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Abstract—High-performance computing (HPC) systems keep
growing in scale and heterogeneity to satisfy the increasing
computational need, and this brings new challenges to the design
of MPI libraries, especially with regard to collective operations.

To address these challenges, we present “HAN,” a new hierar-
chical autotuned collective communication framework in Open
MPI, which selects suitable homogeneous collective communi-
cation modules as submodules for each hardware level, uses
collective operations from the submodules as tasks, and organizes
these tasks to perform efficient hierarchical collective operations.
With a task-based design, HAN can easily swap out submodules,
while keeping tasks intact, to adapt to new hardware. This makes
HAN suitable for the current platform and provides a strong and
flexible support for future HPC systems.

To provide a fast and accurate autotuning mechanism, we
present a novel cost model based on benchmarking the tasks
instead of a whole collective operation. This method drastically
reduces tuning time, as the cost of tasks can be reused across
different message sizes, and is more accurate than existing cost
models. Our cost analysis suggests the autotuning component can
find the optimal configuration in most cases.

The evaluation of the HAN framework suggests our design
significantly improves the default Open MPI and achieves decent
speedups against state-of-the-art MPI implementations on tested
applications.

Index Terms—MPI, hierarchical collective operation, autotun-
ing, cost model

I. INTRODUCTION

The increasing computational need of the scientific comput-

ing community requires high-performance computing (HPC)

systems to continue to grow in scale and heterogeneity.

Compared to fast-growing computation power, the speed of

communications falls behind, causing the communications to

become bottlenecks in many applications.

Message Passing Interface (MPI) standard provides various

communication primitives to facilitate the development of

HPC applications, and it is the most widely used programming

paradigm in the HPC community. Collective operations, one

type of communication primitive defined in the MPI standard,

are used to exchange data among multiple processes. As

indicated in previous studies [1, 2], collective operations are a
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critical component of most MPI applications, and their perfor-

mances are significant factors in determining the performance

and scalability of these applications. Hence, it is crucial for an

MPI library to provide highly efficient collective operations.

A. Hierarchical collective communication framework

HPC systems are becoming more heterogeneous, resulting

in increasingly complex hardware hierarchies. To utilize all

hardware capabilities at each level of the hierarchies, and

improve the performance of collective operations on these

systems, collective communication implementations need to

adapt and embrace the hierarchical approach. A hierarchical

collective operation is usually implemented as a combination

of multiple fine-grained collective operations, where each of

them handles the communication on one hierarchical level [3].

When implementing a well-performing hierarchical collective

communication framework, there are three crucial factors that

need to be considered.

First, on each level of the hierarchy, the algorithms of

the fine-grained collective operations need to fully exploit

the hardware capabilities. For example, traditional tree-based

algorithms are sub-optimal for intra-node collective operations

as they introduce extra memory copies. To minimize the

memory copies, some collective frameworks [4, 5] utilize the

shared memory space to exchange data across processes on the

same node. The same hardware-aware design goes for inter-

node level, as in [6], collective operations need to leverage the

full-duplex mode to maximize network bandwidth. Moreover,

if network switch level information is available, collective

operations can be further optimized [7, 8].

Second, an optimal design of hierarchical collective commu-

nication framework should maximize the communication over-

lap, especially for large messages. From a hardware perspec-

tive, data transfers on different levels are mostly independent

from each other since they mainly occupy different hardware

devices (or different DMA engines). However, from a software

implementation perspective, some problems, such as lacking

enough segmentation and sharing software resources, would

limit the communication overlap.

Last, facing the fast-changing hardware, a hierarchical col-

lective framework needs to be flexible enough to adapt to new

architectures, and network capabilities and topologies. In the
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inter-node level, various interconnects have been introduced

with different network topologies, such as hypercube [9],

polymorphic-torus [10], fat-tree [11], and dragonfly [12]. In-

side a node, with adopting co-processors, how these computing

units are connected changes drastically as well.

In this paper, we present “HAN” (Hierarchical AutotuNed),

a flexible task-based hierarchical collective communication

framework in Open MPI, which addresses the three fac-

tors discussed before. First, it selects the proper collective

frameworks as submodules to utilize the hardware capabilities

of each level. Second, it adopts a pipelining technique to

overlap communications on different levels. Finally, due to its

modularized design it can easily switch out the submodules

to adapt to hardware updates. The detailed design of the

framework is explained in section III.

B. Autotuning of MPI collective operations

Autotuning is a well-known technique to automatically find

the best set of parameters to optimize a certain problem. In the

context of collective communications, autotuning optimizes

the configuration (algorithms, segment sizes, ...) of a collective

operation. There exist several approaches to perform autotun-

ing, but they can be categorized around two methods.

The first approach is screening all possible configurations

of a collective operation with benchmarks. An implementation

of this approach, such as MPITUNE, is to exhaustively search

every possible configuration, in order to identify the best, or

the most suitable combination of parameters. This approach

is extremely costly, but it has the potential to guarantee

the optimal configuration. This method could be usable at

small scale; however, its search space explodes as the size

of the system increases, and would therefore limit its usage

on modern large scale systems. To address this, efforts have

been made to reduce the search space with heuristics [13, 14].

However, with more heuristics, more assumptions are made,

increasing the opportunities for misprediction, which could

reduce the accuracy of the autotuning process.

The second approach is using cost models [1, 14] to es-

timate the time of collective operations and select the best

configuration(s) based on these estimations. Instead of directly

measuring the cost of all collective operations, this method

only benchmarks a few network specifications, such as gap,

bandwidth, and latency, and uses the models to infer the cost

of the collective, drastically reducing the cost of autotuning.

However, as stated in [1, 14], cost models have their own set

of drawbacks, and, in many cases, are not accurate enough

to find the best configuration as they oversimplify modern

heterogeneous systems. Conventional models such as Hock-

ney [15], LogP [16], LogGP [17] and PLogP [18] assume

the cost of MPI point-to-point (P2P) operations between any

two processes remains constant. However, this assumption is

no longer valid on heterogeneous systems, where the cost of

P2P varies a lot based on the location of processes. SALaR [2]

extends LogGP with different gaps (Gs) for different networks
to model a hierarchical MPI Allreduce, but its G is fixed in

each level. The fixed G limits this model to large messages,

one segment of which can saturate the network bandwidth.

Besides network heterogeneity, other factors, such as the

congestion on a switch and the shared resources of commu-

nications on different levels, are not considered in these cost

models. Previous study [19] suggests when one process com-

municates with many processes concurrently, the congestion

on that process could drastically affect overall communication

performance. Others [2, 20, 21] assume data transfers on differ-

ent levels, such as inter- and intra-node, are totally independent

when modeling hierarchical collective operations. However,

practical experiments (section III-A) shows different levels are

not entirely independent, and their communications can not be

perfectly overlapped because of the shared resources, such as

memory buses and DMA engines.

To achieve a fast and accurate autotuning, we propose

a drastically different approach, combining the benefits of

the previous two methods and using a task-based autotuning

component to handle the communications and their potential

overlap. Our approach utilizes a cost model; but instead of

relying on network specifications, our cost model is based on

empirical benchmarking of independent sub-communication

patterns (or tasks), thanks to the task-based design of HAN.

Compared to the first method, since we only benchmark

tasks instead of a whole collective operation, our method can

reduce the search space significantly, which is discussed in

section III-C. Compared to the second method, our model

improves the accuracy since it considers more factors, i.e.

different bandwidths of different levels, changing gap with

increasing message sizes, congestion on a process and overlap

rate of communications on different levels. All of these factors

can affect the performance of collective operations, but as they

are hard to model, they have been usually excluded from the

existing models; while in our autotuning approach, instead of

modeling them, we choose to directly measure their influence

on tasks to provide better estimations.

C. Contribution

The key contributions of this paper are:

• Task-based hierarchical collective operations. Our
HAN framework breaks a hierarchical collective operation into

a sequence of smaller collective communication patterns (or

tasks), with each task containing fine-grained collective op-

erations. These fine-grained collective operations are selected

from available submodules to utilize the hardware capabilities

of the intra- and inter-node level and overlap communications

on these levels.

• Task-based autotuning. We present a cost model based
on empirical results of tasks used in HAN, along with an cost

model based autotuning component. Unlike other autotuners,

such as MPITUNE of Intel MPI, our autotuning component

operates on tasks instead of a whole collective operation.

Because we can reuse the cost of tasks, our autotuning

component greatly reduces the tuning time, while providing

a similar level of accuracy.
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The rest of this paper is organized as follows: section II

relates this work to previous efforts; section III describes

the implementation of our framework with MPI Bcast and

MP Allreduce as examples and presents our autotuning

method; section IV evaluates the performance of our design;

and section V concludes.

II. RELATED WORK

A. Hierarchical Collective Operations

To take advantage of the communication differences at

different hardware levels, some previous studies manage to

minimize data transfers on the slow communication channels

by grouping processes based on their locations. MagPie [22]

optimizes collective operations for wide area systems, where

processes are group by clusters. In contrast, MPICH2 [23]

groups processes by nodes to limit the number of inter-

node communication. Later, the groups are further divided

to explore more levels of hardware hierarchies [24]. MVA-

PICH2 [7, 8] adds another hierarchy level with the network

switch information.

Others focus on strategies to select leaders of the groups

at each level of the hierarchy. Parsons et al. [25] select

leaders dynamically to overcome imbalanced process arrival

times, and Bayatpour et al. [20] create multiple leaders to

better explore the parallelism in networks for MPI Allreduce.

These methods provide better performance compared to the

isotropic approaches [26], which assume equal cost for any

pair of processes; but since they are not able to overlap

communications on different levels, their performance for big

messages would be sub-optimal.

Other approaches overlap the communication on two levels,

intra-node and inter-node. HierKNEM [5] tries to make intra-

node communication asynchronous by offloading intra-node

communication with KNEM [27]. SALaR [2] implements an

inter-node allreduce with non-blocking one-sided communi-

cation to make its inter-node communication asynchronous.

ADAPT [28] allows asynchronous progressing on both levels

by adopting an event-driven design and utilizing non-blocking

P2P operations on both levels. In HAN, our task-based design

allows asynchronous communication on any level.

Cheetah [26] uses a Directed Acyclic Graph (DAG) to

describe hierarchical collective operations, which is similar

to our task-based design. However, our framework provides

two advantages as compared to it. First, our framework has

a pipelining mechanism that can overlap communications on

different levels; second, Cheetah lacks an autotuning compo-

nent. Without an autotuning component, its best performance

cannot always be achieved on a given machine.

B. Autotuning of Collective Operations

In [13], Vadhiyar et al. notice collective operations may not

give good performance in all situations. Hence, they perform

an exhaustive search to find the best arguments for every

case and use these arguments to automatically tune collective

operations. It also provides some heuristic ideas and gradient

descent methods to limit the search space. These heuristics are

complementary with our approach and they can be combined

to further reduce the testing time, as discussed in section III-C.

Tuned [29], the current default collective selection mechanism

in Open MPI, built its decision functions long ago, on hard-

ware with completely different parameters than most today’s

HPC machines (a cluster of AMD64 processors using Gigabit

Ethernet and Myricom interconnect). Since HPC systems have

changed drastically, this default decision is not optimized for

current platforms.

With the increasing scale of HPC systems, the search space

of exhaustive approaches grows exponentially, rendering this

approach unrealistic and resulting in a shift toward an increase

use of cost models to guide autotuning. In [1], Pješivac-

Grbović et al. use multiple models to estimate the cost of

MPI Bcast. However, as the authors point out in the paper,

the cost models are not accurate enough to optimally tune

collective operations. SALaR [2] improves the LogGP model

with different gaps for different levels. However, even though

this model is more accurate than previous cost models for

hierarchical collective operations, it fails to find the best

configuration directly in most cases. In SALaR, the authors

only use the cost model to provide a starting point of its

online tuning. Eller et al. [21] further improve the accuracy

of a postal model of MPI Allreduce by considering network

congestion, network distance, communication and computation

overlap, and process mappings. However, its assumption of the

perfect overlap of communications on different levels and only

supporting one algorithm make it less suitable for autotuning.

Online tuning is another approach to pinpoint the best

configuration by timing collective operations and changing

the configuration (or the decision function) dynamically while

the MPI application is running. With this approach, STAR-

MPI [30] selects algorithms dynamically, and SALAR [2]

refines its segment size online. The time to converge to the best

selection is uncertain, and the cost of timing and maintaining

the decision matrix online inevitably brings overhead. Both

downsides can hurt the performance of collective operations,

which limits the usage of this approach to general cases, and

that is why we choose offline tuning in the HAN framework.

III. DESIGN

As mentioned before, our goal in HAN is not to provide

different implementations of MPI collective communication

algorithms, but to build upon the existing collective com-

munication infrastructure, reuse these existing algorithms as

submodules, and combine them to perform efficient and hi-

erarchical collective operations. HAN groups processes based

on their physical locations in the hardware hierarchies, e.g.

node, NUMA-node or even socket level, and hence divides

collective operations into multiple levels. While such infor-

mation is generally available from the MPI runtime (PMIx,

Hydra), the only portable MPI 3.1 function to expose archi-

tectural information (MPI Comm split type) allows splitting

processes intra- and inter-nodes. Therefore, we limit HAN to

the topology information obtained through this portable API,
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and we only use two levels (intra- and inter-node) in the rest

of the paper.

The design contains three parts. The first part is finding

suitable submodules for each level. As discussed in the in-

troduction, overlapping communications on different levels

is an important factor to the performance of hierarchical

collective operations. To attain good overlap of inter- and intra-

node communications, HAN relies on non-blocking collective

operations for inter-node communication, as from a practical

standpoint there are no good intra-node non-blocking collec-

tive algorithms in Open MPI. Hence, HAN utilizes the only

two modules that support non-blocking collective operations in

Open MPI: (1) Libnbc [31], a default legacy module, and (2)

ADAPT [28], a new module with an event-driven design. As

for intra-node collective operations, Open MPI provides two

modules, SM and SOLO. SM is a module utilizing shared

memory buffers to exchange data between processes; and

SOLO is an experimental module that relies on MPI one-sided

communication. Both modules take advantage of the shared

memory space; however, due to the differences in algorithms

and implementations, SM has better performance for small

messages while SOLO performs significantly better as the

communication size increases.

The second part of the design is the use of a task-based

approach to organize and overlap communications on different

levels. Our framework utilizes a pipelining technique [27, 28]

by dividing a message into smaller segments and sending

them in order, to increase the overlap between network com-

munications. In HAN, segments are transferred via tasks. To

perform a hierarchical collective operation, each task contains

one or more finer-grained collective operations from different

submodules. With the task-based design, the underlying sub-

modules used for collective operations are interchangeable,

allowing our framework to adopt submodules for new archi-

tectures easily.

The last part of our design is to provide an autotuning

component using a novel cost model. Some submodules, such

as ADAPT, offer multiple algorithms to each collective opera-

tion. For example, MPI Ibcast in ADAPT contains various

algorithms, such as chain, binary tree, and binomial tree.

For each algorithm, the underlying configurations, such as

segment size, can also affect the performance of the collective

operations. Therefore, we need an autotuning component to

pinpoint the optimal configuration. We take advantage of

the task-based design of HAN to create a new cost model

based on the empirical costs of tasks. Costs of tasks are

obtained by benchmarking submodules. Since submodules are

tightly coupled in our framework, testing the performance

of an individual submodule is not sufficient to represent the

overall performance. To accurately estimate the performance,

we benchmark the submodules when they are working together

and use these results in our cost model to estimate the cost of

a collective operation and perform autotuning.

In the following sections, we use MPI Bcast and

MPI Allreduce as examples to present the design of MPI

one-to-all and all-to-all collective operations in HAN. Similar

(a) node leader processes

(b) other processes

Fig. 1: Design of MPI Bcast

designs can be extended to other collective operations, such

as MPI Reduce, MPI Gather, and MPI Allgather, as long as

the collective operations can be divided into a serial of tasks.

A. MPI Bcast

1) Implementation: MPI Bcast is a widely used one-to-all,
or rooted, collective operation, which propagates data from

the root to all other processes within an MPI communicator.

Figure 1 shows the implementation of MPI Bcast in HAN.

Starting from the root, each segment firstly goes through an

inter-node broadcast (ib) to reach node leaders; then, each node
leader issues an intra-node broadcast (sb, s stands for shared
memory) to distribute the segment to the other local processes.

Since ib and sb mainly occupy different hardware paths, these
two broadcasts have the potential to overlap. To maximize this

overlap, we define three types of tasks:

• Task ib(i) means an inter-node broadcast of segment i.
• Task sbib(i) includes an intra-node broadcast of segment
i− 1 received in the previous iteration and an inter-node
broadcast of segment i.

• Task sb(i) means an intra-node broadcast of segment i.

Assuming there are u segments in total. With the task-based
design, to perform a hierarchical MPI Bcast, node leaders

execute ib(0), sbib(1), ... sbib(u− 1) and sb(u− 1), and the
other processes execute sb(0), ... sb(u− 1), as in figure 1.

2) The Cost Model: To find the optimal configuration of
MPI Bcast in our framework, it is crucial to have an accurate

cost model. We consider the cost of a collective operation to

be the longest time among all the processes, since the cost of a

collective operation on each process may be different depends

on implementations. This definition has been used by multiple

cost models [1, 32], and it is the maximum value reported by

Intel MPI Benchmark (IMB) [33] and OSU Benchmark [34].

26



Fig. 2: Cost of tasks ib, sb and sbib (0 is the root)

We compute the cost of MPI Bcast by aggregating the cost

of tasks in each iteration in figure 1, so the time spent in node

leader processes is:

max
i

(Ti(ib(0)) + Ti(sbib(1)) + ...+ Ti(sbib(u− 1))+

Ti(sb(u− 1))),
(1)

and the time spent in the other processes is:

max
i

(Ti(ib(0)) + Ti(sb(0)) + ...+ Ti(sb(u− 1)), (2)

where u is the total number of segments, and Ti(t) means the
duration or cost of task t on the process i. Usually, the cost
of sbib(x) is larger than sb(x) since it has an extra ib to do;
therefore, comparing equation 1 and 2, we use the time spent

in node leader processes (equation 1) as the cost of MPI Bcast.

Since ib(0) is the first task, we assume each process issues
it simultaneously. Hence, its cost can easily be measured by a

simple benchmark using a loop around a timed task. The blue

bars in figure 2 show the benchmark results of ib(0) on each
node leader with rank 0 as the root process, when transferring

64KB segments on 6 nodes with different configurations.

These results suggest that different submodules and algorithms

behave differently and every node leader finishes ib(0) at a
different time.

The last task sb(u−1) only contains an intra-node broadcast,
which is independent of the processes on the other nodes.

Since the segment size is the same among all segments, we

use Ti(sb(0)) to represent Ti(sb(u − 1)). The cost of sb(0)
can be measured the same as ib(0), and its result is shown as
the orange bars in figure 2.

Ti(sbib(1)) + ...+ Ti(sbib(u− 1)) contributes to the major
cost of MPI Bcast when u is big enough. To get an accurate
estimation of this part, two essential factors need to be

considered.

The first factor is the overlap of ib and sb. ib mainly operates
on the interconnect between nodes, while sb communicates

over the memory bus, which means these two broadcasts can

be overlapped to some degree. Thus, Ti(sbib(x)) should be
less than Ti(ib(x))+Ti(sb(x)). Prior studies [2, 21] assume the
overlap of communications on different levels is perfect, which

suggests Ti(sbib(x)) = max(T (ib(x)), T (sb(x))). However,
it is not always true. The overlap may not be perfect because:

(1) ib needs to push the data back to memory which competes
with sb for the memory bus; (2) in single-threaded MPI, ib and
sb share the same CPU resource to progress, which affects the
performance of both when they are running simultaneously.

The blue, orange and green bars in figure 2 shows the cost

of task ib(0), sb(0) and concurrent sb(0) and ib(0) (issue
an ib with an sb simultaneously and wait for them to com-

plete), respectively. It proves that no matter what algorithm

is used to perform collective operations, the overlap between

ib and sb is significant, but usually not perfect. Thus, neither
Ti(ib(x)) + Ti(sb(x)) nor max(Ti(ib(x), Ti(sb(x))) can be
used to accurately represent Ti(sbib(x)).
The second factor is the starting time of sbib on each node

leader process. The costs of ib(0) in figure 2 show node

leader processes finish ib(0) at different time steps, resulting in
different starting time of the following sbib. Hence, using the
same benchmark as for ib(0) to estimate sbib would not deliver
accurate results. To accurately measure sbib(1), we need to
delay the participation of each process by the duration of the

ib(0) step to simulate the different starting time of sbib(1),
and the results of the new benchmark is shown as the red

bars in figure 2. The performance differences between the red

bars and the green bars prove the importance of considering

previous tasks since the only difference between these two is

whether there is an ib(0) before timing sbib. Therefore, to get
the accurate cost of sbib(1), task ib(0) needs to be executed
before timing, and to get the accurate cost of sbib(2), task
ib(0) and sbib(1) need to be performed. In this way, to get
the cost of sbib(i) where 1 ≤ i ≤ u − 1, all previous tasks
from ib(0), sbib(1) to sbib(i− 1) need to be executed, which
is highly expensive and contains a lot of redundant tasks.
To reduce the redundant tasks, we start to look at the

performance trend of the sbib tasks. Figure 3 shows the cost
of sbib(i) where 1 ≤ i ≤ 8 with different algorithms and
submodules on a node leader (node leader 2). All sub-figures

show a similar trend that after the first few tasks, the cost of

sbib is stabilized. It is because when executing the first few
sbibs, the pipeline of sbib is not fully constructed, leading to
some delays. Once the pipeline is fully constructed, the cost of

sbib becomes stable. Thus, instead of benchmarking all sbibs,
we use the stabilized cost (sbib(s)) times u − 1 to estimate
the time of Ti(sbib(1)) + ... + Ti(sbib(u − 1)). Therefore,
equation 1 can turn into:

max
i

(Ti(ib(0)) + (u− 1)Ti(sbib(s)) + Ti(sb(u− 1))) (3)

3) Model Validation: Figure 4 shows the comparison of the
estimated time calculated from the cost model and the actual

time of doing a 4MB MPI Bcast with different combinations

of submodules, algorithms, and segment sizes. In some cases,

such as when segment size is 16KB in figure 4.e and figure 4.f,

27



Fig. 3: Cost of tasks on one node leader

because of the inaccurate estimation of the stabilized cost

of sbib(s), the prediction is not that accurate. However, as
seen in the figure, the cost model is accurate in most cases.

Moreover, the trends of the estimated and actual time still

match well, which are helpful to find the optimal configuration

of MPI Bcast. Comparing the cost of MPI Bcast across all the

configurations, we can see that the optimal configurations of

either estimated or actual cost (the lowest red bar and blue

bar) are the same, which is to use 128KB segment with the

binary algorithm in the ADAPT submodule for the inter-node

communication and the SOLO submodule for the intra-node

communication. The result suggests that the cost model can be

used for the autotuning of collective communications, which

is further discussed in section III-C.

B. MPI Allreduce

1) Implementation: In this section, as an example of all-to-
all collective operations, we describe HAN’s implementation

of MPI Allreduce. As indicated in figure 5, a hierarchical

MPI Allreduce requires four steps to transfer one segment:

intra-node reduction (sr), inter-node reduction (ir), inter-
node broadcast (ib) and intra-node broadcast (sb) (assum-
ing a commutative operation). The implementation of our

MPI Bcast has explored the overlap of collective operations

on different levels (i.e. ib with sb); in the implementation
of MPI Allreduce, collective operations overlap even within

the same level. For example, ir and ib could overlap if their
communications occupy opposite directions of the same inter-

node network. Figure 6 compares the performance of ib, ir and
concurrent ib with ir of different submodules and algorithms,
and strongly indicates a high degree of overlap. To maximize

the opportunity of such overlap, when it is possible to specify

the algorithm, we select the same algorithm with the same

root to perform ir and ib. It is worth mentioning that previous
studies [2, 20] use inter-node allreduce to transfer segments

across nodes. We choose to break the inter-node allreduce into

TABLE I: Inputs of autotuning

Symbol Description

n Number of Nodes
p Number of Processes per Node
m Message Size
t Collective Operation Type (Bcast, Reduce, ...)

two explicit operations, the reduce ir and the broadcast ib, to
further increase the pipeline and improve the performance for

large messages. Considering both kinds of overlaps, we define

the following tasks in our MPI Allreduce:

• Tasks sr(i) and sb(i) represent an sr and sb of segment i,
respectively.

• Task irsr(i) includes an ir and sr of segment i− 1 and i,
respectively.

• Task ibirsr(i) contains an ib, ir and sr of segment i − 2,
i− 1 and i, respectively.

• Task sbibirsr(i) is consisted of an sb, ib, ir and sr of
segment i− 3, i− 2, i− 1 and i, respectively.

• Task sbibir(i) includes an sb, ib and ir of segment i − 2,
i− 1 and i, respectively.

• Task sbib(i) contains an sb and ib of segment i− 1 and i,
respectively.

• Task sbsr(i) is only executed in the processes which are
not node leaders. It receives reduced segment i− 3 from its
leader process via an sb, and then reduces segment i to its
leader process with an sr.

2) The Cost Model: Similar to MPI Bcast, we use the

maximum time on node leaders to represent the cost of

MPI Allreduce and estimate sbibirsr(3) + sbibirsr(4) +
... + sbibirsr(u − 1) with the stabilized cost of sbibirsr
(Ti(sbibirsr(s))). In this way, the cost of MPI Allreduce is:

max
i

(Ti(sr(0)) + Ti(irsr(1)) + Ti(ibirsr(2))+

(u− 3) ∗ Ti(sbibirsr(s)) + Ti(sbibir(u− 1))+
Ti(sbib(u− 1)) + Ti(sb(u− 1))).

(4)

Then we use a similar benchmark as in section III-A2 to

measure the cost of different tasks.

3) Model Validation: Figure 7 compares the time of

MPI Allreduce estimated by the cost model against the mea-

sured time. As an example, the cost model predicts that

the optimal configuration for an MPI Allreduce with a 4MB

message is to use a 1MB segment with a binary algorithm from

the ADAPT submodule and the SOLO submodule for inter-

and intra-node communications, respectively. This prediction

matches the best measured experimentally.

C. Automatic Tuning

Autotuing is critical to ensure performance for collective

operations. Generally, there are two steps in autotuning:

1) Find the optimal configuration for some inputs to gener-

ate a lookup table. As shown in table I, the input of autotuning

contains four entries: number of nodes n, number of processes
per node p, message size m, and the collective operation type
t. The output entries of the lookup table are shown in table II.
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Fig. 4: MPI Bcast on 64 nodes (12 processes/node) with the combinations of different submodules

(a) node leader processes

(b) other processes

Fig. 5: Design of MPI Allreduce

TABLE II: Autotuned parameters (output of autotuning) for

MPI Bcast and MPI Allreduce in HAN

Symbol Description

fs Segment Size in the HAN module
imod submodule used for inter-node
smod submodule used for intra-node
ibalg Inter-node Bcast Algorithm if supported
iralg Inter-node Reduce Algorithm if supported
ibs Inter-node Bcast Segment Size if supported
irs Inter-node Reduce Segment Size if supported

Fig. 6: The overlap between ib and ir (0 is the root)

They are all parameters tuned by our autotuning framework.

Usually, m is continuous, but it is impractical to test every

message size; thus, most approaches use discrete message sizes

such as 4B, 8B, 16B, 32B, ..., to sample the continuous value

and form a search space. The same sampling method can be

applied to other entries such as n and p.
2) Use the lookup table from the previous step to generate

decisions for any inputs (n, p, m and t). As message sizes
in the lookup table are not continuous, if the input message

size falls between two message sizes in the lookup table, the

autotuning component needs to find the optimal configuration

for it.

Some studies focus on the second step, where many methods

such as quadtree encoding [35], decision trees [36] have been

studied to improve its accuracy and/or the code complexity.

However, the first step, which takes a significant amount of

time and is the foundation to ensure the accuracy of the second

step, has not been well studied. In this paper, we focus on

reducing the cost of the first step. We use offline autotuning,

which only needs to be performed once when installing the

MPI to a new machine. It first benchmarks all the tasks within
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Fig. 7: MPI Allreduce on 64 nodes with the combinations of different submodules

Fig. 8: Time of total searches of MPI Bcast and

MPI Allreduce on 64 nodes

user-defined range; then, it uses the cost model to estimate

the cost of collective operations and stores the estimated best

configuration for each input to a lookup table in a file.

A straightforward implementation of the first step is to

perform an exhaustive search for each input in table I, which

tests every possible configuration of a collective operation and

then find the fastest one. Take MPI Bcast for an example.

Assuming the sizes of the search spaces of messages, segment

sizes, nodes, processes per node are, M , S, N and P , respec-
tively, and the number of available algorithms is A (including
submodules × algorithms per submodule). Exhaustive search
tests all possible combinations of S and A for each input in

M , N and P . Therefore, the size of the whole search space
is M × S ×N ×P ×A. The orange bar in figure 8 show the
extremely expensive cost of this exhaustive search, on a small

setup (64 nodes, 12 cores per node). It is worth mentioning that

even though the exhaustive search is expensive, it guarantees

to always find the optimal configuration since its search space

would cover all possible configurations. In the context of this

study we did the exhaustive search once, and use its results to

evaluate the prediction accuracy of our approach.

Thanks to the task-based design of HAN, instead of

benchmarking a whole collective operation, we only need to

benchmark tasks. As tasks operate on segments, the search

spaces needed for one type of task are S, N , P and A.
Suppose there are T types of tasks (3 for MPI Bcast and 8

for MPI Allreduce); therefore, the size of the whole search

space of our approach becomes T × S × N × P × A. For
different message sizes, the cost of tasks is reused; hence,

compared to the previous approach, HAN can reduce M , one

of the largest search spaces, to a constant T . Besides the
smaller search space, the cost of performing each search is

also much shorter since tasks are just a part of a whole MPI

Fig. 9: MPI Bcast and MPI Allreduce on 64 nodes (12

processes/node) with different tuning methods

collective operation. Moreover, the cost of tasks can be reused

for different types of collective operations, e.g. sb is in both
MPI Bcast and MPI Allreduce. With the three improvements,

the cost of autotuning is drastically reduced. Figure 8 shows

the cost of autotuning with different approaches. As seen

in the figure, our autotuning component reduces the tuning

time by 77% as compared to the exhaustive search. Even

though with much fewer searches, our model can still estimate

the optimal configuration accurately. The purple, brown, and

orange bars in figure 9 show the median, average, and best

time-to-completion of MPI Bcast and MPI Allreduce of all

possible configurations, using exhaustive search. As seen in

the figure, both the median and the average time are much

higher than the best one, which indicates the importance of
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finding the optimal configuration. The red bars in figure 9 show

the performance of MPI Bcast and MPI Allreduce obtained

by our autotuning method, which is exactly the same as the

best results (red bars) of exhaustive search in most cases,

indicating that our approach produces a similar accuracy as

the exhaustive search.

Previous studies [1, 13] suggest that heuristics is an effective

way to reduce the search space. In HAN, we assume a prior

understanding of the collective submodules and the algorithms

available and it can be used to create heuristic strategies. For

instance, we only use the SOLO submodule when the segment

size is larger than 512KB since experimental results suggest

SM has better performance than SOLO for small messages.

Besides limiting the selections of submodules, we can also

limit the algorithm selections heuristically. For example, we

know that the chain algorithm in ADAPT can only perform

well when there are enough segments to kick-start the pipelin-

ing, we can therefore prevent the chain algorithm from being

tested when there are less than a certain number of segments

depending on the number of processes involved. Due to the

moderate novelty of these heuristics and the space constraint,

we will not discuss more the details of the heuristic methods

available in HAN, but we will use it to show the resulting

reduction in the gathering of the performance for the search.

The blue bars in figure 8 show the searching time of the

heuristics method, and highlight a drastic reduction, down to

26.8% of the original exhaustive search cost. As mentioned in

section II-B, heuristics can be beneficial outside the exhaustive

search, and they can be combined with our cost model on the

benchmarking of tasks, to further reduce the search space.

The cost of the combined approach is shown as the green

bars in figure 8, and takes only 4.3% time of the exhaustive

search. However, by using the heuristic approaches, we are

making assumptions to narrow down the search space, which

might result in lower accuracy. The blue and the green bars

in figure 9 show the results of applying the same heuristics

to the exhaustive search and our approach, respectively, and

indicate that adding heuristics produce less accurate results

compared to the original approach. To balance the searching

cost and accuracy, HAN provides an option for users to enable

or disable the heuristics based on the available resources and

other requirements.

In conclusion, a careful configuration of our task-based

autotuning component can significantly reduce the time of

searching the optimal configuration, while still maintain high

accuracy.

IV. PERFORMANCE EVALUATION

In this section, we evaluate HAN on two supercomputers:

Shaheen II and Stampede2, and compare it with other state-

of-the-art MPI libraries using benchmarks and applications.

Shaheen II is a Cray XC40 system equipped with dual-

socket Intel Haswell 16 cores CPUs running at 2.3GHz and

128GB DDR4 RAM, using Cray Aries with a Dragonfly

topology as interconnect. On Stampede2, we use the Intel

Skylake compute nodes; each node has 48 cores with two

Fig. 10: MPI Bcast on Shaheen II, 4096 processes

sockets, and 192GB DDR4 RAM. The nodes are connected

via the Intel Omni-Path network.

HAN is based on Open MPI 4.0.0. Hence for fair com-

parisons, we compare with the default Open MPI 4.0.0 on

both machines. This default Open MPI is tuned with the

conventional methods [29], and HAN is autotuned with our

cost model. Additionally, we compare HAN with the system

built-in Cray MPI 7.7.0 on Shaheen II, and Intel MPI 18.0.2

and MVAPICH2 2.3.1 on Stampede2 with default tuning.

A. Benchmark

We use IMB [33] to compare HAN against other MPI im-

plementations, on a full range of message sizes. We divide this

range in 2 parts: small messages up to 128K, representing the

message size range for most scientific applications [37], and

large messages up top 128MB, representing the usual message

sizes in machine learning and data analytics applications.

1) MPI Bcast: Figure 10 presents the cost of MPI Bcast
with 4096 processes on Shaheen II. Even though default Open

MPI is expected to be tuned, HAN significantly outperforms

it: up to 4.72x and 7.35x speed up on small and large

messages, respectively, thanks to our task-based hierarchical

implementation and cost model.

However, HAN is slightly slower than Cray MPI on small

messages. To better understand the performance gap, we mea-

sure the P2P performances of both Open MPI and Cray MPI

using Netpipe [38]. In most MPI implementations, collective

operations rely on the underlying P2P operations to transfer

data between processes; therefore, their performance directly

impacts the performance of collective operations. As seen in

figure 11, when the message size is between 512B and 2MB,

Open MPI achieves less bandwidth comparing to Cray MPI

especially for messages in the range from 16KB to 512KB,

which could explain the performance differences for the small

message in figure 10. As message sizes increase, both Open

MPI and Cray MPI reach the same peak P2P performance;

and in these cases, HAN outperforms Cray MPI up to 2.32x

thanks to the communication overlap of different levels.
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Fig. 11: P2P performance on Shaheen II

Fig. 12: MPI Bcast on Stampede2, 1536 processes

Figure 12 exhibits the performance of MPI Bcast with 1536

processes on Stampede2. On this machine, HAN outperforms

every other tested MPI on both small and large messages.

It achieves up to 1.15X, 2.28X, 5.35X speedup on small

messages, and up to 1.39X, 3.83X, 1.73X speedup on large

messages against Intel MPI, MVAPICH2 and default Open

MPI, respectively.

2) MPI Allreduce: Figure 13 and figure 14 present the cost
of MPI Allreduce with 4096 processes on Shaheen II and

Fig. 13: MPI Allreduce on Shaheen II, 4096 processes

Fig. 14: MPI Allreduce on Stampede2, 1536 processes

1536 processes on Stampede2, respectively. Compared with

the default Open MPI, HAN shows significant improvements

in all cases. Compared with other state-of-the-art MPIs, HAN

exhibits some improvements with larger size messages:

• On Shaheen II, HAN shows better performance than Cray
MPI after the message size is larger than 2MB and eventu-

ally achieves up to 1.12X speedup.

• On Stampede2, HAN is the fastest when message size is

between 4MB and 64MB. Afterward, it delivers an similar

performance as MVAPICH2, both significantly outperform-

ing the others.

Besides the P2P performance discussed in the previous

section, the cost of the reduction operations also impacts the

performance of MPI Allreduce. Among the four submodules

currently used in HAN, only SOLO and ADAPT take advan-

tage of the AVX instructions [39] to boost the performance

of reduction operations. However, the designs of these two

submodules [28] lead to high overhead on small messages.

Hence, our autotuning component selects Libnbc and SM

to perform MPI Allreduce on small messages; unfortunately,

neither of them supports AVX instruction, leading to lower

performance compared to other MPIs. Preliminary studies

have indicated that once the default Open MPI reduction

operation are updated to support AVX, the HAN performance

will benefit across all message sizes, overcoming the gap with

the other implementations.

B. Application

We also evaluate HAN with two applications on Stampede2,

each one focusing on a different type of collective operations.

1) ASP [40]: It solves the all-pairs-shortest-path problem
with a parallel implementation of the Floyd-Warshall algo-

rithm. Processes take turns to act as the root, and broadcast a

row of the weight matrix to others, followed by computations,

which causes MPI Bcast to be the most time-consuming part

of ASP. Table III presents the time of the first 1536 iterations

in ASP on 1536 processes when the matrix size is 1M. We
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TABLE III: ASP, 1536 processes on Stampede2, 1M Matrix

Intel MVAPICH2 Default OMPI HAN

Comm (s) 10.44 24.12 38.52 8.99
Total (s) 20.78 34.81 47.11 19.37

Fig. 15: Horovod on Stampede2

choose the first 1536 iterations to minimize the testing time but

still cover all the possible cases by making sure each process

acts as the root process once. HAN reduces the communication

ratio from 50.24% (Intel MPI), 69.29% (MVAPICH2), 81.77%

(default Open MPI) to 46.41%, and hence, achieves 1.08x,

1.8x and 2.43x overall speedup against Intel MPI, MVAPICH2

and default Open MPI, respectively.

2) Horovod [41]: It is a distributed training framework

that uses MPI Allreduce to average gradients. We use

tf cnn benchmarks [42] with synthetic datasets to train

AlexNet on Stampede2. Due to a configuration problem, we

could only run Intel MPI 17.0.3, default Open MPI 4.0.0 and

our framework. Figure 15 shows increasing gains for HAN

as the number of processes increases, becoming 24.30% and

9.05% faster than default Open MPI and Intel MPI on 1536

processes, respectively.

V. CONCLUSION AND FUTURE WORK

As a critical piece of the software infrastructure, MPI

implementations need to adapt to the fast-changing HPC

systems to reach users’ efficiency expectations. In this paper,

we present “HAN,” a new hierarchical autotuned collective

communication framework in Open MPI. The main contribu-

tions of this paper are twofold. First, the task-based design of

HAN, which divides hierarchical collective communications

into a set of tasks. With the task-based design, HAN can

select suitable submodules on each level to utilize hardware

capabilities, provide more opportunities to overlap communi-

cations, and minimize the effort to adapt to new hardware.

Second, this design allows for a task-based autotuning com-

ponent, supported by a novel cost model that is based on

benchmarking the tasks. Our cost analysis indicates that our

autotuning component significantly saves tuning time while

maintaining high accuracy. Our experiments on two large scale

HPC systems demonstrate HAN outperforms other state-of-

the-art MPI implementations in most cases in both benchmarks

and applications, providing a portable framework of highly

efficient collective communication operations. In the future,

we plan to further improve the submodules to boost the

upper bound of the HAN framework and explore approaches

based on an increased number of hardware levels. We also

plan to add a new submodule to support intra-node GPU

collective operations and combine it with the existing inter-

node submodules to adapt HAN to GPU-based machines.
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[35] J. Pješivac-Grbović, G. Bosilca, G. Fagg, T. Angskun, and J. Dongarra,
“Mpi collective algorithm selection and quadtree encoding,” Parallel
Comput., vol. 33, no. 9, Sep. 2007.
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