logic in OpenMPI,

and (3) our predicted algorithm. All prediction results shown

here are obtained using GAM. Since we know the running

265

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

nodes: 35

ppn: 1

nodes: 35

ppn: 16

nodes: 35

ppn: 32

nodes: 27

ppn: 1

nodes: 27

ppn: 16

nodes: 27

ppn: 32

1 16 25
6

10
24

40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24

40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24

40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

message size [Byte]

N
o
rm

al
ze
d
ru
n
n
n
in
g
ti
m
e

Strategy Exhaustive Search (Best) Default Prediction

Fig. 6: Comparison of the algorithm selection strategies for MPI_Allreduce; IntelMPI 2019; Hydra.

nodes: 35

ppn: 1

nodes: 35

ppn: 8

nodes: 35

ppn: 16

nodes: 27

ppn: 1

nodes: 27

ppn: 8

nodes: 27

ppn: 16

1 16 25
6

10
24

40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24

40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4 1 16 25

6
10
24

40
96

16
38
4

65
53
6

52
42
88

10
48
57
6

41
94
30
4

0

1

2

3

4

5

0

2

4

0

1

2

3

0

1

2

3

4

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

message size [Byte]

N
o
rm

al
ze
d
ru
n
n
n
in
g
ti
m
e

Strategy Exhaustive Search (Best) Default Prediction

Fig. 7: Comparison of the algorithm selection strategies for MPI_Allreduce; OpenMPI 4.0.2; Jupiter.

time for all three configurations, we normalize the running

time with respect to the best possible. Therefore, the exhaustive

search will have a normalized score of 1.0. We can observe

that our predicted algorithm is very close to the best possible

algorithm for most of the cases, and it clearly outperforms the

default OpenMPI algorithm selection strategy.

We asked ourselves whether all broadcast algorithms imple-

mented in OpenMPI were used by the predictor. Therefore,

we show, in Figure 5, the selected algorithm for each process

configuration (x axis) and each message size (y axis). The

graph also compares the decisions taken by the different re-

gression strategies (KNN, GAM, and XGBoost). The broadcast

algorithm 8 is missing in the figure, as it was found buggy in

this version of OpenMPI. We can observe that all regression

approaches indeed lead to a very different selection strategy

and that all algorithms were used in the predictions. We note

that, for the sake of clarity, we only show the algorithm IDs

and omit their parameter settings such as segment size and

fanout (which are part of this model but now shown).

We also analyze the prediction potential for IntelMPI in

Figure 6. We notice that the default strategy of IntelMPI is

very efficient, as it already selects the best algorithm in many

cases. For MPI_Allreduce, there is no significant difference

between the default and the predicted strategy. Although this

looks like a weak point of our approach at first glance, it is in

fact very good. Without any detailed meta-knowledge of the

algorithms and their behavior, our approach is able to keep up

with the decision logic provided.

266

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

nodes: 35

ppn: 1

nodes: 35

ppn: 24

nodes: 35

ppn: 48

nodes: 27

ppn: 1

nodes: 27

ppn: 24

nodes: 27

ppn: 48

1 16 25
6

10
24

40
96

16
38
4

65
53
6

52
42
88 1 16 25

6
10
24

40
96

16
38
4

65
53
6

52
42
88 1 16 25

6
10
24

40
96

16
38
4

65
53
6

52
42
88

0

5

10

0

5

10

15

0

2

4

6

0

2

4

6

0.0

0.5

1.0

1.5

2.0

0

1

2

3

4

message size [Byte]

N
o
rm

al
ze
d
ru
n
n
n
in
g
ti
m
e

Strategy Exhaustive Search (Best) Default Prediction

Fig. 8: Comparison of the algorithm selection strategies for MPI_Bcast; OpenMPI 4.0.2; SuperMUC-NG.

TABLE IV: Overall prediction quality, measured as the relative speed-up over the default selection strategy (the higher the better).

(a) Large training dataset

method d1 d2 d3 d4 d5 d6 d7 d8 mean

KNN 1.68 1.49 1.49 1.16 1.04 0.84 1.11 2.13 1.37
GAM 1.65 2.16 1.41 1.28 1.02 1.01 1.11 2.17 1.48

XGBoost 1.71 2.11 1.41 1.19 0.99 0.98 1.10 1.82 1.41

(b) Small training dataset

method d1 d2 d3 d4 d5 d6 d7 d8 mean

KNN 1.68 1.45 1.43 1.11 1.03 0.84 1.11 2.13 1.35
GAM 1.67 2.16 1.41 1.21 1.02 1.00 1.11 2.17 1.47
XGBoost 1.60 1.87 1.35 1.06 0.94 0.95 0.97 1.82 1.32

B. Prediction Results for Jupiter

On Jupiter, the results for MPI_Allreduce are similar

to the MPI_Allreduce results on Hydra. We specifically

investigated MPI_Allreduce since it is the most commonly

used collective according to Chunduri et al. [14]. Again, the

default decision logic, this time of OpenMPI, is already

performing very well, as can be seen in Figure 7. Thus, there

is not much to gain for most message sizes. Nonetheless, there

is always a range of message sizes, around 16 kB, for which

our predicted algorithm performs significantly better.

C. Prediction Results for SuperMUC-NG

The prediction results shown in Figure 8 for the SuperMUC-
NG dataset are also promising. We can observe that our

approach selects better algorithms for MPI_Bcast in several

cases. Although we see these spikes for the largest message

size, we would say that the overall performance of the default

and our prediction strategy are equal.

D. Overall Evaluation

Last, we evaluate how good the prediction models are

depending on the size of the training data and the learning

strategy. To that end, we compute the speed-up of our predicted

algorithm with respect to the default strategy. Hence, a speed-

up value that is larger than one would mean that the predicted

algorithm is better. We are interested in obtaining an overall,

average speed-up that is as large as possible. We show the

overall performance results in Table IV, where Table IVa

summarizes the mean speed-up of the predicted algorithms

for the large training dataset. For example, applying KNN,

our prediction leads to a 37% improvement of the running

time on average. We can observe that KNN, GAM, and

XGBoost lead to similar results on all datasets. Interestingly,

the improvements obtained for the small datasets are very

similar, which means that with a moderate training effort one

can already get about 30–45% improvement in running time

compared to the default strategy.

VI. RELATED WORK

Analyzing and optimizing MPI collectives has always been

an active field of study [4], [5], as collective operations play

an important role in many parallel, scientific applications.

An online approach to tuning MPI collectives is STAR-

MPI [22], which internally selects an appropriate algorithm

for a specific input instance. It works in two phases. In

the tuning phase, it benchmarks different algorithms for one

MPI function and records their run-times. Then, STAR-MPI

has enough statistical information that it can select a good

algorithm for subsequent calls of this MPI function. Chaarawi

et al. [6] developed the Open Tool for Parameter Optimization

(OTPO), which can be used to tune parameters of the OpenMPI

library. OTPO effectively performs an exhaustive search over

a small number of parameters. Pellegrini et al. [23] tackled

the problem of finding good MPI library parameters, such

267

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

as the eager limit, with machine learning techniques. They

train different models (decision trees and artificial neural

networks) based on performance features of application runs,

such as the percentage of collective operations in a training

run. In contrast to this work, our approach works without a

previous profiling run, as all the features are already known

(message size, number of processes). Barigou and Gabriel [24]

showed how to tune algorithmic parameters of non-blocking

collectives automatically, where parameters such as fan-out

and segment size for MPI_Ibcast are optimized. Sikora et

al. [25] presented an auto-tuning approach for MPI applications

with the Periscope tool-chain. The tuning tool then either

performs an exhaustive search or uses a genetic algorithm

to find a good allocation of all parameters. Papadopoulou

et al. [26] proposed a method based on machine-learning

techniques to predict the point-to-point communication time

of HPC applications, where they used additional features, such

as the number of intra- or inter-node messages, to improve

the prediction performance. In contrast, our approach does not

rely on MPI profiling data of a run, whose execution time we

try to predict, as these data are only available post mortem.

Pjesivac-Grbovic et al. [27] conducted a very detailed

analysis of the applicability of different performance models

for MPI collectives. In this work, the authors assessed the

prediction accuracy of various performance models for different

algorithms of the following collectives: Barrier, Broadcast,

Reduce, and Alltoall. Each algorithm was modeled using

the Hockney, the LogGP, and the P-LogP model, and the

predicted performance values were compared to experimentally

determined values. A similar work was lately published by

Nuriyev and Lastovetsky [7].

Shudler et al. [28] have shown how to pinpoint performance

problems of MPI collectives using performance models. In

their approach, an empirically fitted performance model is

compared to a theoretical expectation of the running time for

a collective. If these models defer, a performance problem is

detected. We proposed an orthogonal approach [29], where we

systematically evaluated whether MPI collectives fulfill certain

performance guidelines. A possible performance guideline is

that an allreduce call should never be slower than chaining

reduce and broadcast. PGMPITuneLib checks these perfor-

mance guidelines empirically and records the cases where

the default MPI algorithm violates a guideline. In a later MPI

application run, PGMPITuneLib can now substitute the original

MPI collective with the guideline implementation.

The Artificial Intelligence community has tackled the prob-

lems of algorithm selection [10] and algorithm configura-

tion [11] over the last decades. A common question is how

to find a good solver/algorithm for an arbitrary instance of a

certain problem, e.g., Mixed Integer Programming or the Trav-

eling Salesman Problem. Several proposed solutions iteratively

learn and build an algorithmic portfolio for a set of training

instances, which then works well on unseen instances [30].

Other approaches to parameter tuning include tools like

OpenTuner [31], which offers a search strategy called “AUC

Bandit meta technique” (an ensemble technique) that works

better than other search techniques in isolation (e.g., hill-

climbing or evolutionary methods).

VII. CONCLUSIONS

In this work, we revisited the algorithm selection problem for

MPI collective operations. This problem consists in selecting

the best possible (the fastest) algorithm and its parameters for

a specific use case or scenario. A use case (or instance) is

composed of the actual collective call, e.g., MPI_Allreduce,
the message size, the number of compute nodes, and the

number of processes per compute node. We proposed a novel

algorithm selection strategy that builds a regression model

for each algorithm and configuration. A configuration defines

the setting of the various algorithmic parameters, such as the

segment size or the tree fanout.

As we set out to devise a general tuning framework for

MPI collectives using regression models, we evaluated our

approach with different learning strategies, e.g., KNN, GAM, or

XGBoost, in order to highlight the independence of our method

on a specific learner or its hyper-parameters. We examined

our prediction models for multiple MPI collectives on three

different parallel machines and two MPI libraries (OpenMPI

and IntelMPI). Our experimental results support the claim

that our algorithm selection approach improves the overall

performance of OpenMPI in all considered cases. For IntelMPI,

we found that the default strategy already selects the best

possible algorithm in most of the cases, which limited the tuning

potential for our method. Nonetheless, our predictor performs

equally well, which shows the robustness of our approach.

ACKNOWLEDGMENT

We acknowledge PRACE for awarding us access to

SuperMUC-NG at GCS@LRZ, Germany. This work was

supported by funding provided by the University of Maryland

College Park Foundation.

REFERENCES

[1] R. L. Graham, G. M. Shipman, B. Barrett, R. H. Castain, G. Bosilca, and
A. Lumsdaine, “Open MPI: A high-performance, heterogeneous MPI,”
in CLUSTER. IEEE Computer Society, 2006.

[2] D. K. Panda, K. Tomko, K. Schulz, and A. Majumdar, “The MVAPICH
Project: Evolution and Sustainability of an Open Source Production
Quality MPI Library for HPC,” in Proceedings of the First Workshop on
on Sustainable Software for Science: Practice and Experiences (WSSSPE),
2013.

[3] W. Gropp, “MPICH2: A new start for MPI implementations,” in
Proceedings of the 9th EuroPVM/MPI, ser. Lecture Notes in Computer
Science, vol. 2474. Springer, 2002, p. 7.

[4] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn, “Collec-
tive communication: theory, practice, and experience,” Concurrency and
Computation: Practice and Experience, vol. 19, no. 13, pp. 1749–1783,
2007.

[5] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, pp. 49–66, 2005.

[6] M. Chaarawi, J. M. Squyres, E. Gabriel, and S. Feki, “A tool for
optimizing runtime parameters of Open MPI,” in Proceedings of the 15th
European PVM/MPI Users’ Group Meeting (EuroPVM/MPI), ser. LNCS,
vol. 5205, 2008, pp. 210–217.

[7] E. Nuriyev and A. L. Lastovetsky, “Accurate runtime selection of optimal
MPI collective algorithms using analytical performance modelling,”
CoRR, vol. abs/2004.11062, 2020.

268

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

[8] J. Pjesivac-Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, and J. Dongarra,
“MPI collective algorithm selection and quadtree encoding,” Parallel
Computing, vol. 33, no. 9, pp. 613–623, 2007.

[9] S. Hunold and A. Carpen-Amarie, “Algorithm selection of MPI collectives
using machine learning techniques,” in Proceedings of the IEEE/ACM
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS@SC), 2018.

[10] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” Evolutionary Computation,
vol. 27, no. 1, pp. 3–45, 2019, pMID: 30475672.

[11] H. H. Hoos, “Automated algorithm configuration and parameter tuning,”
in Autonomous Search, Y. Hamadi, E. Monfroy, and F. Saubion, Eds.
Springer, 2012, pp. 37–71.

[12] “OSU Micro-Benchmarks,” http://mvapich.cse.ohio-
state.edu/benchmarks/.

[13] “Intel MPI Benchmarks.” [Online]. Available: https://github.com/intel/
mpi-benchmarks

[14] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, “Charac-
terization of MPI usage on a production supercomputer,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC). IEEE / ACM, 2018, pp.
30:1–30:15.

[15] M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub, “Autofolio: An
automatically configured algorithm selector,” J. Artif. Intell. Res., vol. 53,
pp. 745–778, 2015.

[16] S. Hunold and A. Carpen-Amarie, “Reproducible MPI benchmarking
is still not as easy as you think,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 12, pp. 3617–3630, 2016.

[17] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edition, ser.
Springer Series in Statistics. Springer, 2009.

[18] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD). ACM, 2016, pp.
785–794.

[19] T. Hastie and R. Tibshirani, Generalized additive models. Wiley Online
Library, 1990.

[20] T. M. Mitchell, Machine Learning, ser. McGraw Hill series in computer
science. McGraw-Hill, 1997.

[21] S. Hunold and A. Carpen-Amarie, “Hierarchical clock synchronization in
MPI,” in Proceedings of the IEEE International Conference on Cluster
Computing (CLUSTER), 2018.

[22] A. Faraj, X. Yuan, and D. K. Lowenthal, “STAR-MPI: self tuned
adaptive routines for MPI collective operations,” in Proceedings of the
International Conference on Supercomputing (ICS). ACM, 2006, pp.
199–208.

[23] S. Pellegrini, J. Wang, T. Fahringer, and H. Moritsch, “Optimizing MPI
runtime parameter settings by using machine learning,” in EuroPVM/MPI,
ser. LNCS, vol. 5759. Springer, 2009, pp. 196–206.

[24] Y. Barigou and E. Gabriel, “Maximizing communication-computation
overlap through automatic parallelization and run-time tuning of non-
blocking collective operations,” Int. J. Parallel Program., vol. 45, no. 6,
pp. 1390–1416, 2017.

[25] A. Sikora, E. César, I. A. C. Ureña, and M. Gerndt, “Autotuning of
MPI applications using PTF,” in Proceedings of the ACM Workshop
on Software Engineering Methods for Parallel and High Performance
Applications. ACM, 2016, pp. 31–38.

[26] N. Papadopoulou, G. I. Goumas, and N. Koziris, “Predictive commu-
nication modeling for HPC applications,” Cluster Computing, vol. 20,
no. 3, pp. 2725–2747, 2017.

[27] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, no. 2, pp. 127–143, 2007.

[28] S. Shudler, Y. Berens, A. Calotoiu, T. Hoefler, A. Strube, and F. Wolf,
“Engineering algorithms for scalability through continuous validation of
performance expectations,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 8, pp. 1768–1785, 2019.

[29] S. Hunold and A. Carpen-Amarie, “Autotuning MPI collectives using
performance guidelines,” in Proceedings of the International Conference
on High Performance Computing in Asia-Pacific Region (HPC Asia).
ACM, 2018, pp. 64–74.

[30] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime
prediction: Methods & evaluation,” Artif. Intell., vol. 206, pp. 79–111,
2014.

[31] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-
M. O’Reilly, and S. Amarasinghe, “OpenTuner: An extensible framework
for program autotuning,” in PACT. ACM, 2014, pp. 303–316.

269

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on March 26,2021 at 16:23:44 UTC from IEEE Xplore. Restrictions apply.

