
Extreme-Scale Task-Based Cholesky Factorization
Toward Climate and Weather Prediction Applications

Item Type Preprint

Authors Akbudak, Kadir

Eprint version Pre-print

Publisher the ACM Digital Library

Download date 03/06/2020 19:22:17

Link to Item http://hdl.handle.net/10754/656453

http://hdl.handle.net/10754/656453

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Extreme-Scale Task-Based Cholesky Factorization
Toward Climate and Weather Prediction Applications

Abstract
Climate and weather can be predicted statistically via geospatial

Maximum Likelihood Estimates (MLE), as an alternative to run-
ning large ensembles of forward models. The MLE-based iterative
optimization procedure requires the solving of large-scale linear
systems that performs a Cholesky factorization on a symmetric
positive-definite covariance matrix—a demanding dense factoriza-
tion in terms of memory footprint and computation. We propose
a novel solution to this problem: at the mathematical level, we re-
duce the computational requirement by exploiting the data sparsity
structure of the matrix off-diagonal tiles by means of low-rank
approximations; and, at the programming-paradigm level, we inte-
grate PaRSEC, a dynamic, task-based runtime to reach unparalleled
levels of efficiency for solving extreme-scale linear algebra matrix
operations. The resulting solution leverages fine-grained computa-
tions to facilitate asynchronous execution while providing a flexible
data distribution to mitigate load imbalance. Performance results
are reported using 3D synthetic datasets up to 42M geospatial loca-
tions on 130, 000 cores, which represent a cornerstone toward fast
and accurate predictions of environmental applications.
Keywords

Low-rank matrix computations, Dynamic runtime system, Asyn-
chronous execution, Load balancing, High performance computing
ACM Reference Format:
. 2020. Extreme-Scale Task-Based Cholesky Factorization Toward Climate
and Weather Prediction Applications . In The Seventh edition of The Platform
for Advanced Scientific Computing (PASC) Conference, June 29 - July 1, 2020,
Geneva, Switzerland. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/xxxxxxx.xxxxxxx

1 Introduction
Massive parallelism is the dominant force behind the increased

capabilities of scientific computing. Given the structural constraints
on technology and hardware design, high-performance comput-
ing (HPC) architecture development, which is striving to satisfy
application needs and achieve new levels of performance, has to
deal with unprecedented increases in concurrency, non-uniform
hardware designs, and changing performance capabilities. In this
unfriendly landscape, application developers face unfamiliar chal-
lenges at all levels, from the increase in the number of nodes to the
highly complex architectural capabilities on each node, and from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN xxx-x-xxxx-xxxx-x/xx/xx. . . $15.00
https://doi.org/10.1145/xxxxxxx.xxxxxxx

the lack of portability between different architectures to a lack of
compatibility across different versions of the same hardware. Faced
with such daunting challenges, combining existing programming
paradigms (i.e., the so-called “MPI+X model”) often backfires. The
application programmer is exposed to the complexity of handling
the non-uniform system explicitly, while the composition of mul-
tiple programming paradigms encourages a static distribution of
the computation between different logical domains. As the systems
grow increasingly complex, static assumptions about synchrony,
deterministic scheduling, and predictable runtime of computation
and communication alike, no longer bear out; and even a minor
amount of system noise and small delays introduce significant slack
in large-scale synchronous applications [16, 28, 50].

Consequently, it is becoming clear that to perform at extreme
scales a shift in the programming model paradigm built around
a far less synchronous approach is needed to help applications
meet these challenges. The task-based programming model has
proven to be both efficient and productive in this regard. In a task-
based programming environment, a vast amount of parallelism is
exposed through expressing the algorithm as a set of successive,
fine-grain tasks (a set of instructions that access and modify an
explicit and bounded amount of data). A runtime system is then
responsible for scheduling these tasks while satisfying the data
dependencies between them. Such a runtime must adapt to the
changes in the amount of parallelism available in the application,
and map that parallelism onto the underlying hardware resources
under dynamic and hard-to-predict system conditions. Task-based
programming models associated with dynamic runtime systems
have been thoroughly studied and have demonstrated a leap for-
ward in performance and programmability for many scientific com-
puting fields—including application libraries built on top of the
usual dense [4, 13, 20, 27] and sparse [39] linear algebra solvers
with regular, arithmetic/memory-intense, computational tasks.

At the same time, covariance matrix problems have generated
interest in the scientific community, thanks to the simplicity of
their inherent symmetric matrix structures. In particular, they arise
in models of choice for predicting climate and weather forecasting
(i.e., environmental applications) [48], evaluating basis functions
for electronic structure calculations (i.e., computational chemistry
applications) [43], and identifying habitable galaxies (i.e., compu-
tational astronomy applications) [40], for which worldwide HPC
supercomputing centers allocate a large number of their computing
cycles. The size of these covariance matrices may significantly grow
for very large input datasets and, therefore, make the arithmetic
complexity and memory footprint unbearable.

The fundamental idea then is to exploit the low-rank or data
sparsity structure by compressing the off-diagonal tiles of the dense
covariance matrix up to a specific application-dependent accuracy.
In particular, low-rank matrix computation, which represents a cru-
cial class of matrix algorithms for geospatial statistics, can benefit

1

https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland First Author, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

from the same aforementioned task-based approaches or implemen-
tation. However, the properties of low-rank matrix computations
make the integration more challenging because the granularity of
tasks, in direct relationship to the rank of the data tile, varies due
to the inherent heterogenous rank distribution, thereby raising the
algorithmic load imbalance at the forefront. These elements present
novel and supplementary burdens on runtime scheduling and mo-
tivate the expansion of dataflow runtime framework capabilities.
This paper introduces the Lorapo library which demonstrates the
impact of synergic opportunities between low-rank matrix com-
putations and task-based runtime systems, i.e., PaRSEC, for solv-
ing the Maximum Likelihood Estimates (MLE) in the context of
3D climate and weather prediction applications. The MLE-based
iterative optimization procedure requires the Cholesky factoriza-
tion of large-scale, dense-symmetric, positive-definite covariance
matrices, which is extremely demanding in terms of memory foot-
print and computation. Among other compression data formats,
the Tile Low-Rank (TLR) approach reduces the memory footprint
and the computational requirement by exploiting the data sparsity
structure of the matrix off-diagonal tiles by means of low-rank
approximations. Numerical accuracy is ultimately preserved, just
enough to maintain the statistical model fidelity for the prediction
phase. The PaRSEC dynamic task-based runtime is then employed
at the programming paradigm level to reach unparalleled levels
of efficiency while performing extreme-scale linear algebra matrix
operations toward solving environmental applications with up to
42M (Million) geospatial locations on 130, 000 cores. To the best
of our knowledge, this work is the first to highlight performance
of large-scale, task-based, and TLR Cholesky factorization for 3D
scientific problems.

The remainder of this paper is as follows. Section 2 presents
related work and Section 3 highlights the paper contributions. Sec-
tion 4 describes the application and provides the necessary back-
ground for the TLR Cholesky factorization as well as the PaRSEC
dynamic runtime system. Section 5 introduces the design and the
novel implementations of the runtime optimizations to support TLR
computational workloads. Performance results and analysis of the
incremental optimizations are reported in Section 6. We conclude
and present future work in Section 7.
2 Related Work

Numerous efforts are ongoing to support fine-grain dataflow pro-
gramming. Recent task-based runtimes like Legion [14], StarPU [13],
Open Community Runtime (OCR) [26], OmpSs [27], and PaRSEC [21]
abstract the available resources to isolate application developers
from the underlying hardware complexity and simplify the writing
of massively parallel scientific applications.

QUARK, OmpSs, and StarPU provide a task insertion application
programming interface (API) and dynamically build the task-graph.
To interact with the runtime, the developer expresses sequential
loop nests containing asynchronous task insertion calls. A conse-
quence in distributed settings is that all of the participating pro-
cesses have to discover the entirety of the graph to infer communi-
cation before reducing to the set of local tasks. This pruning phase
limits potential scalability [37]. QUARK has no implicit support for
heterogeneous nor distributed architectures though. StarPU pro-
vides automatic support for heterogeneous architectures and covers

distributed execution via the insertion of implicit point-to-point
communication tasks [3], which may prevent the benefits of poten-
tial collective communication. OmpSs follows a master-slave model
where it allows nesting of tasks in individual nodes to relieve the
master; however the master-slave model may suffer from scalability
issues on distributed systems.

Recent versions of the OpenMP specification [42] introduce the
task and depend clauses which can be employed to express dataflow
graphs. OpenMP is widely used and supports homogeneous, shared-
memory systems, and its target extension to support accelerators
is quickly gaining traction. A limitation of the OpenMP model is
that distributed-memory and internode communication needs to
be described explicitly and performed with the use of an external
communication library (e.g., MPI, SHMEM). OCR, still in early devel-
opment stages, only supports homogeneous architectures. Legion
describes logical regions of data, uses those regions to express the
dataflow and dependencies between tasks, and defers the sched-
uling of tasks and data movement across distributed nodes to its
underlying runtime, REALM [49].

On the applications side, climate and weather prediction applica-
tions that use geospatial statistics withMLE are prohibitively expen-
sive due to high arithmetic complexity and large memory footprint.
These applications necessitate direct matrix factorizations with
O(N 3) operations on O(N 2) data, where N is the problem size, to
directly compute the log-determinant and the linear solve involved
in the MLE. This challenge prevents computational statisticians
from increasing the scale or the details at which these problems
need to be studied. Low-rank matrix operations may overcome
this curse of dimensionality by using accuracy-tuned approximate
methods. The mathematical theory behind low-rank matrix compu-
tations has been around for more than two decades [31, 33–35, 51].
Recent theoretical advancements have drastically improved the
upper bounds for algorithmic complexity [7, 11, 15, 19, 32].

In this context, there are several approaches to tackle the MLE,
for instance, by exploiting the assumption of independence be-
tween blocks in the covariance matrix [47], by relying on Kro-
necker and Toeplitz algebra [52], and by using kernel-independent
method [29]. All these aforementioned papers show performance
results on 2D problems, up to 80K matrix size, and on single shared-
memory node. While the former makes a strong assumption which
may represent unrealistic situations in some cases, the two re-
maining approaches can be further accelerated with Hierarchically
Semi-Separable (HSS) [54] andHierarchical Off-Diagonal Low-Rank
(HODLR) compression data formats [7], respectively. However,
when solving 2D and 3D problems, these compression formats
may eventually be subject to a substantial increase of their original
arithmetic complexities, due to large off-diagonal ranks.

There are also methods which directly compute the matrix factor-
ization to service the MLE. Owing to their hierarchy and recursive
formulations, the first high-performance hierarchically low-rank
LU factorization (H -LU) implementation on homogeneous, shared-
memory systems emerged only a few years ago [38], when more
suitable programming models to support recursion (e.g., Cilk [18]
and Intel Threading Building Blocks [45]) became available. Al-
though these language features enhanced the user productivity,
they may actually impede parallel performance because of the low
hardware occupancy achieved on massively parallel systems.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Extreme-Scale Task-Based Cholesky Factorization PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Recent implementations of hierarchical low-rank matrix compu-
tations have been developed using the flat single-program, multiple-
data (SPMD)/MPI programmingmodel. This inherent bulk-synchronous
approach relies on the static 2D block cyclic data distribution
(2DBCDD) descriptor and maps the work onto resources with a
global ordering between algorithmic steps, which are separated by
global synchronous communication. Based on HSS compression
data format, STRUMPACK [46] may achieve log-linear arithmetic com-
plexity for problems with weak admissibility (i.e., typically 1D/2D
problem matrices characterized by off-diagonal blocks with rather
small ranks and homogeneous distributions). For 3D covariance
problems studied herein, STRUMPACK may face challenges in com-
pressing with HSS, since ranks may grow significantly, thereby
rendering computations intractable. In addition, the resulting large
discrepancy in the rank distribution may increase the communica-
tion volume due to the static 2DBCDD descriptor inherited from
ScaLAPACK [17]. Strong admissibility data compression formats,
such as block low-rank (BLR) [8] andH 2-like fast multipole method
(FMM) [55] may better support the compression of 3D problems
with a log-linear complexity for the latter. However, as implemented
in MUMPS [10], BLR may also suffer from over communicating
and load imbalance due to the heterogeneous rank distributions
and the incapacity of the static 2DBCDD descriptor to address
it. This is perhaps the reason why the factorization of the dense
fronts are currently only performed on shared-memory systems
using the fork-join bulk synchronous paradigm from the OpenMP
programming model [9]. Matrix-free methods like FMM [30] have
demonstrated their effectiveness in performing task-based hierar-
chical compression of covariance-like matrices [55], but the class of
matrix factorization algorithms remains an open research problem.
Furthermore, previous work on task-based, TLR Cholesky factoriza-
tion in the context of HiCMA library [1, 2, 5], in which local tasks are
scheduled by StarPU task-based dynamic runtime, already high-
lighted performance bottlenecks for 2D problems. Indeed, due to
the static 2DBCDD descriptor—as well as the lack of support for col-
lective communications—the resulting implementation have shown
a distressing lack of scalability.

All in all, these low-rank matrix operations deal with heteroge-
neous workloads, which result in load imbalance during computa-
tions and communications. The bulk synchronous programming
model, along with the static 2DBCDD descriptor—on which the
dense linear algebra community has been relying for more than
two decades—lacks the necessary features to mitigate the load
imbalance. These challenges are further exacerbated when solv-
ing 3D problems due to a larger rank discrepancy among blocks.
Fine-grained computations with a flexible dynamic runtime sys-
tem become paramount when supporting such workloads at scale.
However, to fully address the load imbalance issue at the source,
a careful consideration of matrix data sparsity patterns should be
adopted. This requires decoupling the expression of the numerical
algorithm itself from its data mapping onto the system memory.
This separation of concerns turns out to be a key in scaling up
low-rank matrix computations on massively parallel systems.
3 Contributions

The following innovations represent the core of our efforts and
the driving story of this paper:

(1) deploying the PaRSEC task-based runtime system with its
inherent features (e.g., hybrid/flexible descriptor for data dis-
tribution) to mitigate the 2DBCDD overheads, while syner-
gistically tackling TLR matrix computations in the context of
Lorapo;

(2) optimizing runtime execution via communication-reducing
and synchronization-reducing techniques;

(3) simulating matrix covariance kernels as proxy for environ-
mental applications based on geospatial statistics; and

(4) performing large-scale TLR Cholesky factorization up to 42M
geospatial locations on a distributed-memory system with up
to 130, 000 cores.

To the best of our knowledge, this is the first time a dense, TLR
Cholesky factorization has been deployed at this scale with an un-
precedented time-to-solution using large, 3D, synthetic datasets
generated from covariance matrix kernels used as proxy for geospa-
tial statistics. The TLR Cholesky factorization corresponds to the
most time-consuming operations when calculating the Maximum
Likelihood Estimates (MLE), and plays, therefore, a pivotal role
toward solving climate and weather prediction applications.
4 Background

This section provides detailed information on the geospatial sta-
tistics model used for climate and weather prediction applications,
recalls the TLR Cholesky factorization, and describes the PaRSEC
dynamic runtime system used in the paper.
4.1 Climate and Weather Prediction Model

The Gaussian process is one of the state-of-the-art models used
for climate and weather prediction applications. Physical properties
like temperature, wind speed, or soil moisture are assumed to be
random values following normal distributions with a given mean
and deviation. The behavior of these properties are observed at var-
ious spatial locations, and the main idea is to use these observations
and their corresponding Gaussian processes to predict missing field
values. This prediction phase defines the core of geospatial statistics.
The interactions between all pairwise spatial locations constitute
the basis for building the covariance matrix for the considered
property. This paper focuses on a representative covariance matrix
kernel: a square exponential function, usually called a “Gaussian
radial basis function:”

f (x ,y) = e
−
r 2 (x,y)

2l2 , (1)
where r (x ,y) stands for the Euclidian distance between spatial
points x and y, and l > 0 is the covariance length. The size of
the resulting dense covariance matrix is as large as the number
of spatial locations, which can be on the order of billions. If the
covariance matrix can be generated, statistical parameters have to
be computed through the MLE:

L(θ) = −
1
2z

T Σ−1 (θ)z −
1
2 log |Σ(θ) |, (2)

where θ corresponds to all covariance statistical parameters, z is
the actual vector of observations (e.g., temperature), and Σ(θ) is the
covariance matrix itself. Covariance matrices, based on Gaussian
radial basis function, are symmetric and positive definite for any
values of θ , as long as all spatial points are distinct. In this paper, we
limit the list of parameters to a single one (i.e., the covariance length
l), and we set it to l = 0.1 since it is usedto represent a medium
relation, with all the spatial points belonging to unit square (2D) or

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland First Author, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

unit cube (3D). Parameter optimizations are beyond the scope of
this paper and have been extensively studied [1]. In Equation (2),
the symmetric, positive-definite, covariance matrix is used in two
operations: (1) the linear solver and (2) the calculation of the de-
terminant. In this paper, we employ the Cholesky factorization
of the covariance matrix for both of these matrix operations: the
former needs the Cholesky factor for the forward and backward
substitutions, and the latter corresponds to the product of the di-
agonal entries of the Cholesky factor. Unfortunately, for a large
number of geospatial locations, the dense Cholesky factorization
is intractable due to the cubical algorithmic complexity, while the
memory footprint incommensurate with current systems. Low-rank
matrix approximation and computation become utterly critical to
alleviate both aforementioned bottlenecks.
4.2 Tile Low-Rank Cholesky Factorization

To better understand the TLR Cholesky factorization, we first
briefly revisit the classical tile algorithms for dense linear alge-
bra [4]. Thematrix is first decomposed into dense tiles. The standard
dense Cholesky factorization usually operates on the underlying tile
data layout by subsequently calling the four computational kernels
POTRF (Cholesky factorization), TRSM (triangular solve), SYRK
(symmetric rank k update), and GEMM (general matrix multiply)
on the lower or upper part of the symmetric matrix. The whole
factorization translates into a directed acyclic graph (DAG), where
nodes correspond to tasks, and edges represent data dependencies.
The critical path of the DAG, which is the serial and incompressible
path, is (NT − 1) × (POTRF + TRSM + SYRK) + POTRF , where
NT is the number of row/column tiles, and the other four variables
are the execution time of the respective kernels. Unfortunately,
main memory becomes the limiting factor when dealing with large
matrix sizes for dense problems.

TLR approximations come to the rescue to address the curse
of dimensionality by exploiting the data sparsity structure of the
matrix operator. Reordering of rows/columns may be necessary to
further expose the low-rankness of the off-diagonal tiles, which can
then be approximated up to the application-dependent accuracy
threshold by using a variant of the singular value decomposition
(SVD), e.g., based on QR/divide-and-conquer algorithms [12] or
even a faster approach based on randomized techniques [36]. This
is the case for the square exponential covariance function studied
herein in Equation (1), thanks to its asymptotic smoothness [23, 51].
We employ the Morton ordering scheme [41], also known as Z-
order scheme. This is not the only possible ordering method, Peano
curve [44] being another famous plane-filling curve.

A1,1

D1,1
nb

A2,2

D2,2

U
2,
1

V T

2,1

A2,1

k2,1

A3,3

D3,3

U
3,
1

V T

3,1

A3,1

k3,1

U
3
,2

V T

3,2

A3,2

k3,2

A4,4

D4,4

U
4,
1

V T

4,1

A4,1

k4,1

U
4
,2

V T

4,2

A4,2

k4,2

U
4,
3

V T

4,3

A4,3

k4,3

LR SYRK

LR GEMM

LR SYRK

POTRF

LR GEMM

LR SYRK

LR GEMM

LR SYRK

POTRF

TRSM

TRSMTRSM LR SYRK

POTRF

TRSM

LR SYRK

POTRF

TRSM

TRSM

LR GEMM

Figure 1: On the left, TLR format for matrixA having 4-by-4
tiles of size nb-by-nb. Diagonal tiles, Di,i , are stored as dense.
Off-diagonal tiles, Ai, j = Ui, jVi, j , are compressed. Each off-
diagonal tile, Ai, j , has its own rank, ki, j . On the right, the
corresponding DAG for Lorapo_POTRF on the samematrix.

Algorithm 1 Lorapo_POTRF(D, U, V, NT, acc)
for p = 1 to NT do

POTRF(D(p,p))
for i = p+1 to NT do

TRSM(V(i,p), D(p,p))
for j = p+1 to NT do

LR_SYRK(D(j,j), U(j,p), V(j,p))
for i = j+1 to NT do

LR_GEMM(U(i,p), V(i,p), U(j,p), V(j,p), U(i,j), V(i,j), acc)

Table 1: Arithmetic Complexity: Dense vs. TLR Cholesky.
Kernel Dense Cholesky TLR Cholesky

POTRF 1
3 × nb

3 1
3 × nb

3

TRSM nb3 nb2 × k
SYRK/LR_SYRK nb3 2 × nb2 × k + 4 × nb × k2

GEMM/LR_GEMM 2 × nb3 38 × nb × k2

Total O (N 3) O (N 2k)

The resulting TLR compression data format is shown in Figure 1
for a 4-by-4 matrix of tile size nb-by-nb. The diagonal tiles remain
dense, since the pairwise correlations may be stronger (rank k = nb)
than the cross correlations represented in the low-rank, off-diagonal
tiles (with k << nb for tiles farther away from the diagonal tiles).

TLR is the de facto compression data format for the HiCMA li-
brary [2, 5, 6]. To work on the compressed data layout of the off-
diagonal tiles, the HiCMA library mainly necessitates the develop-
ments of new low-rank LR_SYRK and LR_GEMM kernels, which
requires decompression and recompression phases, respectively, as
initially introduced in [6]. To make the paper self-contained, we
recall the pseudo-code of the sequential TLR Cholesky algorithm in
Algorithm 1. Although the data layouts are different between dense
and TLR Cholesky factorization, the DAG remains the same and so
does the length of the critical path. Let us assume L is the number
of tasks along the critical path, and D is all of the other operations
except L; this set of operations is almost embarrassingly parallel.
Therefore, the execution time will be the maximum between L and
D/C , withC being the number of computational resources. It should
be noted that, for the critical path, we ignore all cost related to data
movements as if this critical path executes on a single node; and for
the parallel part, we disregard all data dependencies as if all kernels
could be executed in parallel and, therefore, be perfectly scalable
with the number of computational resources.

Furthermore, as highlighted in Table 1, the arithmetic complex-
ities of dense and TLR Cholesky factorization are cubic and qua-
dratic, respectively. It is also worth noting that both the three Level-
3 BLAS kernels and their arithmetic complexities are redefined
for TLR matrix computations (introduced in [6]), creating severe
situations of load imbalance for TLR Cholesky factorization, which
do not exist in the dense Cholesky factorization.
4.3 The PaRSEC Runtime System

As a task-based runtime for distributed heterogeneous architec-
tures, PaRSEC [21] is capable of dynamically unfolding a description
of a graph of tasks on a set of resources and satisfying all data de-
pendencies by efficiently shepherding data between memory spaces
(between nodes but also between different memories on different
devices) and scheduling tasks across heterogeneous resources. The
overall PaRSEC programming model focuses on overcoming four
main barriers to algorithm scalability and efficiency:

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Extreme-Scale Task-Based Cholesky Factorization PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(1) starvation, insufficient concurrent work available tomaintain
high utilization of all resources;

(2) latency, the time-distance delay intrinsic to accessing remote
resources and services and delays due to oversubscribed
shared resources;

(3) overhead, the work required for the management of parallel
actions and resources on the critical path of execution, which
is not necessary in a sequential variant; and

(4) heterogeneity, support for specialized hardware to maximize
performance (accelerators) and minimize overheads (smart
communication hardware/NIC).

PaRSEC facilitates the design of domain specific languages (DSL) [22]
that allow domain experts to focus on their science rather than on
the computer science. These DSLs rely on a dataflow model to
create dependencies between tasks and target the expression of
maximal parallelism.

The Parameterized Task Graph (PTG) [24] DSL uses a concise,
parameterized, task-graph description known as Job Data Flow
(JDF) to represent the dependencies between tasks. To enhance
the productivity of the application developers, PaRSEC implicitly
infers all communications from the expression of the tasks, sup-
porting one-to-many and many-to-many types of communications.
From a performance standpoint, algorithms described in PTG have
been shown capable of delivering a significant percentage of the
hardware peak performance on many hybrid distributed machines,
as highlighted in [24], where for instance DPLASMA, a dense linear
algebra (DLA) library using PaRSEC, yields superior performance
compared with the most widely used DLA library, ScaLAPACK [17]
or compared with state-of-the-art computational chemistry ap-
plications [25?]. Other DSLs, such as Dynamic Task Discovery
(DTD) [37], are less science-domain oriented and provide alter-
native programming models to satisfy more generic needs by de-
livering an API that allows for sequential task insertion into the
runtime. This programming model is simple and straightforward
and has been shown to deliver good performance on small and
medium-sized platforms. However, it suffers from the sequential
discovery of tasks that hinder its scalability, similar to StarPU and
QUARK. Indeed, as it stands from Algorithm 1, the TLR Cholesky
may scale up to a limited number of nodes if DTD programming
model is employed (see again [5]). The central idea is to empower
Algorithm 1 with the PTG as the driving engine for performance
scalability.
5 Optimizations for TLR Algorithms

We optimize runtime performance based on three criteria: im-
proving load balancing, limiting memory usage and shortening
the execution time of the critical path. The first two are addressed
using a carefully designed data distribution, while the last one takes
advantage of PaRSEC features conveniently exposed via the PTG
DSL that allows us to drive the execution of the algorithm following
a critical path. With the flexibility provided by the PaRSEC runtime,
we: (1) introduce a new hybrid data distribution to improve load bal-
ancing; (2) reduce communication volume to limit memory usage;
(3) leverage a new lookahead scheme to enforce critical path execu-
tion more aggressively to reduce waiting time in the critical path;
and (4) deploy dense, hierarchical POTRF (i.e., nested parallelism)
to reduce the critical path execution time.

(a) (b) (c)
Figure 2: (a) 2D block cyclic data distribution on a 3 × 3 pro-
cess grid; (b) Band distribution with size b = 1, and a 9 × 1
process grid over a 3 × 3 off-band process grid; (c) Band dis-
tribution with size b = 2, and a 9 × 1 process grid over a 3 × 3
off-band. Numbers represent process ID.

5.1 Hybrid Data Distributions
Imbalance arises in TLR algorithms from two sources, related

to a single root cause: the rank disparities between tiles on and off
diagonal. The first source of imbalance is memory as the memory
needed to store compressed tiled is directly proportional to its
ranks (rank ∗ nb), while the dense, diagonal tiles require nb ∗ nb.
The second is the computational costs to apply operations on these
denser tiles, since denser tiles have a higher computational cost
(O (nb3)) compared with compressed tiles (O (nb2k)), as highlighted
in Table 1. Thus, the tiles closer to the diagonal pose two threats:
they require significant storage and impose a high computational
burden compared with the rest. It is therefore critical to ensure
a more even distribution of these dense tiles across all available
computational resources. Such a data distribution is unfamiliar in
today HPC world, where the highly regular 2D block cyclic data
distribution (2DBCDD), or ScaLAPACK 2D block cyclic, rules.

It is worth mentioning that 2DBCDD has been proven the op-
timal data distribution for most dense linear algebra operations,
including the dense Cholesky factorization. First, because all tiles
being equal, both the memory and computational burden is well
distributed across processes, and second because the simple map-
ping onto a 2D cartesian process grid leads to simpler code to
describe the communication patterns in today’s de facto program-
ming paradigm, MPI. However, in our case low rank tiles destroy
the balance of 2DBCDD and our supporting DSL can automatically
infer communications, so we are free to explore more suitable data
distribution patterns.

To mitigate the load imbalance of a 2DBCDD, we defined a new,
slightly less regular, data distribution scheme called “band distribu-
tion”. This “band distribution” allows us to more evenly distribute
the diagonal tiles across all participating processes, while falling
back to 2DBCDD for the remaining off-diagonal tiles. To the best
of our knowledge, PaRSEC is the first task-based runtime that can
handle such hybrid data distribution to support data heterogeneous
workloads, as seen in low-rank matrix approximations. One can
visualize this data distribution as two intertwined 2DBCDD using
different process grids and superposed together, as shown in Fig-
ure 2 (b) and (c). In such data distribution, the diagonal and all tiles
up to a distance b from them will use a different process grid than
the rest of the tiles. As an example in Figure 2 (c), the band with
b = 2 uses a process grid of 9 × 1 while the rest of the matrix uses
a process grid of 3 × 3. Using this new band distribution, the load
imbalance challenge, both in memory and computations, can be

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland First Author, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

overcome by arranging tiles within band size b in a round-robin
fashion and tiles outside the band b in a normal 2DBCDD. The band
distribution optimization can handle load imbalance issues in TLR
Cholesky along with other load imbalance issues which may be
caused by disproportionate time complexity (e.g., emerging from
mixed precision calculations). It must be mentioned that such hy-
brid data distributions for a single matrix object are not supported
on any of the dense linear algebra libraries available today, and
certainly not ScaLAPACK, the most widely available one.
5.2 Reduce Communication Volume

Since the computation intensity is much lower in TLR Cholesky
than in its dense counterpart, inter-node communication is bound
to play a critical role in the performance of the algorithm. Although
we define a maximum rank for the off-diagonal tiles, for the major-
ity of them, the actual rank during the execution is always lower
than this maximum rank and might vary during the factorization.
Using the constant maximum rank for all communications is entic-
ing, as it facilitates the algorithm coding and provides a portable
across runtimes and easy to implement solution. Unfortunately, this
simple approach leads to an increase in the volume of communica-
tions, as we are bound to always transfer more data than needed
(maxrank ∗ nb instead of rank ∗ nb per communication). This over-
head increases with the distance to the diagonal, reaching for low
ranks tiles orders of magnitude (maxrank

rank). We can approximate
the total reduction in communication volume by themaxrank di-
vided by the average rank across all non-diagonal tiles. Moreover, as
the algorithm communication needs increase rapidly as the matrix
grows, the maximum network bandwidth may be reached, and the
communications will then become one of the critical bottlenecks,
with a direct negative impact on the overall performance.

The PaRSEC runtime, used by the Lorapo library, provides mech-
anisms for sending variable sizes data to remote processes, even
when this size is dynamically decided by the task producing the cor-
responding data. This feature is unique in the task-based runtime
world, as most of the runtimes mentioned in related work are still
trying to cope withmostly regular, dense cases. Taking advantage of
this PaRSEC capability makes it possible to decrease data transfers
to only the actual tile data rank, therefore reaching communication
optimality. Such feature may alleviate the bandwidth saturation
and communication overhead, while releasing memory pressure
on the receiver side.
5.3 Lookahead to Emphasize the Critical Path

PaRSEC enables tasks as soon as all their dependencies are avail-
able, and can therefore enable maximum parallelization without
the constraint of sequential code visibility, or window size, for task
insertion. This way, PaRSEC can maximize the number of potential
ready tasks, while agilely confronting the scheduling burden to
drive the execution in a way that minimizes the resource idleness
and global synchronizations. Even if the scheduler takes into ac-
count data locality, global and local constraints, and allows work
stealing within local computational resources, dealing with large
number of unordered tasks may become either a performance bot-
tleneck or a performance hazard. As explained in Section 4.2, task
priority for TLR Cholesky becomes paramount to aggressively fol-
low the critical path. The runtime may certainly also maximize the

performance of the parallel part, but may restrict the use of these
tasks as fill-in for the lack of parallelism in the critical path.

As a consequence, a delay in the critical path may have more
than a local impact, since it can propagate to remote processes
resulting on a significant disturbance, creating a cascading effect
of increasing delays, and therefore, a lower hardware occupancy
across the distributed resources. The PaRSEC concept of control
dependency between tasks can be used to guide the task execution
order and priorities, as its only purpose is to add empty depen-
dencies to delay tasks readiness. Taking advantage of this control
dependency, we extend the existing POTRF implementation by
adding novel lookahead techniques, different from the traditional
left- or right-looking in the classical dense Cholesky.

To prioritize tasks on the critical path, a control dependency
between LR_SYRK and TRSM of the same panel factorization is
used, delaying the discovery of parallelism outside the critical path
(corresponding to the update operation). More precisely, this con-
trol dependency applies to some TRSM operations (few rows away
from the current POTRF), and indirectly propagate to other op-
erations (mainly LR_GEMM). For instance, the TRSM (m,k) ker-
nels (m represents the tile row index and k the panel factorization
index) with the m > lookahead + k (lookahead defines the num-
ber of TRSM operations delayed in each panel factorization) are
delayed by LR_SYRK (k,m) (m = k + 1) until the corresponding
POTRF (k +1) is executed. By varying lookahead the critical path is
unfolded at the right pace, ensuring the prioritization of the critical
path.
5.4 Hierarchical POTRF

Since the dense POTRF kernel on the diagonal dense tiles has
a computational intensity of at least an order of magnitude larger
than the other three Level-3 BLAS kernels (that are applied on
low-rank tiles), in addition to being located in the critical path of
the algorithm, we need to promote this kernel and execute it as
fast as possible in order to shorten the critical path and reduce the
POTRF execution time. Speeding up POTRF will also reduce the
waiting time for other cores byminimizing the potential starvation—
particularly at the end of the execution where the opportunities for
parallelism are lesser. Previous work in PaRSEC [53] introduced the
idea of hierarchical DAG scheduling for hybrid distributed systems,
where the task granularity is dynamically adjusted to adapt the
algorithm to the available computational resource on the node, and
tomatch their computational capabilities. In this paper, we extended
this idea to TLR Cholesky by hierarchically creating a node-local
task pool that decomposes the POTRF kernel on diagonal dense
tiles into smaller subtiles to expose nested parallelism, and ensures
work is available for all computational resources. This approach
has the potential to improve core utilization (thus occupancy) and
reduce the cost of the critical path.
6 Performance Results and Analysis

The experiments are run on XXX, which has 6,174 compute
nodes, each with two 16-core Intel Haswell CPUs running at 2.30
GHz and 128 GB of DDR3 main memory. Intel compiler suite 18.0.1
along with sequential Math Kernel Library (MKL) version 2018.1 for
optimized BLAS and LAPACK kernels are used in the environment

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Extreme-Scale Task-Based Cholesky Factorization PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

settings. All calculations are performed in double-precision floating-
point arithmetic. In all experiments, numerical backward errors
have been consistently validated against the application accuracy
threshold to ensure correctness. In particular, we compress off-
diagonal tiles and retain their most significant singular values (and
associated vectors) above the accuracy threshold of 10−8, which
ultimately yields absolute numerical error of order 10−9 in the
solution of linear system in Equation (2). This 10−9 tolerance is
sufficient to satisfy the prediction accuracy requirements of the 3D
climate and weather prediction applications, as described in [2].
We employ a process grid P ×Q across computational nodes and
make it as square as possible, otherwise suitable P and Q , where
P < Q . We run our experiments at least three times; since no
major performance variability has been noticed throughout our
experiments, so the minimum time to solution is reported. For the
execution with the largest number of cores, we make a single run
to save on core hours.
6.1 Application Settings

The numerical experiments use synthetic and realistic covariance
matrix kernels from three application settings:
(1) syn-2D: synthetic problem on a plane with the following co-

variance function: f (x ,y) = sin(λr (x,y))
r (x,y) , which corresponds

to the imaginary part of the fundamental solution of the
Helmholtz equation and is usually called the sinc function.
Although this function is not asymptotically smooth, it gives
good TLR matrix approximations with more-or-less equal
ranks of off-diagonal tiles. The parameter λ is a wave num-
ber corresponding to the number of wave oscillations per
unit distance and is set to 100. We use this synthetic kernel
only to demonstrate the robustness of the proposed software
framework and for performance analysis.

(2) st-2D-sqexp: spatial statistics problem on a plane with a
square exponential covariance function, as introduced in Equa-
tion (1) from Section 4.1 in the context of climate and weather
prediction applications.

(3) st-3D-sqexp: spatial statistics problem in a 3D space with a
square exponential covariance function, which the 3D exten-
sion of the Equation (1) from Section 4.1.

The spatial locations for each application are generated as follows:
(1) given N , find exact square (for problem on plane/2D space)

or cube (for problem in 3D space) numberM not less than N ;
(2) generate uniform distribution of M points in unit2 or unit3

domain;
(3) sort allM points by the first coordinate—all points with the

same coordinate are sorted along the second axis, and then
the same happens along the third axis (for 3D space);

(4) pick the first N points out ofM sorted points; and
(5) apply Z-order sorting scheme for N picked points.
The generation of a TLRmatrix consists of two phases: (1) genera-

tion on-the-fly and (2) compression. For each off-diagonal tileAi, j of
a matrix A, a temporary dense matrix is generated and compressed
intoUi, j and Vi, j factors using randomized SVD [36], whereas the
diagonals are kept in dense format. The ratio of the time to gen-
erate and compress over the factorization time decreases due to
the difference in the asymptotic complexities of the two phases [5].

Thus, we only focus on reporting the time of the TLR Cholesky
factorization in the subsequent sections.

Furthermore, as opposed to syn-2D, the two statistics applica-
tions show more discrepancy (more than 2.8× in final average and
maximum ranks) in rank distribution. In other words, the ranks
in syn-2D are observed to be more homogeneous with respect
to the statistics applications. Among the statistics problems, the
difference between average and maximum ranks is the smallest for
st-2D-sqexp and the largest for st-3D-sqexp. Higher discrepancy
in ranks results in higher imbalance in computation and communica-
tion. Hence, sophisticated task and data distribution heuristics and a
dynamic runtime become important to efficiently solve such problems.

6.2 Comparison with HiCMA
We compare the performance of the proposed TLR Cholesky

implemented with Lorapo against HiCMA using syn-2D (Figure 3a)
and st-2D-sqexp (Figure 3b), the only two supported applications
with results reported in [5] using HiCMA. It should be noted that
the Lorapo version includes all optimizations noted in Section 5.
In these two figures, results up to 11M are given in Lorapo to com-
pare to HiCMA in compliance with Figure 8 of [5]. Some points are
missing from the figures owing to memory limitations. The Lorapo
implementation scales to much larger matrix sizes due to its better
memorymanagement, hybrid data distribution and reduced commu-
nication volume, as described in Section 5, allowing the factorization
to be scaled up to a 32M matrix size on 512 nodes for st-2D-sqexp
(Figure 6). Moreover, Lorapo consistently outperforms HiCMA. In
fact, the performance of Lorapo on 64 nodes for both syn-2D
and st-2D-sqexp is better than any HiCMA configurations’ results.
When the matrix size is small, increasing the number of nodes does
not improve performance, because the time to solution is dominated
by the sequential critical path, L. However, as we increase thematrix
size (e.g., 10M), the balance between L and D, and the performance
improves, and a larger number of processors delivers better perfor-
mance. On the HiCMA side, the performance declines further for syn-
2D, and—as seen in Figure 3a—performance on 512 nodes is almost
the worst, highlighting a lack of scalability in their implementation.
6.3 Effect of Proposed Runtime Optimizations

In this section, we analyze in detail the impact of each one of four
optimizations described in Section 5 on one of the statistical applica-
tions, st-3D-sqexp. We are using the following abbreviations with
regard to the four optimizations: NONE for no optimizations, B
for Band distribution, BS for B and Sending actual rank during run-
time, BSL for BS and Lookahead to enforce critical path execution,
and BSLH for BSL and Hierarchical POTRF . All of these experi-
ments are run on 16, 32, 64, 128, and 256 nodes. In Section 6.3.5 we
summarize all optimizations into a single consistent graph.
6.3.1 Hybrid Data Distributions. Figure 4a shows the effect of the
proposed load balancing technique for st-3D-sqexp when com-
pared to no optimization (NONE). A band size b = 1 is used in
band distribution to compensate for the imbalance occurring on
diagonal tiles due to rank discrepancies between tiles on and off
diagonals. Although diagonal tiles are on the critical path, fewer
tasks are applied on them at each iteration: a single POTRF and a
number of LR_SYRK (depending on the tile position in the matrix).

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland First Author, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

100

200

400

800

1600

3200

6400

3 6 9
Matrix Size (106)

T
im

e
(s

)

Library−Nodes
HiCMA−16
HiCMA−32
HiCMA−64
HiCMA−128
HiCMA−256
HiCMA−512

Lorapo−16
Lorapo−32
Lorapo−64
Lorapo−128
Lorapo−256
Lorapo−512

(a) syn-2D.

100

200

400

800

1600

3200

6400

3 6 9
Matrix Size (106)

T
im

e
(s

)

Library−Nodes
HiCMA−16
HiCMA−32
HiCMA−64
HiCMA−128
HiCMA−256
HiCMA−512

Lorapo−16
Lorapo−32
Lorapo−64
Lorapo−128
Lorapo−256
Lorapo−512

(b) st-2D-sqexp.
Figure 3: Performance comparison of the proposed TLR Cholesky framework with Lorapo and HiCMA for the 2D kernels.

100

200

400

800

2000

4000

8000
12000

T
im

e
(s

)

Type−Nodes
NONE−16
NONE−32
NONE−64
NONE−128
NONE−256

B−16
B−32
B−64
B−128
B−256

0
20
40

1.08 2.16 3.24 4.32 5.4 6.48 7.56 8.64 9.72

(a) Impact of Load Balancing

%

100

200

400

800

2000

4000

8000
12000

T
im

e
(s

)

Type−Nodes
B−16
B−32
B−64
B−128
B−256

BS−16
BS−32
BS−64
BS−128
BS−256

0
20
40

1.08 2.16 3.24 4.32 5.4 6.48 7.56 8.64 9.72

(b) Impact of Reducing Communication Volume

%

100

200

400

800

2000

4000

8000
12000

T
im

e
(s

)

Type−Nodes
BS−16
BS−32
BS−64
BS−128
BS−256

BSL−16
BSL−32
BSL−64
BSL−128
BSL−256

0
20
40

1.08 2.16 3.24 4.32 5.4 6.48 7.56 8.64 9.72

(c) Impact of Lookahead

%

100

200

400

800

2000

4000

8000
12000

T
im

e
(s

)

Type−Nodes
BSL−16
BSL−32
BSL−64
BSL−128
BSL−256

BSLH−16
BSLH−32
BSLH−64
BSLH−128
BSLH−256

0
20
40

1.08 2.16 3.24 4.32 5.4 6.48 7.56 8.64 9.72

(d) Impact of Hierarchical POTRF

%

Matrix Size (106)

Figure 4: The incremental effect of the proposed optimizations for st-3D-sqexp. (a) impact of hybrid data distribution; (b)
impact of reducing communication volume; (c) impact of lookahead; (d) impact of hierarchical POTRF . The bottom figures
represent the respective resulting improvement as a percentage.

However, since diagonal tiles are full rank, the tasks on the diago-
nal tiles become more compute intensive than the rest of updates
(TRSM and LR_GEMM). In particular for the TLR Cholesky fac-
torization, a POTRF and a large number of LR_SYRK (one per tile
below the POTRF tile position) can be executed in parallel, leading
to a surge in compute intensive tasks (because they apply on full
dense tiles) that are all on the critical path. To alleviate the burden
of these time-consuming tasks from the critical path, we rely on
the band distribution to execute in parallel all these operations
across the maximum number of resources. This differs from the
traditional 2DBCDD in Figure 2a, for which diagonal tiles are only
spread across a subset of diagonal processes in the process grid
distribution. The data from the off-diagonal tiles, on which tasks
outside of the critical path operate on, are still distributed using
the traditional 2DBCDD. All in all, the resulting hybrid data distri-
bution, i.e., band distribution combined with 2DBCDD, is utterly
important to scale on massively parallel systems.
6.3.2 Reduce Communication Volume. PaRSEC can handle dynam-
ically sized data, providing Lorapo with the opportunity to only
send the necessary data (rank ∗ nb instead ofmaxrank ∗ nb). This
not only decrease the communication volume and thus overhead,
but also significantly reduce memory usage on the receiver, because
the receive buffer can now be tightly allocated with the real rank

instead ofmaxrank . The volume reduction being data dependent
(on rank) it is difficult to estimate it accurately. Considering the
exact same case as above, 3.24M matrix size on 256 nodes as an
example, BS reduced the data transfer volume by 400

32.54 = 12.3×.
As indicated in Figure 4b, the decrease in required memory on the
receiver side allows for solving significantly larger problems (up to
10M instead of only 6M), while providing the means to reduce the
time to solution by about 25% using the same matrix size from the
previous approach.
6.3.3 Lookahead to Emphasize the Critical Path. Figure 4c reveals
the impact of the proposed lookahead technique, BSL, compared to
BS for st-3D-sqexp. In this figure, we can see the benefit of looka-
head grows with the matrix size, but decreases with the number of
nodes. The reason behind is that the lookahead hints provided to
the runtime and used to prioritize the critical path executions are
more impactful when there is an abundance of work, so when the
matrix increases over a fixed number of resource or the number of
resources decreases for the same problem size.
6.3.4 Hierarchical POTRF . Hierarchical POTRF creates a node-
local taskpool that decomposes the diagonal tile into smaller sub-
tiles and promote nested parallelism. This nested parallelism can
then be executed on more local cores to speed up execution time of
POTRF and reduce the critical path. Figure 4d depicts the efficiency

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Extreme-Scale Task-Based Cholesky Factorization PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

200

400

800

2000

4000
6000

2.5 5.0 7.5 10.0

Matrix Size (106)

T
im

e
(s

)

NONE−16
NONE−32
NONE−64
NONE−128
NONE−256

BSLH−16
BSLH−32
BSLH−64
BSLH−128
BSLH−256

Figure 5: The effect of enabling all proposed optimization
techniques for st-3D-sqexp.

of hierarchical POTRF BSLH compared to BSL for st-3D-sqexp.
When scaling the matrix size up to the available memory limit, the
performance improves almost by one-third. Because of the inherent
characteristics of TLR Cholesky,the optimal tile size increases as the
matrix size increases. This leads to the undesirable increase in the
critical path, as larger tile size increases the execution time of ker-
nels on dense tiles (POTRF and SYRK), which translates into longer
critical path’s time to solution. The use of hierarchical POTRF will
increase the available parallelism and substantially cut down on the
critical path execution time, leading to the significant improvement
we are witnessing for larger matrix sizes.
6.3.5 Overall Effect of Proposed Optimizations. Figure 5 shows the
effect of enabling all proposed optimizations compared to initial
results without optimization for st-3D-sqexp, which gives us the
whole picture. In this figure, both performance and memory foot-
print improve substantially, which create opportunities for large-
scale experiments.
6.4 Extreme-Scale Runs

Figure 6 presents the extreme-scale results with matrix sizes
up to 42M geospatial locations and using 16, 32, 64, 128, 256, 1024
and 4096 nodes for st-3D-sqexp, and 16, 32, 64, 128, 256, 512 and
1024 nodes for st-2D-sqexp. Each point in the plot corresponds to
the factorization time for the largest matrix that can be factorized
on a specific number of nodes according to the memory available
on all the nodes involved. This setting may seem like a weak scal-
ability experiment, but in low-rank approximation weak scaling
experiments result in a change of the ranks of tiles, and therefore,
the number of operations and the memory necessary to store the
low-rank matrix. In this figure, each point is associated with three
properties: (1) number of nodes, (2) matrix size, and (3) execution
time, which shows the performance and scalability for a certain
number of nodes. For st-2D-sqexp, it can go up to a 32M matrix
size on 512 nodes, almost 10× larger than previously reported with
HiCMA, and up to 42M matrix size on 1, 024 nodes using 32, 000 cores.
For st-3D-sqexp, which requires even more memory and compu-
tation (due to higher ranks and more rank disparity as we move
further away from the diagonal), the results are presented up to 42M
geospatial locations on 4, 096 nodes with a total of 130, 000 cores.
These particular matrix sizes are appealing target for computational
statisticians as this scale represents realistic workload datasets, but
could not have been reached before. It should be noticed that in the
presented setting the extreme-scale experiment has taken nearly
24 hours to complete. To put this elapsed time into perspective, let
us compare against the elapsed time of a dense Cholesky factor-
ization on the same matrix size and number of nodes. The most

●

●

●
●● ●

●

●
● ●

●●

●

●

16
16

32 3264 64

128
128

256 256

5121024

1024

4096

4000

8000

16000

32000

65000

86000

0 10 20 30 40

Matrix Size (106)

T
im

e
(s

)

●
●

st−3D−sqexp
st−2D−sqexp

Figure 6: The performance results for the largest matrices
that fit in memory for st-2D-sqexp and st-3D-sqexp.

time-consuming kernel is GEMM , which typically runs in a dis-
tributed setting at 80% of the theoretical peak performance of x86
homogeneous systems. For the considered system, the sustained
performance according to Top500 is 3.7 PFLOP/s on 4,096 nodes.
Given that the number of FLOPs for a dense Cholesky factorization
is 1/3 N 3, it would have taken approximately 77 days to compute
the dense Cholesky factorization on a 42M matrix size, as opposed
to slightly less than a single day for TLR Cholesky factorization,
with the same, 10−9, order threshold of the solution.
7 Conclusion and Future Work

This paper presents the process to accommodate a heterogeneous
workload from low-rank matrix computations over a task-based
runtime, PaRSEC. In particular, we have demonstrated that using
the TLR compression data format together with four algorithmic
improvements and supported by a nimble task-based runtime, the
TLR Cholesky factorization—which is the most time-consuming
computational phase of the geospatial statistics approach for en-
vironmental applications—can be leveraged at an unprecedented
scale. In addition to analyzing the setup in the context of a 2D
statistical applications, we have highlighted the effectiveness and
scalability of TLR Cholesky factorization on a 3D covariance ma-
trix kernel at scales never reached before, 42M matrix size using
130, 000 cores. We believe the impact of these features goes well
beyond the TLR compression data format for dense problems and
may be directly applied to sparse direct solvers [10]. For future
work, we plan to collaborate with domain scientists and compare
our solution against first principles physics approaches using real
3D datasets. We would also investigate mixed precision techniques
with TLR Cholesky (e.g., FP64, FP32, and FP16) by leveraging the
data sparsity patterns for tiles located near, mid, and far from the
diagonal. This would open new opportunities on GPUs for further
performance gain.
References
[1] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes. 2018. ExaGeoStat: A

High Performance Unified Software for Geostatistics on Manycore Systems. IEEE
Transactions on Parallel and Distributed Systems 29, 12 (Dec 2018), 2771–2784.

[2] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes. 2018. Parallel
Approximation of the Maximum Likelihood Estimation for the Prediction of
Large-Scale Geostatistics Simulations. In 2018 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 98–108.

[3] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent, and
S. Thibault. 2017. Achieving High Performance on Supercomputers with a
Sequential Task-based Programming Model. IEEE Transactions on Parallel and
Distributed Systems (2017).

[4] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P.
Luszczek, and S. Tomov. 2009. Numerical Linear Algebra on Emerging Architec-
tures: The PLASMA and MAGMA Projects. Journal of Physics: Conference Series
180 (2009).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

PASC ’20, June 29 - July 1, 2020, Geneva, Switzerland First Author, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[5] K. Akbudak, H. Ltaief, A. Mikhalev, A. Charara, A. Esposito, and D. E. Keyes. 2018.
Exploiting Data Sparsity for Large-Scale Matrix Computations. In Euro-Par 2018:
Parallel Processing, M. Aldinucci, L. Padovani, and M. Torquati (Eds.). Springer
International Publishing, Cham, 721–734.

[6] K. Akbudak, H. Ltaief, A. Mikhalev, and D. Keyes. 2017. Tile Low Rank Cholesky
Factorization for Climate/Weather Modeling Applications on Manycore Architec-
tures. In 32nd International Conference on High Performance, Frankfurt, Germany.
Springer International Publishing, 22–40.

[7] S. Ambikasaran and E. Darve. 2013. An O (N logN) Fast Direct Solver for
Partial Hierarchically Semiseparable Matrices. Journal of Scientific Computing
57, 3 (2013), 477–501.

[8] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weis-
becker. 2015. Improving Multifrontal Methods by Means of Block Low-Rank
Representations. SIAM Journal on Scientific Computing 37, 3 (2015), A1451–A1474.

[9] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. 2019. Performance
and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore
Architectures. ACM Trans. Math. Softw. 45, 1, Article 2 (Feb. 2019), 26 pages.

[10] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. 2001. MUMPS: A General
Purpose Distributed Memory Sparse Solver. Springer Berlin Heidelberg, Berlin,
Heidelberg, 121–130. https://doi.org/10.1007/3-540-70734-4_16

[11] A. Aminfar, S. Ambikasaran, and E. Darve. 2016. A Fast Block Low-Rank Dense
Solver with Applications to Finite-Element Matrices. J. Comput. Phys. 304 (2016),
170–188.

[12] E. Anderson, Z. Bai, C. H. Bischof, L. Susan Blackford, J. W. Demmel, J. J. Dongarra,
J. J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C Sorensen.
1999. LAPACK User’s Guide (3rd ed.). SIAM, Philadelphia.

[13] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. 2011. StarPU: A Uni-
fied Platform for Task Scheduling on Heterogeneous Multicore Architectures.
Concurrency Computat. Pract. Exper. 23 (2011), 187–198.

[14] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. 2012. Legion: Expressing
Locality and Independence with Logical Regions. In International Conference for
High Performance Computing, Networking, Storage and Analysis, SC.

[15] M. Bebendorf. 2008. Hierarchical Matrices: A Means to Efficiently Solve Elliptic
Boundary Value Problems. Lecture Notes in Computational Science and Engineer-
ing, Vol. 63. Springer. 269 pages.

[16] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. 2006. Operating System Issues
for Petascale Systems. SIGOPS Operating Systems Review 40, 2 (2006), 29–33.

[17] L.S. Blackford, J. Choi, A. Cleary, E.F. D’Azevedo, J.W. Demmel, I.S. Dhillon, J.J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D.W. Walker, and
R.C. Whaley. 1997. ScaLAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia. https://doi.org/10.1137/1.9780898719642

[18] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y.
Zhou. 1996. Cilk: An Efficient Multithreaded Runtime System. J. Parallel and
Distrib. Comput. 37, 1 (1996), 55 – 69. https://doi.org/10.1006/jpdc.1996.0107

[19] S. Börm. 2010. Efficient Numerical methods for Non-local Operators: H 2-Matrix
Compression, Algorithms and Analysis. EMS Tracts in Mathematics, Vol. 14. Euro-
pean Mathematical Society.

[20] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Hérault, J. Kurzak,
J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan, and J. Dongarra.
2011. Flexible Development of Dense Linear Algebra Algorithms on Massively
Parallel Architectures with DPLASMA. In IPDPS Workshops. IEEE, 1432–1441.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008655

[21] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. Dongarra. 2013.
PaRSEC: A Programming Paradigm Exploiting Heterogeneity for Enhancing
Scalability. Computing in Science and Engineering 99 (2013), 1.

[22] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J.J. Dongarra. 2013.
PaRSEC: Exploiting Heterogeneity to Enhance Scalability. Computing in Science
Engineering 15, 6 (Nov 2013), 36–45. https://doi.org/10.1109/MCSE.2013.98

[23] A. Brandt. 1991. Multilevel Computations of Integral Transforms and Particle
Interactions with Oscillatory Kernels. Computer Physics Communications 65, 1-3
(1991), 24–38.

[24] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra. 2014. PTG:
An Abstraction for Unhindered Parallelism. Proceedings of WOLFHPC 2014: 4th
International Workshop on DSLs and High-Level Frameworks for High Performance
Computing, 21–30. https://doi.org/10.1109/WOLFHPC.2014.8

[25] A. Danalis, H. Jagode, G. Bosilca, and J. Dongarra. 2015. PaRSEC in Practice:
Optimizing a Legacy Chemistry Application through Distributed Task-Based
Execution. In 2015 IEEE International Conference on Cluster Computing. 304–313.

[26] J. Dokulil, M. Sandrieser, and S. Benkner. 2016. Implementing the Open Commu-
nity Runtime for Shared-Memory and Distributed-Memory Systems. Proceedings
- 24th Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, PDP 2016, 364–368. https://doi.org/10.1109/PDP.2016.81

[27] A. Duran, R. Ferrer, E. Ayguadé, R.M. Badia, and J. Labarta. 2009. A Proposal to
Extend the OpenMP Tasking Model with Dependent Tasks. International Journal
of Parallel Programming 37, 3 (2009), 292–305.

[28] R. Garg and P. De. 2006. Impact of Noise on Scaling of Collectives: An Em-
pirical Evaluation. In HiPC’06: Proceedings of International Conference on High

Performance Computing (LNCS), Springer (Ed.), Vol. 4297. 460–471.
[29] C. J. Geoga, M. Anitescu, and M. L. Stein. 2018. Scalable Gaussian Process

Computations Using Hierarchical Matrices. arXiv preprint arXiv:1808.03215
(2018).

[30] L. Greengard and V. Rokhlin. 1987. A Fast Algorithm for Particle Simulations. J.
Comput. Phys. 73, 2 (1987), 325–348.

[31] W. Hackbusch. 1999. A Sparse Matrix Arithmetic Based on H -Matrices. Part I:
Introduction to H -Matrices. Computing 62, 2 (1999), 89–108.

[32] W. Hackbusch. 2015. Hierarchical Matrices: Algorithms and Analysis. Vol. 49.
Springer.

[33] W. Hackbusch and S. Börm. 2002. Data-sparse Approximation by Adaptive
H 2-Matrices. Computing 69, 1 (2002), 1–35.

[34] W. Hackbusch, S. Börm, and L. Grasedyck. 1999-2012. HLib 1.4. Max-Planck-
Institut, Leipzig.

[35] W. Hackbusch, B. Khoromskij, and S.A. Sauter. 2000. On H 2-Matrices. In
Lectures on Applied Mathematics, Hans-Joachim Bungartz, Ronald H.W. Hoppe,
and Christoph Zenger (Eds.). Springer Berlin Heidelberg, 9–29.

[36] N. Halko, P.-G. Martinsson, and J. A. Tropp. 2011. Finding Structure with Ran-
domness: Probabilistic Algorithms for Constructing Approximate Matrix Decom-
positions. SIAM Rev. 53, 2 (2011), 217–288.

[37] R. Hoque, T. Herault, G. Bosilca, and J. Dongarra. 2017. Dynamic Task Discovery
in PaRSEC: A Data-flow Task-based Runtime. In Proceedings of the 8th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA ’17). ACM,
New York, NY, USA, Article 6, 8 pages. https://doi.org/10.1145/3148226.3148233

[38] R. Kriemann. 2013. H -LU Factorization on Many-core Systems. Computing and
Visualization in Science 16, 3 (2013), 105–117.

[39] X. Lacoste, M. Faverge, G. Bosilca, P. Ramet, and S. Thibault. 2014. Taking
Advantage of Hybrid Systems for Sparse Direct Solvers via Task-Based Runtimes.
In IEEE International Parallel & Distributed Processing Symposium Workshops
(IPDPSW). 29–38. https://doi.org/10.1109/IPDPSW.2014.9

[40] H. Ltaief, A. Charara, D. Gratadour, N. Doucet, B. Hadri, E. Gendron, S. Feki, and
D. Keyes. 2018. Real-Time Massively Distributed Multi-object Adaptive Optics
Simulations for the European Extremely Large Telescope. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 75–84.

[41] G.M. Morton. 1966. A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. International Business Machines Company, New York.

[42] OpenMP. 2013. OpenMP 4.0 Complete Specifications. http://www.openmp.org/
wp-content/uploads/OpenMP4.0.0.pdf

[43] R.G. Parr. 1980. Density Functional Theory of Atoms and Molecules. In Horizons
of Quantum Chemistry, Kenichi Fukui and Bernard Pullman (Eds.). Springer
Netherlands, Dordrecht, 5–15.

[44] G. Peano. 1890. Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36,
1 (1890), 157–160.

[45] J. Reinders. 2010. Intel Threading Building Blocks Outfitting C++ for Multi-core
Processor Parallelism. O’Reilly Media.

[46] F.-H. Rouet, X.S. Li, P. Ghysels, and A. Napov. 2016. A Distributed-Memory
Package for Dense Hierarchically Semi-Separable Matrix Computations Using
Randomization. ACM Trans. Math. Software 42, 4, Article 27 (June 2016), 35 pages.

[47] M. L. Stein. 2014. Limitations on Low Rank Approximations for Covariance
Matrices of Spatial Data. Spatial Statistics 8 (2014), 1 – 19. https://doi.org/10.
1016/j.spasta.2013.06.003 Spatial Statistics Miami.

[48] Y. Sun andM.L. Stein. 2016. Statistically and Computationally Efficient Estimating
Equations for Large Spatial Datasets. Journal of Computational and Graphical
Statistics 25, 1 (2016), 187–208.

[49] S.J. Treichler. 2014. Realm: Performance Portability through Composable Asyn-
chrony. Ph.D. Dissertation. Stanford University.

[50] D. Tsafrir, Y. Etsion, D.G. Feitelson, and S. Kirkpatrick. 2005. System Noise, OS
Clock Ticks, and Fine-grained Parallel Applications. In ICS ’05: Proceedings of the
19th Annual International Conference on Supercomputing. ACM Press, New York,
NY, USA, 303–312.

[51] E. E. Tyrtyshnikov. 1996. Mosaic-Skeleton Approximations. Calcolo 33, 1 (1996),
47–57. https://doi.org/10.1007/BF02575706

[52] A. G. Wilson and H. Nickisch. 2015. Kernel Interpolation for Scalable Structured
Gaussian Processes (KISS-GP). In Proceedings of the 32Nd International Conference
on International Conference on Machine Learning - Volume 37 (ICML’15). JMLR.org,
1775–1784. http://dl.acm.org/citation.cfm?id=3045118.3045307

[53] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra. 2015. Hierarchical
DAG Scheduling for Hybrid Distributed Systems. In 2015 IEEE International
Parallel and Distributed Processing Symposium. 156–165.

[54] J. Xia, Y. Xi, and M. Gu. 2012. A Superfast Structured Solver for Toeplitz Linear
Systems via Randomized Sampling. SIAM J. Matrix Anal. Appl. 33, 3 (2012), 837–
858. https://doi.org/10.1137/110831982 arXiv:https://doi.org/10.1137/110831982

[55] C.D. Yu, S. Reiz, and G. Biros. 2018. Distributed-memory Hierarchical Compres-
sion of Dense SPD Matrices. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC ’18). IEEE
Press, Piscataway, NJ, USA, Article 15, 15 pages.

10

https://doi.org/10.1007/3-540-70734-4_16
https://doi.org/10.1137/1.9780898719642
https://doi.org/10.1006/jpdc.1996.0107
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008655
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/WOLFHPC.2014.8
https://doi.org/10.1109/PDP.2016.81
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1109/IPDPSW.2014.9
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://doi.org/10.1016/j.spasta.2013.06.003
https://doi.org/10.1016/j.spasta.2013.06.003
https://doi.org/10.1007/BF02575706
http://dl.acm.org/citation.cfm?id=3045118.3045307
https://doi.org/10.1137/110831982
http://arxiv.org/abs/https://doi.org/10.1137/110831982

	Abstract
	1 Introduction
	2 Related Work
	3 Contributions
	4 Background
	4.1 Climate and Weather Prediction Model
	4.2 Tile Low-Rank Cholesky Factorization
	4.3 The PaRSEC Runtime System

	5 Optimizations for TLR Algorithms
	5.1 Hybrid Data Distributions
	5.2 Reduce Communication Volume
	5.3 Lookahead to Emphasize the Critical Path
	5.4 Hierarchical POTRF

	6 Performance Results and Analysis
	6.1 Application Settings
	6.2 Comparison with HiCMA
	6.3 Effect of Proposed Runtime Optimizations
	6.4 Extreme-Scale Runs

	7 Conclusion and Future Work
	References

