
ECP SCOPE
Exa-PAPI++ is preparing PAPI support to stand up to the challenges posed by exascale systems by:

GOAL 1 Widening its applicability and providing robust support for exascale hardware resources.

GOAL 2 Supporting finer-grain measurement and control of power, thus offering software developers
 a basic building block for dynamic application optimization under power constraints.

GOAL 3 Extending PAPI to support Software-Defined Events that originate from the ECP software stack
 and are treated as black boxes (e.g. communication and math libraries, runtime systems, etc.).

GOAL 4 Applying semantic analysis to hardware counters so that the application developer can better
 make sense of the ever-growing list of raw hardware performance events.

The team will be channeling the monitoring capabilities of hardware counters, power usage,
software-defined events into a robust PAPI++ software package. PAPI++ is meant to be PAPI’s
replacement---with a more flexible and sustainable software design.

PERFORMANCE COUNTER MONITORING
CAPABILITIES
SUPPORTED ARCHITECTURES

SUPPORT FOR GPUs: AMD and NVIDIA

Activity 1: Performance counter monitoring
● Develop support for NVIDIA monitoring capabilities for GPUs on Summit.

○ Added PAPI capabilities for monitoring TESLA V100 + NVLINK
● Develop support for AMD GPUs Monitoring Capabilities:

○ Development of a new PAPI ROCm component

Activity 2: Power monitoring and capping support
● Develop support for NVIDIA power management capabilities for GPUs on Summit.

○ Added PAPI capabilities for monitoring TESLA V100:
● Power consumption and power capping support
● Fan speed, temperature

● Develop support for AMD GPUs power monitoring:
○ Development of a new PAPI ROCm-smi component

POWER AWARENESS EXAMPLE
● Power Reading and Capping with PAPI on TESLA V100 GPUs
● Enables developers to change run profiles to reduce energy cost

ECP PROJECTS AND 3RD PARTY TOOLS
APPLYING PAPI

SOFTWARE-DEFINED EVENTS IN PAPI
KEY POINTS ABOUT SDEs

● New measurement possibilities:
Tasks stolen, matrix residuals, partial results reached, arguments passed to functions

● Any tool can read PAPI SDEs:
SDEs from a library can be read with PAPI_start()/PAPI_stop()/PAPI_read().

● Low overhead:
Performance critical codes can implement SDEs with zero overhead.

● Easy to use, with rich feature set:
Pull-mode & push-mode, read-write counters, sampling/overflowing, counters, groups, recordings,
statistics, thread safety, custom callbacks

DIFFERENT ACCESS MODELS

Pull mode: Zero overhead

Push mode: Determinism and precision

PAPI’S NEW SDE API
● API for reading SDEs remains the same as the API for reading hardware events, i.e. PAPI_start(), etc.
● SDE API calls are only meant to be used inside libraries to export SDEs from within those libraries.
● All API functions are available in C and FORTRAN’08.

CPU: up to Fam17 Zeppelin Zen
GPU: ROCm, ROCm-smi

Cortex, Cavium ThunderX,
ARM64

Gemini and Aries interconnect,
power

Blue Gene Series, Q: 5-D Torus,
I/O System, EMON power,

energy
Power 5,6,7,8,9

Power monitoring support

Power9 NEST event support via
Performance Co-Pilot (PCP) PAPI

component

Westmore, Sandy/Ivy Bridge,
Haswell, Broadwell, Skylake(-X),

Kaby Lake, Cascadelake
KNC, KNL, Knights Mill
including power/energy

RAPL (power/energy),
powercap

Tesla, Kepler, Maxwell, Pascal,
Volta

Power monitoring and capping
support (NVML), NVLink Virtual Environment Virtual Environment

ECP DTE
(PaRSEC)

UTK
http://icl.utk.edu/parsec/

ECP LLNL-ATDM
(Caliper)

LLVM
github.com/LLNL/caliper-compiler

ECP SNL-ATDM
(Kokkos)

SNL
https://github.com/kokkos

ECP Proteas
(TAU)

University of Oregon
http://tau.uoregon.edu/

ECP HPCToolkit
(HPCToolkit)

Rice University
http://hpctoolkit.org

Score-P
http://score-p.org

Vampir
TU Dresden

http://www.vampir.eu/

Scalasca
FZ Juelich, TU Darmstadt

http://scalasca.org/

PerfSuite
NCSA

http://perfsuite.ncsa.uiuc.edu/

Open|Speedshop
Open|SpeedShop

https://openspeedshop.org/

SvPablo
RENCI at UNC

www.renci.org/research/pablo

ompP
LMU Munich

http://www.ompp-tool.com/

SOFTWARE AVAILABLE AT
http://icl.utk.edu/exa-papi/

SPONSORED BY

Development of a new C++ Performance API (PAPI++) software package from the ground up that offers a standard interface and methodology for
using low-level performance counters in CPUs, GPUs, on/off-chip memory, interconnects, I/O system, and energy/power management. PAPI++
is building upon classic-PAPI functionality and strengthens its path to exascale with a more efficient and flexible software design, one that takes
advantage of C++’s object-oriented nature but preserves the low-overhead monitoring of performance counters and adds a vast testing suite.

void *papi_sde_init(char *lib_name, int event_count);

void papi_sde_register_counter(void *handle, char *event_name, int type,
int mode, void *counter);

void papi_sde_describe_counter(void *handle, char *event_name, char
*event_description);

