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Abstract—Data redistribution aims to reshuffle data to op-
timize some objective for an algorithm. The objective can be
multi-dimensional, such as improving computational load balance
or decreasing communication volume or cost, with the ultimate
goal to increase the efficiency and therefore decrease the time-to-
solution for the algorithm. The classical redistribution problem
focuses on optimally scheduling communications when reshuffling
data between two regular, usually block-cyclic, data distributions.
Recently, task-based runtime systems have gained popularity as
a potential candidate to address the programming complexity on
the way to exascale. In addition to an increase in portability
against complex hardware and software systems, task-based
runtime systems have the potential to be able to more easily cope
with less-regular data distribution, providing a more balanced
computational load during the lifetime of the execution.
In this scenario, it becomes paramount to develop a general

redistribution algorithm for task-based runtime systems, which
could support all types of regular and irregular data distri-
butions. In this paper, we detail a flexible redistribution algo-
rithm, capable of dealing with redistribution problems without
constraints of data distribution and data size and implement
it in a task-based runtime system, PaRSEC. Performance results
show great capability compared to ScaLAPACK, and applications
highlight an increased efficiency with little overhead in terms of
data distribution and data size.

Index Terms—Data redistribution, Data size, Task-based run-
time system, High-performance computing

I. Introduction

In many scientific applications, data needs to be frequently

moved from one distribution scheme into another at runtime,

in order to provide better data locality, load balance, as well

as performance. For instance, in adaptive mesh refinement

(AMR), in order to dynamically adapt the accuracy of a solution
within certain sensitive or turbulent regions of simulation,

these regions need to be refined; hence redistribution is always

applied on these regions with the explicit goal of a better

load balance. Actually, the question of data redistribution has

been proposed for more than two decades, both statically and

dynamically, as this question was central when dealing with the

imposed data distributions of early distributed-memory pro-

gramming models such as High Performance Fortran (HPF) [1],
and has received significant attention. Array redistribution,

popular in HPF, used to dynamically change the distribution

of an array from a specified source distribution to a specified

target distribution, is one of the most expensive communication

patterns, and is particularly important for applications where

the parallelism alternates between dimensions of the data. As

a result, numerous scientific literature on array redistribution

exists [2]–[7]. More general data redistribution focuses on

redistribution between two data sets (e.g., from how it was

generated by the producer to how the application needs the

data to be laid out among its processes [8]) or relocating

data distributed across one producer grid onto a different

distribution scheme across a consumer grid [9].
Research on redistribution involves not only HPF but also

the Message Passing Interface (MPI) [6], [10], towards both
coarse-grained [11] and fine-grained [12], [13] for many scien-

tific domains—including linear algebra, like ScaLAPACK [14],
[15], and particle codes [12], [13], [16]. However
• these approaches usually focus on regular data

distributions—the static two-dimensional block cyclic

data distribution (2DBCDD) descriptor on which the dense

linear algebra community has been relying for more than

two decades. Irregular data distribution is also important

from a load balancing perspective in terms of memory,

computation and communication, as suggested by the

hybrid data distribution (called "band distribution") utilized

in [17] used for tiled low-rank (TLR) Cholesky.
• distribution is the ultimate goal for these studies (even

if derived data size changes as side-effect like in

ScaLAPACK [18]); in fact, besides distribution, finding the

right data size (a.k.a. tile size in tile-based algorithm like

PLASMA [19] and DPLASMA [20])—the one that trades-off

performance and level of concurrency—is also a critical

step [21]. In many cases, e.g. [22], the so-called data tiling

size is critical and dependent on the problem size, and has

been elusive to determine a single best data size used for

the whole linear algebra system including multiple stages.

Due to the increasing complexity of hardware architectures and

communication topologies, many of the regular data distribu-

tions might be unfitting for modern problems, both in terms of

the efficiency and the scalability of the resulting algorithms.

Moreover, as the popularity of task-based runtimes increases,

it is interesting to revisit the data distribution problem in their

context, and imagine support for more flexible, possibly less

regular, data distributions in a task-based runtime system. In

this paper, we propose a flexible redistribution algorithm which

could solve a general data redistribution problem and evaluate

this algorithm in a task-based runtime system, i.e., PaRSEC.
To our knowledge, this is the first time a general redistribution
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TABLE I: Parameters and notations.

Symbol Description
R Function or routine for redistribution
SRC Source data descriptor
TG Target data descriptor

Asub Submatrix to be redistributed
size{row,col } Row/column size of Asub
disp_row{s,t } Row displacement in source(s)/target(t)
disp_col{s,t } Column displacement in source(s)/target(t)
{M, N}{s,t } Row(M)/column(N) size of source(s)/target(t)

{MB, NB}{s,t }Row(MB)/column(NB) tile size of source(s)/target(t)
D{s,t } Data distribution of source(s)/target(t)

{m, n}{s,t } Tile row(m)/column(n) index of source(s)/target(t)
local Source and target data on the same process

remote Source and target data on different processes
SEGMENTS NW, N, NE, W, I, E, SW, S, and SE

algorithm has been proposed in task-based runtime worlds.

The remainder of this paper is as follows. Section II intro-

duces the design and the implementation of the redistribution

algorithm in PaRSEC. Performance results and analysis, along
with application demonstrations, are illustrated in Section III.

Section IV presents related work, and we conclude and present

future work in Section V.

II. Redistribution

A. Problem Definition
A general redistribution problem R is a function or routine

to change distribution schemes (Table I describes parameters

and notations): R : SRC→ TG with the following properties:

• Source SRC with the distribution Ds , and target TG with the
distribution Dt ;

• Submatrix Asub to be redistributed with size of size_row
× size_col and with displacements (disp_rows , disp_cols)
in SRC and (disp_rowt , disp_colt ) in TG, and Asub should

not exceed the bounds of SRC and TG.

Figure 1 depicts a general redistribution problem, redis-

tributing a submatrix from SRC to TG with different distri-

butions and tile sizes. While the problem is generic, in our

particular context Asub is to be redistributed between two

matrices stored in tile format, using the data descriptor in

PaRSEC. There are several features that need to be clarified:

(a) Source SRC (b) Target TG

MBs

NBs NBt

MBt

Ms Mt

Ns Nt

sizerow

sizecol

(disp_rows, disp_cols) (disp_rowt, disp_colt)

sizerow

sizecol

Fig. 1: General redistribution problem; matrix is stored in tile

format, each color represents a different process, and rectangle

circled in red is the submatrix to be redistributed.
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Fig. 2: The red rectangle represents one TG tile while black
rectangles are the corresponding SRC tiles.

• Tiles in SRC and TG are rectangles, not specified as square,
and MBs , NBs , MBt , NBt are independent with Ds and Dt ;

• Displacements of (disp_rows , disp_cols) in SRC and

(disp_rowt , disp_colt ) in TG could be any points not

exceeding the bounds of SRC or TG respectively.

B. Algorithm Description
For a general redistribution problem, to redistribute a sub-

matrix between two matrices with different distributions, tile

sizes, and displacements, an efficient algorithm should be as

flexible as possible to deal with all possible cases. Hence, as

shown in Figure 2, zooming in one tile in TG to catch its source
data in SRC, we split the TG tile into 9 parts, or SEGMENTS, ac-
cording to their location in SRC, NorthWest (NW), North (N),
NorthEast (NE), West (W), Inner (I), East (E), SouthWest

(SW), South (S) and SouthEast (SW). Figure 3 shows the

possible categories based on the existence of SEGMENTS,
determined by combinations of size_row, size_col, MBs ,

NBs , MBt , NBt and location of TG tiles’ starting points in

SRC. All possible cases of general redistribution problems are
extensions of these 9 categories, including several N, S, W, E
or I, e.g. Figure 2 is an extension of Figure 3 (8).
The serial algorithm, revealed in Algorithm 1, follows the

idea that for tiles in TG, send/receive (when remote) or copy
(when local) SEGMENTS. The benefits of this design are that it:
(1) is capable for coarse- and fine- grained redistribution prob-

lems for tile- or block- based matrix partition; (2) isolates dis-

tribution and tile size. Actually, it could solve a redistribution

problem with absolute flexibility on distribution, tile size and
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SW SE
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Fig. 3: All possible 9 categories; red rectangles represent one

TG tile while black rectangles are the corresponding SRC tile(s).

222



Algorithm 1 Serial Algorithm of Redistribution

for mt = disp_rowt /MBt to (size_row +disp_rowt -1)/MBt do
for nt = disp_colt /NBt to (size_col +disp_colt -1)/NBt do
Calculate ms_start, ms_end, ns_start, and ns_end that (mt ,
nt ) associated with
for ms = ms_start to ms_end do
for ns = ns_start to ns_end do
if Remote then
Send SEGMENTS

end if
end for

end for
if Remote then
Receive SEGMENTS

else
Copy SEGMENTS

end if
end for

end for

displacement. In this way, all possible redistribution problems

could be reduced to a combination of these 9 SEGMENTS, and
operations on these SEGMENTS could be considered as tasks

which thus could be efficiently handled by a multi-threaded

task-based runtime system.

C. The PaRSEC Runtime System
PaRSEC [23] is a generic task-based runtime system for

asynchronous, architecture-aware scheduling of fine-grained

tasks on distributed many-core heterogeneous architectures. It

is capable of dynamically unfolding a concise description of

a graph of tasks on a set of resources and satisfying all data

dependencies by efficiently shepherding data between memory

spaces (between nodes but also between different memories on

different devices) and scheduling tasks across heterogeneous

resources. Several domain-specific languages (DSLs) [24] in

PaRSEC, such as Parameterized Task Graph (PTG) [25] and

Dynamic Task Discovery (DTD) [26], help domain scientists

to focus only on their domain knowledge instead of low-

level computer science aspects, such as the complex hardware

architectures, hierarchical memory layout, different types of

communication prototypes, etc.

D. Implementation in PaRSEC Runtime System
To implement the Algorithm 1 in PaRSEC and expose all

potential parallelism, four different types of tasks (a.k.a task

classes) are specified:

• Init: prepare TG data for tasks in task classes Receive and
Finish to protect it from being simultaneously modified by

multiple tasks within a process;

• Send: send data if remote and pass the address if local;
• Receive: receive data if remote or copy data if local to the
target data descriptor TG;

• Finish acts as synchronization for each tile in TG to finish
all related tasks in Receive.

For the purpose of data locality, Send is local to SRC’s tiles,
while Init, Receive, and Finish reside on TG’s tiles. Several
runtime-level optimizations are proposed to efficiently utilize

network bandwidth, so that to get higher performance, but in

this paper we only focus on the algorithm itself.

III. Performance Results and Analysis

A. Experiments Settings
Experiments are conducted on two HPC clusters: NaCL

and Shaheen II, and assumes no memory constrain for data
redistribution. NaCL includes 66 compute nodes connected

by InfiniBand QDR, and each node has two 2.8 GHz Intel

Xeon X5660. Shaheen II is a Cray XC40 system with 6,174

compute nodes; each node is equipped with two 16-core Intel

Haswell CPUs running at 2.30 GHz and 128 GB DDR4 RAM;

the interconnect is Cray Aries with Dragonfly topology.

B. Comparison to ScaLAPACK
ScaLAPACK is a high-performance library for linear al-

gebra routines. ScaLAPACK’s data format is inherited from

LAPACK [27], but it’s targeted to parallel distributed memory
machines instead. We compare our implementation in PaRSEC
to redistribution routines in ScaLAPACK. It should be noted

that ScaLAPACK only support redistribution between regular,

block-cyclic, data distributions, so we restrict the scope of this

evaluation to such data distributions. Figure 4 shows a weak-

scaling experiment, same matrix size per node for all number

of nodes; (a) presents ScaLAPACK execution time for the

redistribution process and (b) the speedup of our implemen-

tation compared to ScaLAPACK. ScaLAPACK behaves better

for small message size, especially with a larger number of

nodes. Because runtime overheads exist in task-based runtime

systems like PaRSEC but not in ScaLAPACK, which becomes

increasingly dominant in a weak scaling experiment, as the

actual execution time is very small as shown in Figure 4 (a).

In fact, small task granularity is not the most suitable setup

for a task-based runtime systems [28]. As the message size

grows, the speedup is almost constant on different number of

nodes (there is unknown issue for ScaLAPACK on 64 nodes).

C. Benefits and Overheads in Real Applications
Cholesky factorizations is a widely used algorithms to solve

linear systems of equations (Ax = B). We use tiled dense

Cholesky from DPLASMA and TLR Cholesky from Lorapo [17],
both using the PaRSEC runtime system, to evaluate benefits

and overheads of redistribution. We evaluate a case where

the data generator provides the data in a distribution that is

inappropriate and would result in an inefficient execution, and

where a redistribution of the data could result in a more

efficient execution. The following figures present effects of

redistribution on two different setups, converting data distri-

bution and tile size. These optimization may be combined in

practice [17], [22].

(a) Execution time of ScaLAPACK (b) Speedup to ScaLAPACK

Fig. 4: Comparison to ScaLAPACK on NaCL.
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(a) Effect of data distribution. (b) Effect of tile size conversion.

Fig. 5: Cholesky factorization on Shaheen II (64 nodes).

Figure 5 (a) showcases a data redistribution maintaining the

tile size (MBs = MBt = 320). The source matrix, a 1DBCDD

with Ds: (P,Q) = (1, 64), does not expose enough parallelism,
and thus exhibits poor performance. A much more suitable dis-

tribution for this case, known theoretically but also highlighted

in the Figure, would be 2DBCDD with Dt : (P,Q) = (8, 8). The
“REDISTRIBUTION” redistributes from Ds to Dt , executes

the Cholesky factorization, and then redistributes the matrix

back to Ds , such that the entire redistribution is transparent

to the caller. In Figures 5 (b), the data distribution is fixed to

2DBCDD but MBs = 1280 is suboptimal when matrix is small

as it reduces the parallelism, and hinders performance. Similar

to above, the “REDISTRIBUTION” redistributes the matrix

from MBs to MBt = 320, executes the Cholesky factorization,

and redistributes matrix back to MBs . From Figure 5 (a) and

(b), the “REDISTRIBUTION” can automatically convert the

matrix into a more suitable data distribution 2DBCDD and/or

tile size, with little overheads (less than 14%) allowing the

execution to unfold to be most favorable setup on the platform.

Figure 6 depicts a similar experiment using TLR Cholesky
factorization where both distribution [17] and tile size [22]

are critical. (a) shows the impact of the data distribution

while maintaining the tile size, where the Ds is 2DBCDD

and Dt is less regular, a 2DBCDD distribution with a band

of tiles around the diagonal in a 1DBCDD distribution ("band

distribution", the benefits for such a distribution are analyzed

in [22]). A kind of modified "weak scaling" in terms of

memory constrain is deployed on 16, 64, 128 and 256 nodes

for st-3D-sqexp [17]. (b) depicts the impact of tile size changes
(MBs varies while MBt = 5400) while maintaining a similar

data distribution for a matrix of 2.16M × 2.16M elements on

16 nodes for syn-2D [17]. From these two figures, overheads

(execution time of only calling data redistribution) are small

compared to the benefits (execution time of "Ds − Dt" in

(a) Effect of data distribution. (b) Effect of tile size conversion.

Fig. 6: TLR Cholesky on Shaheen II.

Figure 6 (a) and "MBs − MBt" in Figure 6 (b)).
These figures show domain scientists do not have anymore

to stick with predefined data distributions, that impact the data

generation potential, but instead, for a reasonable overhead,

allow a mismatch between data generators and users to happen.

IV. Related Work

For more than three decades, research on data redistribution

has evolved around regular data distributions. In the 1990s,

research about array and data redistribution sprung up after the

appearance of HPF [2], [4], [5], [29]. In the 2000s, research

spread to more broad fields [12], [30], [31]. More recently, we

witnessed a resurgence of interest in data redistribution due

to increasingly complex applications which need to improve

data locality and/or reduce cost of data movement therefore to

relocate data distributed across one grid onto a different dis-

tribution scheme across another grid [8], [9], [11], [13], [32].

However, all these researches on array or data redistribution:

(1) focused on a simplified problem, aka regular 2DBCDD

distribution; (2) tried to address load imbalance caused by the

data distribution, but ignored impact from data size. They also

highlighted that with the increasing complexity of hardware

architectures and communication topologies, targeting only on

regular 2DBCDD distribution is not enough. As task-based

runtime systems emerge, a general redistribution algorithm,

taking in account not only regular and irregular data distribu-

tion but also the impact of data size, becomes necessary.

V. Conclusion and Future Work

This paper presents a flexible and general redistribution al-

gorithm for task-based runtime system, supporting any regular

and irregular data distributions. We provide an implementation

in a task-based runtime PaRSEC, and the practical evaluation of
our implementation shows it can achieve better performance

compared with existing tools supporting some level of data

redistribution, ScaLAPACK. Moreover, utilization in real ap-

plications highlights great benefits and negligible overheads

in terms of data distribution and tile size with significant

improvement in application time-to-solution.
For future work, we plan to explore the applicability of

this redistribution algorithm to other runtime systems. In the

context of PaRSEC, we plan to further reduce communication
overheads and make the redistribution a completely transparent

process, an operation that could be fused either with the

ensuing computation, to hide all overheads related to the

redistribution in terms of memory and time-to-solution.
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