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Abstract—We present Task Bench, a parameterized benchmark
designed to explore the performance of distributed programming
systems under a variety of application scenarios. Task Bench
dramatically lowers the barrier to benchmarking and comparing
multiple programming systems by making the implementation for
a given system orthogonal to the benchmarks themselves: every
benchmark constructed with Task Bench runs on every Task
Bench implementation. Furthermore, Task Bench’s parameteri-
zation enables a wide variety of benchmark scenarios that distill
the key characteristics of larger applications.

To assess the effectiveness and overheads of the tested sys-
tems, we introduce a novel metric, minimum effective task
granularity (METG). We conduct a comprehensive study with
15 programming systems on up to 256 Haswell nodes of the
Cori supercomputer. Running at scale, 100µs-long tasks are the
finest granularity that any system runs efficiently with current
technologies. We also study each system’s scalability, ability to
hide communication and mitigate load imbalance.

I. INTRODUCTION

The challenge of parallel and distributed computation has
led to a wide variety of proposals for programming models,
languages, and runtime systems. While these systems are well-
represented in the literature, comprehensive and comparative
performance evaluations remain difficult to find. Our goal in
this paper is to develop a useful framework for comparing the
performance of parallel and distributed programming systems,
to help users and developers evaluate the performance tradeoffs
of these systems.

Existing approaches to this problem focus on proxy-/mini-
apps or microbenchmarks. These smaller codes distill key
computational characteristics of larger applications: mini-apps
are often derived from a larger code, and thus inherit some
subset of its properties, while benchmarks are typically chosen
to reflect a more narrow set of behavior(s). In either case, while
a variety of insight can be gained, the overall programming
effort required is proportional to the product of the number of
systems and behaviors being evaluated. Few published studies
compare more than a handful of systems [1], [2].

We present Task Bench, a parameterized benchmark for
exploring the performance of parallel and distributed program-
ming systems under a variety of conditions. The key property of
Task Bench is that it completely separates the system-specific
implementation from the implementation of the benchmarks
themselves. In all previous benchmarks we know of, the effort

to implement m benchmarks on n systems is O(mn). Task
Bench’s design reduces this work to O(m + n), enabling
dramatically more systems and benchmarks to be explored for
the same amount of programming effort. New benchmarks
created with Task Bench immediately run on all systems,
and new systems that implement the Task Bench interface
immediately run all benchmarks.

Benchmarks in Task Bench are based on the observation that
regardless of the programming system in which an application
is written, many applications can be modeled as coarse-grain
units of work, called tasks, with dependencies between tasks
representing the communication and synchronization required
for parallel and distributed execution. By explicitly modeling
the task graph (with tasks as vertices and dependencies as
edges), we make it possible to explore a wide variety of
patterns relevant to parallel and distributed computing: trivial
parallelism, halo exchanges (as in structured and unstructured
mesh codes), sweeps (as in the discrete ordinates method of
simulating radiation), FFTs, trees (for divide and conquer),
DNNs, graph analytics, etc. Tasks execute kernels with a
variety of computational properties, including compute- and
memory-bound loops of varying duration. Dependencies can
be configured to carry communication payloads of varying size.
Finally, multiple (potentially heterogeneous) task graphs can
be executed concurrently to introduce task parallelism into the
workload. Together, these elements enable the exploration of
a large space of application behaviors—and make it easy to
explore cases limited by runtime overhead as well as ones
where computation or communication is dominant.

Adding a system to Task Bench involves implementing a set
of standard services, such as executing a task or data transfer.
Though benchmarks are described in terms of task graphs, this
is simply a convenient representation of the computation, and
the underlying system need not provide any native support for
tasks. We provide Task Bench implementations in systems as
diverse as MPI and Spark. Task Bench provides a core API
that encapsulates functionality shared among systems, which
reduces implementation effort and makes it much easier to
achieve truly apples-to-apples comparisons between systems.

This approach has allowed us to benchmark 15 very different
parallel and distributed programming systems (see Table 4).
By running all systems on common benchmarks we were able
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to quantify phenomena that have never before been measured.
Most strikingly, the overheads of systems we examine vary by
more than five orders of magnitude, with popular, widely used
systems at both ends of the spectrum! Clearly, slower systems
have “good enough” performance for some applications, while
presumably providing advantages in programmer productivity.

How does one predict whether performance will be good
enough for a given application? The most commonly reported
measures, weak and strong scaling, do not directly characterize
the performance of the underlying programming system. Weak
scaling can hide arbitrary amounts of runtime system overhead
by using sufficiently large problem sizes, and strong scaling
does not separate runtime system overhead from application
costs (such as communication) that scale with the number of
nodes when using progressively larger portions of a machine.

To characterize the contribution of runtime overheads to
application performance, and as an example of the novel
studies that can be done with Task Bench, we introduce a
new metric called minimum effective task granularity (METG).
Intuitively, for a given workload, METG(50%) is the smallest
task granularity that maintains at least 50% efficiency, meaning
that the application achieves at least 50% of the highest
performance (in FLOP/s, B/s, or other application-specific
measure) achieved on a given machine. The efficiency bound
in METG is a key innovation over previous approaches, such
as tasks per second (TPS), that fail to consider the amount of
useful work performed (if tasks are non-empty [3], [4]) or to
perform useful work at all (if tasks are empty [5]).

METG captures the important essence of a weak or strong
scaling study, the behavior at the limit of scalability. For weak
scaling, METG(50%) corresponds to the smallest problem
size that can be weak-scaled with 50% efficiency. For strong
scaling, METG(50%) can be used to compute the scale at
which efficiency can be expected to dip below 50%. We note
that METG(50%) for a given runtime system will vary with the
application and the underlying hardware—i.e., METG(50%)
is not a constant for a given system, but we find that systems
have a characteristic range of METG(50%) values and that
there is additional insight in the reasons that METG can vary.

A lower METG does not necessarily mean that performance
for a particular workload is significantly better. Two systems
with METG(50%) of 100 µs and 1 ms, respectively, running
an application with 10 ms average task granularity, are both
likely to perform well. Only when task granularity approaches
(or drops below) METG(50%) will they likely diverge. METG
identifies the regime in which a given system can deliver good
performance, and explains how different systems coexist with
runtime overheads that vary by orders of magnitude.

We conduct a comprehensive study of all 15 Task Bench
implementations on up to 256 Haswell nodes of the Cori
supercomputer [6]. Using METG, we find that a number of
factors—node count, accelerators, and complex dependencies,
among others—individually or in combination contribute to
an order of magnitude or greater increase in METG, even in
systems with the lowest overheads. While some systems can
achieve sub-microsecond METG(50%) in best-case scenarios,

Parameter Values Purpose
height height of graph number of timesteps
width width of graph degree of parallelism
dependence trivial, stencil, etc. communication pattern
x radix (for nearest pattern) dependencies per task

kernel compute, memory, etc. type of kernel
x iter. (for all kernels) task duration
x span (for memory kernel) bytes used per task per iter.
x scratch (for memory kernel) total working set size
x imbal. (for load imbalance) degree of imbalance

output bytes per dependency degree of comm.

Table 1: Task Bench parameters.

we show that a more realistic bound for running nearly
any application at scale is 100 µs with current technologies.
Our study includes several asynchronous systems designed
to provide benefits such as overlapped computation and
communication. While small-scale benchmarks of these systems
suffer from increased overhead, we find that the benefits of
these systems become tangible at scale (provided the runtime
overhead doesn’t increase beyond about 100 µs per task).

Beyond comparative study, the ability to explore a large
configuration space also enables the discovery of bugs in
the underlying systems. We found five performance issues,
ranging from communication efficiency (Chapel, Realm), to
the efficiency of task pruning, analysis and constant folding
(PaRSEC, Dask and TensorFlow). Three have been fixed
and all have been acknowledged by the developers of the
respective systems. (All were either fixed or worked around in
our experiments.) In some cases these correspond to order of
magnitude or even asymptotic improvements in the performance
of the underlying systems—benefits which apply well beyond
Task Bench to all classes of applications. The bugs are described
in more detail in Section VI.

The paper is organized as follows: Section II describes the
Task Bench design. Section III discusses implementations in
15 systems. Section IV defines METG and its relationship
to quantities of interest to application developers. Section V
provides a comprehensive evaluation on Cori. Section VI
describes bugs found with Task Bench. Section VII relates
to previous efforts; Section VIII concludes.

II. TASK BENCH

To explore as broad a space of application scenarios as
possible, Task Bench provides a large number of configuration
parameters. These parameters are described in Table 1, and
control the size and structure of the task graph, the type and
duration of kernels associated with each task, and the amount
of data associated with each dependence edge in the graph.

Task graphs are a combination of an iteration space (with a
task for each point in the space) with a dependence relation. For
simplicity, but without loss of generality, the iteration space in
Task Bench is constrained to be 2-dimensional, with time along
the vertical axis and parallel tasks along the horizontal. Tasks
may depend only on tasks from the immediately preceding
time step. Figure 1 shows a number of sample task graphs
that can be implemented with Task Bench. Note that layout is



(a) Trivial. (b) Stencil. (c) FFT.

(d) Sweep. (e) Tree. (f) Random.
Figure 1: Sample task graphs.

Pattern Dependence Relation
Trivial D(t, i) := ∅
Stencil D(t, i) := {i, i− 1, i+ 1}
FFT D(t, i) := {i, i− 2t, i+ 2t}
Sweep D(t, i) := {i, i− 1}

Tree D(t, i) :=

{
{i− 2−tW (imod2−t+1W )} if t ≤ log2 W
{i, i+ 2t−1W−1} otherwise

Rand. D(t, i) := {i|0 ≤ i < W ∧ random() < 0.5}

Table 2: Dependence relations for sample task graphs.

significant: generally speaking each column will be assigned
to execute on a different processor core.

Dependencies between tasks are determined by a dependence
relation. The dependence relation identifies the tasks from the
previous time step each task depends on, permitting a wide
variety of patterns to be implemented that are relevant to real
applications: stencils, sweeps, FFTs, trees, etc. Dependence
relations may be parameterized, such as picking the K nearest
neighbors, or K distant neighbors. They may also vary over
time, such as in the FFT pattern. The set of dependence relations
is extensible, making it easy to add patterns to represent
new classes of applications. Table 2 shows equations for the
dependence relations of the patterns in Figure 1, where t is
timestep, i is column, and W is the width of the task graph.

Listing 2 shows an excerpt from the Task Bench im-
plementation in MPI. Methods of the Graph object g are
provided by Task Bench’s core API and are shared among all
implementations. These methods are summarized in Table 3.
The MPI implementation follows the style of communicating
sequential processes (CSP) [7], and executes a set of send
and receive calls (lines 24 and 16, respectively) followed by
executing the task body (line 32). Despite MPI having no
notion of task, the execution of a task graph maps into the
CSP style in a straightforward way. The implementation is
both simple and efficient, but due to the choice of CSP makes
no attempt to exploit task parallelism, and leaves performance
on the table when executing task graphs with load imbalance
or significant communication. Note the excerpt is simplified
for presentation and the full implementation is more general
and provides additional optimizations.

In addition to specifying the shape of the task graph, the core
API also provides implementations of the kernels executed by
each task as well as other utility routines (to parse inputs and
display results). An excerpt from the core API compute kernel
is shown in Listing 1. In addition to reducing the effort required

Method Purpose
Graph::contains_point(t,i) is task(t,i) contained in the graph?
Graph::deps(t,i) predecessors of task(t,i)
Graph::reverse_deps(t,i) successors of task(t,i)
Graph::execute_point(t,i, ...) execute the body of task(t,i)

Table 3: Subset of the core API used in code samples below.

1 void compute_kernel(long iterations) {
2 double A[64];
3 for (int i = 0; i < 64; i++) A[i] = 1.2345;
4 for (long iter = 0; iter < iterations; iter++)
5 for (int i = 0; i < 64; i++)
6 A[i] = A[i] * A[i] + A[i];
7 }

Listing 1: Core API implementation of compute kernel.

1 void execute_task_graph(Graph g) {
2 char *output = (char *)malloc(g.output_bytes);
3 char *scratch = (char *)malloc(g.scratch_bytes);
4 char **inputs = (char **)malloc(/*...*/);
5 long rank;
6 // initialize data structures...
7
8 std::vector<MPI_Request> requests;
9 for (long t = 0; t < g.height; ++t) {

10 if (g.contains_point(t, rank)) {
11 long idx = 0;
12 requests.clear();
13
14 for (long dep : g.deps(t, rank)) {
15 MPI_Request req;
16 MPI_Irecv(inputs[idx], g.output_bytes, MPI_BYTE,
17 dep, 0, MPI_COMM_WORLD, &req);
18 requests.push_back(req);
19 idx++;
20 }
21
22 for (long dep : g.reverse_deps(t, rank)) {
23 MPI_Request req;
24 MPI_Isend(output, g.output_bytes, MPI_BYTE,
25 dep, 0, MPI_COMM_WORLD, &req);
26 requests.push_back(req);
27 }
28
29 MPI_Waitall(requests.size(), requests.data(),
30 MPI_STATUSES_IGNORE);
31
32 g.execute_point(t, rank, output, inputs, scratch);
33 }
34 }
35 }

Listing 2: Excerpt from Task Bench implementation in MPI.

to implement Task Bench, providing central implementations
of these services ensures that all Task Bench implementations
can be scripted uniformly and eliminates a potential source of
performance disparity that can be a pitfall for other benchmarks.

The Task Bench core library is fully self-validating: The
output of each task is a tuple 〈row, col〉 and is unique for a
given task graph. Inputs are verified by checking the expected
dependencies against those received, and an assertion is thrown
if validation fails. These checks ensure that every execution
of Task Bench is correct. Note that the graph representation is
concise, making these checks very inexpensive. An evaluation
of the performance impact of validation showed it to be less
than 3% at the smallest task granularities in any Task Bench
implementation, with a negligible effect on overall results.

Task Bench provides two main kernels that can be called
from tasks: compute- and memory-bound. The compute-bound
kernel executes a tight loop and is hand-written using AVX2
FMA intrinsics. The memory-bound kernel performs sequential
reads and writes over an array, again with AVX2 intrinsics.
The duration of both kernels can be configured by setting



the number of iterations to execute; we use this ability to
simulate the effects of varying application problem sizes. The
memory-bound kernel is carefully written to keep the working
set size constant as the number of iterations decreases, to avoid
unwanted speedups due to cache effects.

III. IMPLEMENTATIONS

We have implemented Task Bench in the 15 parallel and
distributed programming systems listed in Table 4. These
include traditional HPC programming models (MPI and
MPI+X), PGAS and actor models (Chapel, Charm++ and X10),
task-based systems (OmpSs, OpenMP 4.0, PaRSEC, Realm,
Regent, and StarPU) and systems for large scale data analytics,
machine learning and workflows (Dask, Spark, Swift/T, and
TensorFlow). Implementing Task Bench in such a wide range of
systems is possible because the separation between core API (in
Table 3) and system implementation enables an overall effort of
O(m+n) (for m benchmarks on n systems) rather than O(mn)
as has been the case for all previous benchmarks that we know
of. We briefly describe the systems and implementations below.

One challenge in targeting such a wide variety of systems
is that the capabilities of the systems vary considerably. For
example, some systems are implicitly parallel, and provide
some form of parallelism discovery from sequential programs,
whereas others are explicitly parallel and require users to
specify the parallelism in the program. For systems that provide
both implicit and explicit parallelism, the form of parallelism
used in Task Bench is emphasized in Table 4.

In all cases, members of the programming systems’ teams
were consulted in the development and evaluation of the
corresponding Task Bench implementations. Where assistance
was provided, the insights helped ensure that we provide the
highest quality implementations for each system.

A. Traditional HPC Programming Models
MPI [8] is a message-passing API for HPC. We provide

an MPI implementation written in the style of communicating
sequential processes (CSP). An excerpt is shown in Listing 2.

We provide two MPI+X implementations to evaluate hi-
erarchical programming models. Our MPI+OpenMP imple-
mentation uses forall-style parallel loops to execute tasks, but
otherwise follows the CSP implementation above. The code
uses shared memory for data movement within a rank. Our
MPI+CUDA implementation follows an offload model where
data is copied to and from the GPU on every timestep.

B. PGAS and Actor Models
PGAS and actor models, such as Chapel [9], Charm++ [10]

and X10 [11] offer asynchronous tasks, making them amenable
to a straightforward implementation of task bench. Synchro-
nization is explicit and may be provided by messages (in actor
models) or other primitives, such as locks or atomics (in PGAS
models). PGAS models such as Chapel and X10 provide global
references to data anywhere in the machine, but vary in whether
data can be accessed remotely or not (Chapel allows this, X10
does not). Chapel also provides support for implicit parallelism
which we do not evaluate in this paper.

System Paradigm Parallelism Distrib. Network
Chapel multi-resolution expl., impl. yes uGNI1

Charm++ actor model explicit yes uGNI2

Dask task-based implicit yes sockets
MPI message passing explicit yes uGNI3

MPI+X hybrid explicit yes MPI
OmpSs loop-, task-based expl., impl. no
OpenMP loop-, task-based expl., impl. no
PaRSEC task-based implicit yes MPI
Realm task-based explicit yes GASNet
Regent task-based implicit yes GASNet
Spark functional implicit yes sockets
StarPU task-based expl., impl. yes MPI
Swift/T dataflow implicit yes MPI
TensorFlow dataflow explicit yes4 sockets
X10 place-based explicit yes MPI5

Table 4: Systems for which we implemented Task Bench.

C. Task-Based Programming Models

Task-based systems include OmpSs [12], OpenMP 4.0 [13],
PaRSEC [14], [15], Realm [16], Regent [17], and StarPU [18].
Though the details vary, these systems typically provide
implicit parallelism, where tasks are enumerated sequentially
(in program order) and the dependencies between tasks are
analyzed automatically to construct a dependence graph
that guides the execution of tasks. PaRSEC provides two
modes, dynamic task discovery (DTD) [15], which operates
as above, and parameterized task graphs (PTG) [14], where
the dependence graph is constructed automatically from an
analytical representation of the task graph. Realm (unlike
the others above) is explicitly parallel and requires tasks to
be connected explicitly via events. Realm is the low-level
execution engine for Regent and thus serves as a limit study
of what can be achieved with Regent. StarPU, in addition to
its usual, implicitly parallel mode, also provides a mode where
MPI is used for synchronization (and is thus explicitly parallel).

Among implicitly parallel, distributed task-based systems,
there can be a scalability bottleneck due to enumerating tasks
sequentially. PaRSEC and StarPU allow users to manually
prune the task graph, skipping tasks not mapped for execution
onto a given node, plus a “halo” consisting of tasks connected
via dependencies to the set of node-local tasks. Because the
dynamic checks to see if a task should be executed are not free
of cost, we also provide versions of the PaRSEC and StarPU
implementations (labeled shard and expl, respectively) hand-
written to minimize such costs. PaRSEC shard uses the
DTD mode but manually minimizes dynamic checks. StarPU
expl uses the MPI integration described above. We see in
Section V-D that such modifications are needed to achieve
optimal scalability. Regent performs an equivalent optimization
at compile time [19] that does not require user intervention and
preserves the original, implicitly parallel programming model
of the language.

1Chapel uses GASNet to support non-Cray networks.
2Charm++ provides additional backends for other networks.
3Most MPI implementations provide additional backends for other networks.
4Our evaluation only considers TensorFlow on a single node.
5X10 also provides a PAMI backend on supported networks.
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D. Data Analytics, Machine Learning and Workflows

Dask [20], Spark [21] and TensorFlow [22] are programming
models for large scale data analytics and machine learning.
Dask and TensorFlow provide domain-specific abstractions built
on top of task-based runtimes. Our implementations directly
create tasks and are similar to other task-based systems above.

Spark provides support for functional operators that im-
plicitly map to tasks. We use flatMap and groupByKey to
generate dependencies and mapPartitions to execute tasks.
An explicit hash partitioner ensures the correct task granularity.

Swift/T [23] is a parallel scripting language with dataflow
semantics, used primarily for workflow automation. Our
implementation is straightforward.

IV. METG

Since Task Bench permits rapid exploration of a large space
of application scenarios, one question is how to characterize
the performance and efficiency of systems under study. As
noted above, the overheads of the systems we consider vary by
more than five orders of magnitude, making it challenging to
extract useful information from weak and strong scaling runs.

Existing studies of system efficiency typically report tasks
per second (TPS). TPS results are difficult to interpret and
apply, because efficiency (and thus the amount of useful work)
is not constrained. With empty tasks [5], the resulting upper
bound on task scheduling throughput fails to represent useful
work within a realistic application. With non-empty tasks,
since the efficiency of the overall application is typically not
reported [3], [4], TPS is not a measurement of runtime-limited
performance. Large tasks may be used to hide any amount of
runtime overhead, while small tasks may result in a drop in
total application throughput even as TPS increases.

We introduce minimum effective task granularity, or METG,
an efficiency-constrained metric for runtime-limited perfor-
mance. METG(50%) for an application A is the smallest
average task granularity (i.e., task duration) such that A
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Figure 4: MPI weak scaling with problem size per node (stencil).
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Figure 5: MPI strong scaling with problem size (stencil).

achieves overall efficiency of at least 50%. Note that METG
is parameterized by the efficiency metric. For example, in
compute-bound applications efficiency can be measured as the
percentage of the available FLOP/s achieved. On Cori with 1.26
TFLOP/s available per Haswell node, METG(50%) corresponds
to the smallest task granularity achieved while maintaining at
least 0.63 TFLOP/s per node. However, METG is not tied to
peak performance, and in applications not amenable to being
characterized in this way, another application-specific measure
of performance can be used. For example, a simulation on
a mesh might use the number of mesh cells processed per
second (i.e., total number of cells divided by wall clock time
per iteration of the main simulation loop).

The choice of 50% is a parameter and not fundamental
to METG. We use 50% in our studies to avoid pathologies
associated with lower thresholds (see Section V-A), and also
because it aligns with what we observe in practice. For example,
one supercomputer center instructs users applying for projects
to run a strong scaling study and then “select the most parallel
efficient job size,” i.e., the largest number of nodes with a
“ratio of benchmark speed-up vs. linear speed-up above 50%”
[24], which corresponds to METG(50%).

Figure 2 shows how METG is measured. We run the applica-
tion (MPI Task Bench) on a Cori Haswell node with a problem
size large enough that runtime is dominated by kernel execution.
This result confirms that the application is properly configured
and that the efficiency metric is achievable. The problem size
is then repeatedly reduced while maintaining exactly the same
hardware and software configuration (in particular, the same
number of nodes and tasks). The expectation is that as problem
size shrinks, performance will begin to drop and eventually
approach zero. Systems with lower runtime overheads maintain
higher performance at smaller problem sizes compared to
systems with higher overheads.

To calculate METG, the data is replotted along axes of
efficiency (i.e., as a percentage of the peak FLOP/s achieved)



System Version Notes
Chapel 1.18.0 --fast
Charm++ 6.9.0 -optimize
Dask 1.1.5
MPI(+X) Cray MPICH 7.7.3 -O3
OmpSs 2, release 2020.06 -O3
OpenMP Intel KMP 18.0.1.163 -O3
PaRSEC Git master (242498d) -O3
Realm Git subgraph (5e9dcfa) -O3
Regent Git subgraph (5e9dcfa) -fflow-spmd 1
Spark 2.3.0 (Scala 2.11.8, Java 8)
StarPU 1.3.4 -O3
Swift/T 1.4 -O3
TensorFlow 2.1.0
X10 Git master (9212dc2) -O3 -NO_CHECKS

Table 5: System version and configuration notes.

and task granularity (i.e., wall time× num. cores/num. tasks),
as shown in Figure 3. Note that a task is defined broadly to
be any continuously-executing unit of application code, and
thus it makes sense to discuss tasks even in systems with no
explicit notion of tasking, such as MPI. In this case, the tasks
run the compute-bound kernel shown in Section II.

In Figure 3, efficiency starts at 100%. Initially task granular-
ity shrinks with minimal change in efficiency. As tasks shrink
further, efficiency drops more rapidly, approaching a vertical
asymptote as overhead comes to dominate useful work.

METG(50%) is the intersection of the curve at 50% effi-
ciency, as shown by the red, dashed lines in Figures 2 and 3. At
50% efficiency, MPI achieves an average task granularity of 4.6
µs, thus the METG(50%) of MPI is 4.6 µs in this configuration.

METG has a well-defined relationship with quantities of
interest such as weak and strong scaling. Figures 4 and 5 show
the weak and strong scaling of MPI Task Bench running a
stencil pattern at a variety of problem sizes. In these figures, the
vertical axis is shown as wall time to emphasize the relationship
to time-to-solution, but it could equivalently be shown as task
granularity (as the number of tasks per execution is fixed).
Intuitively, at larger problem sizes MPI is perfectly efficient.
This can be seen at the top of each figure, with flat lines when
weak scaling and ideally-sloped downward lines when strong
scaling. Inefficiency begins to appear at smaller problem sizes,
towards the bottom of the graph, where lines become more
compressed. At the very bottom, the lines compress together
as running time becomes dominated by overhead. Note that the
contour of the bottom of each graph is identical and conforms
to the METG curve (marked by the red, dashed line).

METG therefore has a direct relationship with the smallest
problem size that can be weak scaled to a given node count
with a given level of efficiency. Using the formula for task
granularity above, each run is 32 tasks wide and 1000 timesteps
long, so task granularity is wall time divided by 1000 (since
Cori has 32 cores per node). The 212 problem size in Figure 4
scales well initially because the task granularity of 20 µs is
greater than the METG(50%) of MPI at small node counts
(which is about 4.6-12 µs from 1-64 nodes) but not at higher
node counts (which rises to 28 µs at 128 nodes and 61 µs
at 256). Similarly, METG corresponds to the point at which
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strong scaling can be expected to stop. In Figure 5 the problem
size 218 strong scales to 64 nodes, the point at which the
scaling curve intersects METG(50%).

The METG metric has another useful property. Because
METG is measured “in place” (i.e., without changing the
number of nodes or cores available to the application), METG
isolates effects due to shrinking problem size from effects
due to increased communication and other resource issues as
progressively larger portions of the machine are used.

V. EVALUATION

We present a comprehensive evaluation of our Task Bench
implementations on up to 256 Haswell nodes of the Cori
supercomputer [6], a Cray XC40 machine. Cori Haswell nodes
have 2 sockets with Intel Xeon E5-2698 v3 processors (a total
of 32 physical cores per node), 128 GB RAM, and a Cray
Aries interconnect. We use GCC 7.3.0 for all Task Bench
implementations, and (where applicable) the system default
MPI implementation, Cray MPICH 7.7.3. Versions and flags
for the various systems are shown in Table 5.

For GPU experiments we use Piz Daint [25], a Cray XC50
with a Intel Xeon E5-2690 v3 (12 physical cores) and one
NVIDIA Tesla P100 per node. We use GCC 6.2.0, Cray MPICH
7.7.2, and CUDA 9.1.85.

A. Compute Kernel Performance

We first consider the peak performance achieved by each
system. There should exist some task granularity which is
sufficient to offset the runtime overheads of any system,
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Figure 8: B/s vs problem size (stencil, 1 node). Higher is better.

regardless of how large those are. Even so, a variety of issues
can lead to performance loss (e.g. due to not using all available
cores). Verifying that peak performance is achieved ensures
that there are no such flaws in our configuration.

Figure 6, which is the full version of Figure 2, shows the
FLOP/s achieved with a compute-bound kernel with varying
problem sizes (simulated by running the kernel for varying
numbers of iterations). Each data point in the graph is a mean of
5 runs, with Task Bench configured to execute 1000 time steps
of the stencil pattern. In the best case, we measure peak FLOP/s
of 1.26× 1012, which compares favorably with the officially
reported number of 1.2 × 1012 [6]. We use our empirically
determined number as the baseline for 100% efficiency below.

Most systems achieve or nearly achieve peak FLOP/s. Some
systems reserve a number of cores (usually 1 or 2) for internal
use (see below); these systems take a minor hit in peak FLOP/s
compared to systems that share all cores between application
and runtime. Some higher-overhead systems struggle to achieve
peak FLOP/s, though in most cases the curves suggest that
performance would continue to improve if we were to run larger
problem sizes. Unfortunately, the excessive computational cost
of running such tests makes this prohibitively expensive. For
example, the Spark job in this case ran for over 6 hours.

Figure 7 plots efficiency (as a percentage of peak FLOP/s)
vs. task granularity. As described in Section IV, this is used
to calculate METG(50%). The red, dashed line indicates 50%
efficiency. In most cases, task granularity asymptotes prior to
this point, though some systems continue to improve at lower
values. Accounting for this effect is one of the main arguments
in favor of using reasonable efficiency thresholds for METG
instead of empty tasks (i.e., METG(0%)). Empty tasks reward
strategies, such as devoting 100% of system resources to the
runtime system, that make no sense for real applications.

B. Memory Kernel Performance

Figure 8 shows performance with a memory-bound kernel.
We measure a peak memory bandwidth of 79 GB/s, using a
working set size of 0.5 GB. As discussed in Section II, the
kernels are designed to keep the working set constant as the
number of iterations decrease to avoid noisy, superlinear effects
in the results. For comparison, the OpenMP-enabled STREAM
benchmarks [26] report up to 98 GB/s on the same hardware.

Not all cores are required to saturate memory bandwidth.
This reduces the impact of reserving cores for system use (e.g.

task-based systems that perform dependence analysis). Nearly
all systems hit 100% of peak, unlike the compute-bound case.

The remaining experiments use compute-bound kernels.

C. Baseline Overhead

One question when considering different programming
systems is: How much overhead does the system add? This
question is tricky to answer directly because some systems
introduce overhead inline (i.e., by running system internal
processes on the same cores as application tasks), while other
systems introduce overhead out-of-line (i.e., by dedicating
one or more cores solely to runtime use). Some systems,
like Charm++, PaRSEC, Realm, and Regent, support both
configurations.

To answer this question, we use METG as a proxy for
overhead. Figure 9 shows how METG(50%) varies with node
count for a subset of dependence patterns supported by Task
Bench. METG(50%) is calculated separately at each node
count, to distinguish runtime system behavior from changes in
communication latency and topology when using progressively
larger portions of the machine.

We consider the following configurations of Task Bench:
Figure 9a is a 1D stencil where each task depends on 3
other tasks (including the same point in the previous timestep).
Figure 9b is a pattern where each task depends on 5 others,
chosen to be as close as possible. Figure 9c is a pattern
where each task depends on 5 others, spread as widely as
possible. And Figure 9d shows 4 identical copies of the nearest
dependence pattern executing concurrently.

We observe that overheads vary by over 5 orders of
magnitude. The most efficient systems are explicitly parallel
and provide very lightweight mechanisms for parallelism. Task-
based systems for HPC tend to be next most efficient, and
provide additional features such as automatic dependency
discovery and data movement. Higher overhead systems tend
to be designed primarily for large-scale data analysis or
workflows. It is worth remembering that these are minimum
effective task granularities. Applications with an average task
granularity of at least this value can usually be expected to
execute efficiently. Typical task granularities will generally be
determined by the application domain being considered. Most
notably, for large-scale data analytics workloads, the higher
METG values observed for Spark are sufficient. In contrast, for
high-performance scientific simulations, task granularities in the
millisecond range are useful, as such applications communicate
(e.g., for halo exchanges) much more frequently.

The least complicated pattern (stencil) is most favorable to
MPI, as it provides no opportunity for task parallelism. The
dominating factor in this case is the overhead of executing a
task, which is minimal for MPI as the code simply executes
tasks in alternation with communication. The asynchrony
of other systems is pure overhead in this scenario. MPI’s
advantage shrinks as complexity grows, and even reverses as
task parallelism is added in the form of multiple task graphs.
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(a) Stencil pattern.
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(b) Nearest pattern, 5 deps/task.
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(c) Spread pattern, 5 deps/task.
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(d) Nearest pattern, 5 deps/task, 4 independent graphs.
Figure 9: METG vs node count for different dependence patterns. Lower is better.

We omit Spark and Swift/T with more complicated dependen-
cies, as their higher overheads require excessive problem sizes
(beyond what completes in 6 hours) to reach 50% efficiency.

D. Scalability

METG summarizes system overheads in a single number.
This makes it possible to evaluate how communication topology
and latency impact METG at different node counts, as shown in
Figure 9. We find that systems with the smallest METG on one
node have roughly an order of magnitude higher METG at 256
nodes. Increased communication latencies require significantly
larger tasks to achieve the same level of efficiency, so apparent
differences in overhead at small node counts can matter much
less or not at all at larger node counts.

Most systems for HPC are highly scalable, but this is not
true of all the systems included in this evaluation. Lower is
better in Figure 9, and flat is ideal. Lines that rise with node
count indicate less than ideal scaling. Most notably, Spark
is primarily intended for industrial data center applications
with task granularities measured in seconds. Spark uses a
centralized controller, which limits throughput, and this is
visible in the figure as the line for Spark immediately rises
with node count. Keep in mind that Spark is being evaluated
here with a nontrivial dependence pattern that is relatively
unrepresentative of Spark’s normal use cases. Spark is more
efficient with trivial parallelism, as described in Section V-E.

PaRSEC, StarPU and Regent rely on runtime analysis that
can suffer from scalability bottlenecks if every node must
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Figure 10: METG vs deps/task (nearest, 1 node). Lower is better.

consider the tasks executing on all other nodes. Although all
three systems offer ways to improve scalability, these methods
are not equally effective. PaRSEC DTD and StarPU allow
users to manually prune tasks to reduce overhead; however
the checks are not reduced to zero. Similarly, PaRSEC PTG
uses compile-time optimizations to avoid the need for manual
pruning, but still targets the PaRSEC DTD runtime and thus
incurs some overhead. Figure 9 shows that these models do not
provide ideal scalability, as seen by METG values that rise with
increasing node count. Regent uses a compile-time optimization
to generate code with a constant overhead per node [19]. Of
the three systems, Regent is the only one that achieves ideal
scalability while preserving its original, implicitly parallel
programming model. The others can achieve ideal scalability
but require increasing levels of manual intervention. PaRSEC
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Figure 11: Efficiency vs task granularity for varying communication (spread, 5 deps/task, 4 independent graphs, 64 nodes). Higher is better.

shard includes additional manual optimizations over DTD to
completely eliminate dynamic checks. StarPU expl is written
in an explicitly parallel style using MPI for communication,
and thus avoids any analysis bottleneck. These results indicate
that the underlying systems are capable of scalable execution,
but that the dynamic checks incurred by the implicitly parallel
programming models hinder that scalability.

E. Number of Dependencies

The number of dependencies per task has a strong influ-
ence on overhead, as shown in Figure 10. This plot shows
METG(50%) for the nearest dependence pattern, when varying
the number of dependencies per task from 0 to 9.

The ratio in METG between 0 and 3 dependencies per task
ranges from 0.82× to 250× (mean 21×, std. dev. 64). The large
standard deviation shows that the sensitivity of system overhead
to the dependency pattern varies widely. The largest ratios are
among systems that perform runtime work inline. For example,
MPI achieves an METG of 390 ns with 0 dependencies, but
this rises to 4.6 µs with 3 dependencies, a 12× increase. This
is unsurprising, as with 0 dependencies no MPI_Isend calls
are issued at all. Clearly, choosing a representative dependence
pattern is important when estimating the performance of a
workload or class of workloads.

F. Overlapping Communication and Computation

Also of interest is the ability to hide communication
latency in the presence of task parallelism. Figure 11 plots
efficiency with varying amounts of communication, determined
by the number of bytes produced by each task (and therefore
communicated with each task dependency).

Asynchronous systems such as Charm++ demonstrate two
benefits in these plots. First, by overlapping communica-
tion with computation, such systems execute smaller task
granularities at higher levels of efficiency compared to the
MPI implementations. Second, the asynchrony and scheduling
flexibility from executing multiple graphs also makes the curves
smoother, as spikes in latency due to interference from other
jobs can be mitigated, leading to more predictable performance,
especially at smaller message sizes.

The effectiveness of such overlap can be influenced by the
scheduling policies of the underlying system. For example,
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Figure 12: Efficiency vs task granularity under load imbalance (nearest
pattern, 5 deps/task, 4 task graphs, 1 node). Higher is better.

Chapel’s default scheduler uses a round-robin policy; we see in
Figure 11 that this approach fails to take full advantage of the
available task parallelism. A work-stealing scheduler (Chapel
distrib) is able to recover this performance.

G. Load Imbalance

One advantage of asynchronous execution is the ability to
mitigate load imbalance with little or no additional programmer
effort, especially in the presence of task parallelism. To quantify
this effect, Figure 12 plots task granularity vs. efficiency under
load imbalance where each task’s duration is multiplied by a
uniform random variable in [0, 1). Task durations are generated
with a deterministic pseudo random number generator with a
consistent seed to ensure identical durations for all systems.

The MPI Task Bench, with its distinct computation and
communication phases, suffers the most under load imbalance.
The biggest difference is at large task granularities, where
the imbalance effectively puts an upper bound on efficiency.
At smaller task granularities the effect shrinks and may even
reverse as systems hit their fundamental limits due to overhead.

The remaining differences are due primarily to different
scheduling behaviors. The execution of 4 simultaneous task
graphs only partially mitigates the load imbalance between
tasks. Systems that provide an additional on-node work stealing
capability (such as Chapel with the distrib scheduler)
see additional gains in efficiency at large task granularities.
However, the use of work-stealing queues can also impact
throughput at small task granularities. For example, Chapel’s
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default (non-work-stealing) scheduler outperforms distrib
at very small task granularities. We do not consider Charm++
load balancers because the imbalance is non-persistent (i.e.,
timestep t is uncorrelated with timestep t+1). We leave analysis
of persistent load imbalance to future work.

H. Heterogeneous Processors

To determine the cost of scheduling tasks on GPUs, Figure 13
compares MPI and MPI+CUDA on Piz Daint [25]. The CUDA
compute kernel achieves 4.759× 1012 FLOP/s, which is very
close to the officially reported number 4.761× 1012. The CPU
achieves 5.726× 1011 FLOP/s. Note that the kernels perform
different numbers of operations as the GPU requires more
work to reach peak performance. The x-axis in Figure 13 is
normalized to keep FLOPs constant for a given problem size.

Our MPI+CUDA code uses an offload model with data
copied to/from the GPU every step. In our tests, w1 uses 1 task
per GPU, whereas w4 overdecomposes, using 4 MPI ranks per
GPU to push work to the GPU in parallel. w4 achieves higher
FLOP/s but drops more rapidly at small problem sizes, due to
the overhead of running 4× as many CUDA kernels. Either way,
GPUs require more work to achieve high performance, and the
overhead of copying data dominates at small task granularities,
where CPUs achieve higher performance. While Figure 13 is
not couched in terms of METG (as peak performance on CPU
and GPU are very different), the conclusion here is similar
to Section V-D: the cost of sending data and tasks to GPUs
imposes a floor on task granularity relative to CPUs, reducing
the advantage at small task granularities of very lightweight
mechanisms such as those in MPI.

I. Validating METG with Time to Solution

We can use METG to predict the scalability of a code. Figure
14 shows strong scaling for three Task Bench implementations
with the stencil pattern. Lines marked “actual” represent strong
scaling measurements, while ones marked “limit 50%” are
computed by multiplying METG(50%) by tasks per core (in this
case, 1000) to obtain wall clock time. Intuitively, “limit” is the
smallest time to solution that can be achieved for any problem
size at that node count, while maintaining 50% efficiency. Data
points where “actual” falls below “limit” mark points where
strong scaling parallel efficiency is less than 50%.

There are two points of interest on each “limit 50%” curve:
the point where it intersects “actual” and the point where it
intersects an ideal scaling curve, computed by taking the initial
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Figure 14: Strong scaling vs efficiency-limited time to solution with
problem size 220 (stencil). Lower is better.

Nodes Time to Solution
Pattern mean std. dev. mean std. dev.
stencil 1.64× 0.278 1.26× 0.246
nearest 1.75× 0.268 1.15× 0.331
spread 1.43× 0.288 1.29× 0.206

nearest, 4 graphs 1.96× 0.680 1.26× 0.702
Table 6: Factor of separation between limit-ideal and limit-actual
intersections across all 12 programming systems tested in Section V-D.

time to solution and assuming linear scaling. These points are
marked for Charm++ in Figure 14 with a black square and
black circle, respectively. Notably, the ideal-limit intersection
(black circle) requires only a run of the application on one node,
combined with METG(50%) measurements, to estimate the
strong scalability of the code: i.e., the smallest time to solution,
and the number of nodes at which that time is achieved, while
maintaining at least 50% efficiency. In Figure 14, the error
in the estimate is the distance between the black square and
circle; these are separated by a factor of 1.22× in node count,
and 1.27× in time to solution.

Table 6 expands this comparison to the 4 patterns tested
in Section V-D for all 12 programming systems that scale
well enough to evaluate the separation between the limit-ideal
and limit-actual intersections. We see that overall, the mean
separation is at most 1.96× in node count and at most 1.29×
in time to solution, making this a useful way to predict strong
scaling in the 4 patterns we tested in Section V-D.

VI. PERFORMANCE ISSUES DISCOVERED

Task Bench is useful not only as a tool for evaluating
programming system performance, but also for discovering
potential areas for improvement. During the development of
Task Bench, we identified a number of performance issues in
the underlying programming systems. These discoveries were
possible because of the flexibility of Task Bench, and our ability
to rapidly run new experiments with a variety of application
scenarios. All issues were reported to and acknowledged by the
respective system’s developers, and are either fixed or worked
around in our experiments. We describe them below.

Realm and Chapel both use DMA subsystems optimized
for large copies. Early Task Bench experiments revealed high
METG values, diagnosed by the Realm/Chapel developers as
overhead due to the cost of scheduling small copies. Subsequent
improvements in Realm and Chapel improved small copy
overheads (and thus METG) by over an order of magnitude in
the case of Realm, and by 2× in the case of Chapel. These
improvements affect any application where fine-grained data



movement is needed, which is particularly relevant in strong
scaling regimes when running on large numbers of nodes.

Further analysis of Realm efficiency indicated many over-
heads due to dynamic graph construction. The Realm de-
velopers implemented a new “subgraph” API in response to
this feedback to amortize the cost of repeatedly constructing
isomorphic task graphs. This API is used in Task Bench to
achieve further speedups in the Realm implementation.

Chapel uses a naive round-robin scheduler by default, which
can lead to unexpected load balance issues because certain
language features (such as remote array assignment) implicitly
generate tasks. This resulted in poor peak performance, even at
large task granularities, which in some cases made it impossible
to measure METG (because peak efficiency did not exceed
50%). Chapel’s other schedulers add overhead, resulting in
higher METGs. Based on guidance from the Chapel team, we
worked around this with a serial block.

PaRSEC uses task pruning to reduce analysis work performed
on each node, and thus improve scalability at large node
counts. Initial Task Bench results achieved less than the
expected scalability: METG was rising too quickly with
node count. The PaRSEC developers diagnosed a bug in
task pruning—the optimization was failing to trigger—and
it was subsequently fixed. We also implemented a version
of the PaRSEC code, shard, which uses manual pruning to
demonstrate that additional gains may still be possible.

Early Task Bench results for Dask revealed that the cost
of scheduling a task was O(N) where N is the number of
tasks in a task graph, causing overall cost for a task graph
with N nodes to be O(N2). This issue was reported to and
confirmed by the Dask developers; the bug is suspected to be
in optimizations performed on the task graph by Dask. As a
workaround, our results in the paper use a lower-level interface
which does not suffer from this asymptotic slowdown.

TensorFlow performs optimizations on task graphs prior to
execution, including a constant folding pass. The Task Bench
implementation uses aggressive loop unrolling to minimize
overheads, resulting in the task graph being marked as constant.
Because TensorFlow optimizations are performed on a single
core, this resulted in sequential execution of the entire graph,
and Task Bench experiments timed out. As a workaround,
additional inputs are fed to nodes in the graph to make them
non-constant, forcing them to be executed by TensorFlow’s
parallel scheduler. Though this was exacerbated by Task
Bench’s approach to unrolling loops, it affects any task graph
with constants that are expensive to compute where the users
may wish to perform constant-folding in parallel.

In all cases, we found bugs that are applicable outside
of Task Bench and that impact metrics other than METG.
Notably, the scalability issues and asymptotic complexity have
a growing impact with larger node counts and will eventually
become visible with nearly any application. In other cases, Task
Bench and METG made it possible to identify performance
degradation at the extremes of application configurations which
might remain hidden with full-size applications, particularly
when evaluated with weak and strong scaling alone. The

improvements motivated by our findings are nonetheless
relevant in strong-scaling regimes in a variety of applications,
particularly as node and core counts grow.

VII. RELATED WORK

Parallel and distributed programming systems are often
evaluated using proxy- or mini-apps, or microbenchmarks. Mini-
apps are explicitly derived from larger applications and hence
have the advantage of bearing some relationship to the original.
This advantage typically does not hold for microbenchmarks.

Though smaller than full applications, mini-apps can be
challenging to implement to a level of quality sufficient for
conducting comparative studies between programming systems.
The largest studies we know of consider at most 7 and 6
programming systems, respectively [1], [2], and the latter only
considers on-node programming models. In both cases, the
mini-apps under study require a separate, tuned implementation
(in contrast to Task Bench). Other studies usually lack a
comprehensive evaluation, even if multiple implementations
are available:

• The PENNANT reference implementation supports
MPI/OpenMP/MPI+OpenMP [27]. A follow-up paper
presents a Regent implementation [17].

• One follow-up paper for the mini-app CoMD describes a
Chapel implementation [28] (comparison against reference
only). Additional follow-up papers consider aspects of the
reference implementation only [29], [30].

• A report on the Mantevo project [31] describes a number
of mini-apps, but only includes self-comparisons based
on reference implementations.

• A report on MiniAero [32] describes four implementations
of the mini-app, but only includes performance results
for three, of which only two can be compared in an
apples-to-apples manner as the last implementation uses
structured rather than unstructured meshes. A follow-
up describes another implementation in Regent [17]
(comparison vs. reference only).

Microbenchmarks can be easier to implement, but do not ad-
dress the asymptotic costs of implementation. PRK Stencil [33]
contains a 2D stencil and is evaluated on implementations in
MPI, SHMEM, UPC, Charm++, and Grappa [34]. The NAS
benchmark suite [35], [36] consists mostly of small kernels for
dense or sparse matrix computations and has implementations in
OpenMP [37], MPI and MPI+OpenMP [38], and Charm++ [39].
PRK requires O(n) effort to implement (for n systems) by
virtue of being only a single computational pattern, while NAS
requires O(mn) overall effort (for m patterns and n systems).
In contrast, Task Bench requires O(m+n) effort and is easily
extended to cover new systems or patterns with O(1) effort
for each additional system or pattern.

System-specific benchmarks quantify specific aspects of
system performance, such as MPI communication or collective
latency [40], [41]. These measurements typically do not
generalize beyond the immediate system they measure.

CONCEPTUAL [42] is a domain-specific language for
writing network performance tests. CONCEPTUAL and Task



Bench both enable the easy creation of new benchmarks, though
CONCEPTUAL does so via scripting whereas Task Bench
provides a set of configurable parameters. CONCEPTUAL also
targets a lower level of abstraction, optimized more for testing
messaging layers, whereas Task Bench is closer to application
level and therefore enables comparisons of a broader set of
parallel and distributed programming systems.

Limit studies of task scheduling throughput in various
runtime systems often make additional assumptions. A popular
assumption is the use of trivially parallel tasks [3], [4], which
as shown in Section V-E underestimates (often substantially)
the cost of scheduling a task and can also impact scalability.

VIII. CONCLUSION

Task Bench is a new approach for evaluating the performance
of parallel and distributed programming systems. By separating
the specification of a benchmark from implementations in
various programming systems, Task Bench reduces overall
developer effort to O(m+n) (for m benchmarks on n systems)
rather than O(mn) as has been the case for all previous
benchmarks that we know of. This has enabled us to explore
a broad space of application scenarios and to do so with a
large number of programming systems. Our experiments have
enabled the following insights:

• Evaluations of programming system performance should
avoid using TPS, or strong or weak scaling to charac-
terize overheads, as these metrics do not constrain the
useful work achieved. Instead a metric with constrained
efficiency, such as METG(50%), is needed to ensure that
measurements are representative and fair.

• METG for current distributed programming systems varies
by over 5 orders of magnitude. Clearly understanding the
needed task granularity is an important consideration in
choosing a programming system for a new application.

• While some systems support METG(50%) as small as
390 ns, this applies only to trivial dependencies and small
CPU-based clusters. A number of factors (nontrivial de-
pendencies, accelerators and cluster sizes in the hundreds
of nodes) raise the METGs that can be achieved by over an
order of magnitude: 100 µs is a reasonable bound for most
applications running at scale with current technologies.

• Systems that support asynchronous execution show bene-
fits under balanced computation and communication, and
load imbalance. However, these gains can be nullified by
high baseline overheads.

• Task-based systems that rely on runtime analysis for
the discovery of parallelism can suffer from sequential
bottlenecks that limit scaling. Existing, dynamic task
pruning techniques are not sufficient to fully mitigate
this bottleneck, while static, compile-time approaches are
able to do so.

• Systems for large scale data analysis require very large
tasks (tens of seconds) to scale beyond small node counts,
reflecting the very coarse tasks and lack of need for strong
scaling in current workloads.

• Task Bench has proven effective in finding performance
issues and has lead to substantial improvements in several
systems we study.

Not considered in our analysis is the impact of programming
system features on programmer productivity and performance
portability. Most applications do not operate at the absolute
extreme of runtime-limited performance, and thus may choose
to trade overhead for usability. Our study helps to quantify the
performance side of that tradeoff so that users can be better
informed and developers can see the impact that features have
on the performance of their programming systems.
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