
SLATE Performance Report:
Updates to Cholesky
and LU Factorizations
Asim YarKhan
Mohammed Al Farhan
Dalal Sukkari
Mark Gates
Jack Dongarra

Innovative Computing Laboratory

October 2, 2020

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes
10-2020 first publication

@techreport{yarkhan2020slateperformance,

author={YarKhan, Asim and Al Farhan, Mohammed and and Sukkari, Dalal

and Gates, Mark and Dongarra, Jack},

title={{SLATE} Performance Report: Updates to {Cholesky} and

{LU} Factorizations},

institution={Innovative Computing Laboratory, University of Tennessee},

year={2020},

month={Oct},

note={revision 10-2020}

}

i

Contents

Contents ii

List of Figures iii

1 Introduction 1

2 Cholesky Performance 2
2.1 Tracing Cholesky . 2
2.2 Improved Batch TRSM under CUDA 11 . 2
2.3 Multithreading the tile broadcast operation . 3
2.4 Switching to CUDA-Aware MPI and GPUDirect . 3
2.5 Performance Improvements . 4

3 LU Performance 6
3.1 Profiling the LU Factorization . 6
3.2 Multi-threaded LU panel . 7
3.3 Gang scheduling of LU panel . 7
3.4 Moving additional tasks to GPU . 8

4 Conclusion 10

Bibliography 11

ii

List of Figures

2.1 Improvement of batch-trsm from CUDA 10 to CUDA 11. The CUDA 10 figure on left
shows that the batch-trsm operation took almost the same time as the trailing-matrix
update operation. The CUDA 11 figure on the right shows the batch-trsm operation is
now just a fraction of the trailing-matrix update operation. (Partial view of a Cholesky
factorization trace on 2 Summit nodes using a single NVIDIA V100 GPU per node.) 3

2.2 Improved performance of the complete Cholesky factorization on 16 nodes of Summit
(96 V100 GPUs) . 4

2.3 Cholesky performance scaled by the number of NVIDIA V100 GPUs on 16 nodes of
Summit (96 GPUs) . 5

3.1 Partial trace focusing on a single GPU for a double-precision LU factorization of a
large matrix using 16 nodes (96 NVIDIA V100s) on Summit. (Matrix size 64000, tile
size 704, 6x16 process grid.) . 6

3.2 Performance of the multi-threaded LU panel varying with the number of panel threads
and MPI ranks. The matrix is only one panel (nb) wide, so the performance displayed
is purely due to the multi-threaded panel. 7

3.3 Deadlock issue with multi-threaded tasks. 8
3.4 Performance improvement using HClib for gang scheduling in LU, compared to stock

LLVM. 9

iii

CHAPTER 1

Introduction

SLATE (So�ware for Linear Algebra Targeting Exascale) 1 is being developed as part of the
Exascale Computing Project (ECP) 2, which is a joint project of the U.S. Department of Energy’s
O�ce of Science andNational Nuclear Security Administration (NNSA). The objective of SLATE
is to provide fundamental dense linear algebra capabilities to the US Department of Energy
and to the high-performance computing (HPC) community at large.

This report will discuss current e�orts in improving performance in SLATE focusing on the
Cholesky and LU factorizations. These improvements are intended to be general and many of
them should be applicable to the other algorithms implemented in SLATE.

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1

http://icl.utk.edu/slate/
https://www.exascaleproject.org

CHAPTER 2

Cholesky Performance

2.1 Tracing Cholesky

The performance of the Cholesky factorization was benchmarked on the Summit platform
at ORNL. Both the performance and scalability were found to be unexpectedly lagging. The
implementation was traced in order to discover the underlying causes of the lag in performance.

SLATE algorithms are designed to perform the large trailing-matrix update operations on
GPUs/accelerators using batch operations (see the SLATE Developers’ Guide for more details
on the algorithmic implementations [1]). The panel and communication parts of the algorithm
were originally designed to take place on the CPUs, with a lookahead factor allowing overlap
between the trailing-matrix update operation communication and the panel/communications.

2.2 Improved Batch TRSM under CUDA 11

From traces it became evident that large batch trailing-matrix update operations on the ac-
celerators were more e�cient than expected, consuming very little time, making the panel
operation on the CPU the bottleneck for the execution. For our Cholesky factorization the
panel operation (batch-trsm) was then transferred to the GPU [2].

In CUDA versions prior to CUDA 11, the batch-trsm was slow relative to the batch-update
operation so the performance improvement was less than expected. In CUDA 11, NVIDIA
implemented a very fast batch-trsm and this operation was no longer part of the bottleneck.
This improvement can be easily seen in the trace in Figure 2.1.

2

Chapter 2. Cholesky Performance 2.3. Multithreading the tile broadcast operation

(a) CUDA 10 (b) CUDA 11

Figure 2.1: Improvement of batch-trsm from CUDA 10 to CUDA 11. The CUDA 10 figure on
left shows that the batch-trsm operation took almost the same time as the trailing-matrix update
operation. The CUDA 11 figure on the right shows the batch-trsm operation is now just a fraction of
the trailing-matrix update operation. (Partial view of a Cholesky factorization trace on 2 Summit
nodes using a single NVIDIA V100 GPU per node.)

CUDA 11 made the batch-trsmmuch faster relative to the batch-gemmmatrix update.

2.3 Multithreading the tile broadcast operation

Traces from larger scale runs of the Cholesky factorization were examined to �nd further
bottlenecks in the SLATE implementation. The MPI communication was found to be the next
bottleneck.

Much of the communication in SLATE is structured as sets of multi-casts of individual tiles. An
individual tile(i, j) is sent to the sub-matrices that require tile(i, j) for the computation. In the
original code, this set of multi-casts is implemented using a sequential loop over all the items
in the set. This sequential loop takes each tile(i, j) and handles the receives and sends (using an
N-ary hypercube communication overlay). The MPI implementation was expected to use all
the available bandwidth to achieve high performance.

Based on traces of Cholesky factorization on larger problems using more nodes, it was noted
that the sequential loop was not su�cient to get the desired MPI performance. The loop
was transformed using omp taskloop into a multi-threaded implementation (this requires
MPI_Thread_Multiple). The new implementation uses each thread to work on a di�erent tile(i, j)
to do the receives and sends. This obtains a much larger performance for the communication
for Cholesky factorization.

This change to multi-threaded communication has an impact on some routines that were using
multiple threads to do panel factorization. The threads can be oversubscribed or otherwise in
contention for access to communication hardware. These impacts are being currently evaluated
before this change is made part of the default SLATE distribution.

2.4 Switching to CUDA-Aware MPI and GPUDirect

MPI communications in SLATE were originally designed to send messages from local CPU to
the remote CPU, rather than directly using the accelerator. This decision was made because
SLATE is intended to be easily portable, so there was an e�ort to avoid depending on speci�c

3

Chapter 2. Cholesky Performance 2.5. Performance Improvements

50000 100000 150000 200000 250000 300000 350000 400000
N (matrix dimension)

50

100

150

200

250

300

G
Fl

op
/s

Cholesky Factorization on 16 nodes on summit (96 Nvidia V100 GPUs)
 16 x (2 POWER9 + 6 V100) / node

dpotrf
before updates
after updates

Figure 2.2: Improved performance of the complete Cholesky factorization on 16 nodes of Summit
(96 V100 GPUs)

accelerator extensions. MPI now provides transparent access to GPU-direct communications,
so SLATE is being transitioned to using CUDA-aware MPI that uses NVIDIA’s GPUDirect.

Prior to this update, SLATE algorithms used CUDAmemory copy operations to transfer data
from the GPU to the CPU, do the communication from CPU-to-CPU, and then use CUDA
memory copy to transfer data back to the GPU.

The Cholesky factorization does the majority of its communication via multi-casts of individual
tiles. These MPI communication have been adapted to transfer data directly between GPU
devices to improve the bandwidth.

Transferring data between GPUs has impacts that require additional work before this update is
pushed into the default SLATE repository. The implementation needs to be able to smoothly
switch between MPI implementations that are CUDA-aware and those that are not.

2.5 Performance Improvements

The e�ect of our performance updates can be seen in the performance of the double-precision
Cholesky factorization shown in Figure 2.2 The original implementation before these updates
achieved about 110 TFlop/s on 16 nodes of Summit (using 96 V100 GPUs) when factoring a
matrix of size N = 384000 and the tile size nb = 960.

The updates described in this section were applied to Cholesky factorization, that is, using
multi-threadedMPImessaging, switching the data locations to take allowCUDA-awareMPI, and
changing to CUDA 11 to take advantage of the improved batch-trsm. On 16 nodes of Summit (96
V100 GPUs) the maximum performance reached was then 289 TFlop/s. Improved performance
can be seen throughout the range for all matrix sizes.

The performance is also viewed when scaled by the number of V100 GPUs (i.e., scaled by

4

Chapter 2. Cholesky Performance 2.5. Performance Improvements

64000 128000 256000 320000 384000
N (matrix dimension)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

TF
lo

p/
s

pe
r G

P
U

Cholesky Factorization on 16 nodes on summit (96 Nvidia V100 GPUs)
 16 x (2 POWER9 + 6 V100) / node; 7.8 peak TFlop/s per GPU

dpotrf
before updates
after updates

Figure 2.3: Cholesky performance scaled by the number of NVIDIA V100 GPUs on 16 nodes of
Summit (96 GPUs)

96) in Figure 2.3. Figure 2.3. Each NVIDIA V100 GPU has a theoretical peak performance of
7.8 TFlop/s. The SLATE implementation went from achieving 1.1 TFlop/s (out of 7.8) before
updates, to achieving 3.0 TFlop/s (out of 7.8 TFlop/s) a�er updates.

5

CHAPTER 3

LU Performance

3.1 Pro�ling the LU Factorization

The original version of the LU factorization was pro�led using the NVIDIA pro�ling tools to
determine the bottlenecks in the NVIDIA GPU implementation of the algorithm.

Since the focus is on keeping the GPU occupied, only the portion of the trace on the GPU is
shown in Figure 3.1. In the �gure the batch-gemm operation (the volta_dgemmm highlighted in
green) is so e�cient on the NVIDIA V100 that it takes a very small part of the time. The CPU
parts of the algorithm (panel factorization and MPI communication) are a major bottleneck
in the LU operation. Additionally, the swap operation which was implemented on the GPU
is taking much longer than expected, it is being slowed down partially by a large number of
host-device memory copy operations which occur as part of the swap operation.

Figure 3.1: Partial trace focusing on a single GPU for a double-precision LU factorization of a large
matrix using 16 nodes (96 NVIDIA V100s) on Summit. (Matrix size 64000, tile size 704, 6x16 process
grid.)

6

Chapter 3. LU Performance 3.2. Multi-threaded LU panel

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Panel Threads

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

G
FL

O
P
/s

DGETRF [dim=40000; nb=320; saturn (4 Bezout nodes)]

MPI=1(p=1 and q=1); OpenMP=10

MPI=2(p=2 and q=1); OpenMP=10

MPI=3(p=3 and q=1); OpenMP=10

MPI=4(p=4 and q=1); OpenMP=10

MPI=1(p=1 and q=1); OpenMP=20

MPI=2(p=2 and q=1); OpenMP=20

MPI=3(p=3 and q=1); OpenMP=20

MPI=4(p=4 and q=1); OpenMP=20

Figure 3.2: Performance of the multi-threaded LU panel varying with the number of panel threads
and MPI ranks. The matrix is only one panel (nb) wide, so the performance displayed is purely due
to the multi-threaded panel.

3.2 Multi-threaded LU panel

If the panel in the LU factorization is not fast, it can become a bottleneck in the entire compu-
tation, especially when paired with an accelerated trailing matrix update. From the beginning,
the LU panel was designed to be multi-threaded on the CPU. We performed experiments to
determine if this multi-threaded panel implementation was scaling with increasing numbers of
threads assigned to the panel (panel threads).

In Figure 3.2 it is seen that the as the number of panel threads and MPI ranks increases, the
performance increases, till some maximum performance. This implies that the multi-threaded
panel is performing as expected when it is executed in isolation. There may be some additional
e�ects when the panel is run as part of a complete LU factorization, where other threads may
cause contention or over-subscription.

3.3 Gang scheduling of LU panel

While the panel is written as a multi-threaded task, OpenMP does not have the concept of
a multi-threaded task. The panel can be started as several separate sub-tasks, or as a single
task with nested parallelism inside. In either case, the sub-tasks in the panel are required
to synchronize for each column of the panel to do a local max reduction to �nd the pivot.
Additionally, an MPI reduction and row swapping occurs for each column of the panel. If all
these sub-tasks assigned to the panel do not start simultaneously, there can be a signi�cant
synchronization delay or even deadlock, as shown in Figure 3.3.

To investigate this issue, we collaborated with Seonmyeong Bak, Oscar Hernandez, and Vivek
Sarkar from the ECP SOLLVE team, who are working on enhancements to OpenMP for exascale
machines in their Habanero-C threading library (HClib) with the LLVM OpenMP runtime.

7

Chapter 3. LU Performance 3.4. Moving additional tasks to GPU

(a) Deadlock in nested parallel tasks

(b) Deadlock avoidance with gang-scheduling of nested par-
allel tasks

Figure 3.3: Deadlock issue with multi-threaded tasks.

The SOLLVE team implemented a gang scheduling algorithm to start all the panel sub-tasks
simultaneously, to avoid deadlock and synchronization delays. These exhibited modest perfor-
mance improvements in Figure 3.4 using 1 node of the NERSC Cori GPU machine (2× 20 core
Intel Skylake 6148, 8× NVIDIA V100 GPU). A detailed discussion of this collaboration has been
submitted to PPoPP’21 [3].

3.4 Moving additional tasks to GPU

SLATE implements LU factorization using OpenMP tasks for the panel factorization, lookahead
update, and trailing matrix update, with data dependencies speci�ed between the tasks. The
original GPU implementation assigns some tasks to the CPU and other tasks to the GPU. The
panel tasks and the lookahead tasks are executed on CPUs. The trailing-matrix update task
contains both CPU andGPU parts: the CPU part does a trsm and the GPU part does a batch-gemm
and internal row pivoting.

Based on the observations from our tracing, we started optimizing SLATE’s LU kernel by
moving more of the work to the GPU and trying to obtain more performance from the GPU
devices. We moved all of the lookahead’s internal kernels (row pivoting, batched trsm, and
batched gemm) onto the GPU devices. Since row pivoting on GPUs is known to perform better
when the data layout is in row-major [4], we implemented the row-major layout of the internal
batched trsm kernel (invoking cublasXtrsmBatchedwith row-major layout). That way we avoid
excessive tile transposition when moving from the row pivoting kernel to the other internal
routines.

In addition, the MPI broadcast routine, which is invoked in the panel update task to broadcast

8

Chapter 3. LU Performance 3.4. Moving additional tasks to GPU

 0.0
200.0
400.0
600.0
800.0

1000.0
1200.0
1400.0
1600.0
1800.0
2000.0

 15000 20000 25000 30000 35000 40000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)
HClib OMP(CPU)

LLVM OMP(GPU)
HClib OMP(GPU)

Figure 3.4: Performance improvement using HClib for gang scheduling in LU, compared to stock
LLVM.

the panel column a�er the panel internal getrf and in the lookahead update and trailing-matrix
update tasks to broadcast the updated rows a�er the internal batch-trsm, is updated to initialized
the GPU devices with missing tiles (transposed to row-major).

Executing multiple internal routines of SLATE’s LU factorization simultaneously on the GPU
causes two critical issues: data hazards and race conditions. Each batched BLAS call takes batch
arrays of tile pointers, A_array, B_array, and C_array for the A, B, and Cmatrices, respectively.
These batch arrays are allocated in the matrix object. Originally, there was only one set of
batch arrays, so executing simultaneous kernels would cause data hazards in the form of Read-
A�er-Write (RAW) and Write-A�er-Read (WAR) on these arrays. We overcome this issue by
allocating multiple GPU batch arrays as needed, one for each lookahead task and one for the
trailing matrix task. The second issue is a race condition in releasing workspace tiles a�er
internal batch-gemm calls. The lookahead tasks are expected to �nish before the trailing matrix
update, and would prematurely release workspace tiles that the trailing matrix update was still
depending on. To overcome this issue, the broadcast call that copies tiles to the target GPUs also
sets a hold on them, so they will not be released by the lookahead task. A new task is created
a�er the trailing matrix update to release the hold on these tiles and free up the GPU memory.

9

CHAPTER 4

Conclusion

The implementation of the Cholesky and LU factorizations in SLATEwere traced and examined.
Bottlenecks were discovered and progress was made in addressing them. The performance of
Cholesky implementation was substantially improved by 2.7× on GPUs and this was demon-
strated on the Summit platform. The LU factorization is a tougher problem, and though some
progress was made, the desired improvement was not yet achieved. Additional work progresses
to move more of the kernels from the CPU to the GPU and to improve the swapping operation.
Upcoming SLATE milestones will continue to focus on performance improvements.

The current snapshot of this performance update e�ort can be found in a development fork at
https://bitbucket.org/icl/slate devel. Please note that this is an active development fork and may
not be stable.

10

https://bitbucket.org/icl/slate_devel

Bibliography

[1] Ali Charara, Mark Gates, Jakub Kurzak, Asim YarKhan, Mohammed Al Farhan, Dalal Sukkari,
and Jack Dongarra. SLATE developers’ guide, SWAN no. 11. Technical Report ICL-UT-
19-02, Innovative Computing Laboratory, University of Tennessee, December 2019. URL
https://www.icl.utk.edu/publications/swan-011. revision 08-2020.

[2] Mark Gates, Ali Charara, Asim YarKhan, Dalal Sukkari, Mohammed Al Farhan, and Jack
Dongarra. SLATE working note 14: Performance tuning SLATE. Technical Report ICL-
UT-20-01, Innovative Computing Laboratory, University of Tennessee, January 2020. URL
https://www.icl.utk.edu/publications/swan-014. revision 01-2020.

[3] Seonmyeong Bak, Oscar Hernandez, Mark Gates, Piotr Luszczek, and Vivek Sarkar. Task-
graph scheduling extensions for e�cient synchronization and communication. In Principles
and Practice of Parallel Programming 2021 (PPOPP’21) (submitted), 2021.

[4] T. Dong, A. Haidar, P. Luszczek, J. A. Harris, S. Tomov, and J. Dongarra. LU factorization
of small matrices: Accelerating batched DGETRF on the GPU. In 2014 IEEE Intl Conf on
High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety
and Security, 2014 IEEE 11th Intl Conf on Embedded So�ware and Syst (HPCC,CSS,ICESS), pages
157–160, 2014.

11

https://www.icl.utk.edu/publications/swan-011
https://www.icl.utk.edu/publications/swan-014

	Contents
	List of Figures
	Introduction
	Cholesky Performance
	Tracing Cholesky
	Improved Batch TRSM under CUDA 11
	Multithreading the tile broadcast operation
	Switching to CUDA-Aware MPI and GPUDirect
	Performance Improvements

	LU Performance
	Profiling the LU Factorization
	Multi-threaded LU panel
	Gang scheduling of LU panel
	Moving additional tasks to GPU

	Conclusion
	Bibliography

