
Docker Container based PaaS Cloud Computing

Comprehensive Benchmarks using LAPACK

Dmitry Zaitsev
1[0000-0001-5698-7324]

, Piotr Luszczek
2[0000-0002-0089-6965]

1Odessa State Environmental University, 15 Lvivska Str., Odessa, 65016, Ukraine

daze@acm.org, http://daze.ho.ua

2University of Tennessee’s Knoxville, 1122 Volunteer Blvd, Knoxville, TN 37996, USA

luszczek@icl.utk.edu

Abstract. Platform as a Service (PaaS) cloud computing model becomes wide-

spread implemented within Docker Containers. Docker uses operating system

level virtualization to deliver software in packages called containers. Containers

are isolated from one another and comprise all the required software, including

operating system API, libraries and configuration files. With such advantageous

integrity one can doubt on Docker performance. The present paper applies

packet LAPACK, which is widely used for performance benchmarks of super-

computers, to collect and compare benchmarks of Docker on Linux Ubuntu and

MS Windows platforms. After a brief overview of Docker and LAPACK, a se-

ries of Docker images containing LAPACK is created and run, abundant

benchmarks obtained and represented in tabular and graphical form. From the

final discussion, we conclude that Docker runs with nearly the same perfor-

mance on both Linux and Windows platforms, the slowdown does not exceed

some ten percent. Though Docker performance in Windows is essentially lim-

ited by the amount of RAM allocated to Docker Engine.

Keywords. Cloud computing, PaaS, Docker, benchmark, LAPACK, Top500

1 Introduction

A concept of cloud computing [1], widely spread recently, means on-demand availa-

bility of computer system resources. Peter Mell and Tim Grance from National Insti-

tute of Standards and Technology (NIST) define cloud computing as a model for ena-

bling ubiquitous, convenient, on-demand network access to a shared pool of configu-

rable computing resources that can be rapidly provisioned and released with minimal

management effort or service provider interaction. Their cloud model is composed of

five essential characteristics, three service models, and four deployment models. Five

essential characteristics include: on-demand self-service, broad network access, re-

source pooling, rapid elasticity, and measured service. The service models include:

Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a

mailto:daze@acm.org
http://daze.ho.ua/
mailto:luszczek@icl.utk.edu

Service (IaaS). Deployment models are the following: Private cloud, Community

cloud, Public cloud, and Hybrid cloud.

Among known implementations of PaaS service model, Docker Containers [2-4]

are rapidly developing and attracting more and more customers in various application

areas. Docker uses operating system level virtualization to deliver software in pack-

ages called containers. Containers are isolated from one another and contain all the

required software, including operating system API, libraries and configuration files.

Containers can communicate with each other through well-defined channels. All con-

tainers are run by a single operating-system kernel and are thus more lightweight than

virtual machines [5-6]. The software that hosts the containers is called Docker Engine

and is installed now on Linux, MS Windows, and Apple MacOS platforms. Works on

Docker has started in 2010 and first released in 2013. Recently Docker wins millions

of developers and customers offering a public repository of containers. It supports

also parallel and distributed computing with Docker Swarm technology.

Developers of Docker claim that the application within a container runs quickly

and reliably from one computing environment to another. On the one hand, it is ut-

most convenient tool encapsulating within a single container everything required to

run an application – all dependencies including operating system API, libraries, con-

figurations etc. On the other hand, it is efficient because it is light-weighted compared

with the virtual machine concept. Moreover, it is ubiquitous, running everywhere

where Docker Engine is installed and access to repository of containers is provided.

Thus, it looks like a miracle that looks a bit of suspicious for IT professionals [6,7].

The design of research presented in the paper was either to prove it strictly and con-

vincingly or to depose a legend.

In the present paper after a brief overview of Docker Container technology, we

come to LAPACK software [8,9], widely applied for performance benchmarks includ-

ing modern supercomputers [10,11]; then we meticulously create a series of contain-

ers to run LAPACK, compose one solid container for benchmarks, and upload it to

Docker Hub repository; we run the LAPACK container on Ubuntu Linux and MS

Windows 10 platforms installed on the same computer and also planning to supply

additional information regarding benchmarks for Apple MacOS platform in future;

finally we represent benchmarks graphically and discuss obtained results. A conclu-

sion that Docker completely corresponds to the company claims showing rather good

performance for any available platform accomplishes the paper.

2 Basics of Developing and Running Docker Containers

Docker [2-4] represents one of the most successful implementations of the PaaS

Cloud Computing concept. A Docker image encapsulates an application together with

its entire environment including libraries and operating system and runs on Docker

Engine. Docker Engine can be started on Linix, Windows, MacOS and in future on

other operating systems. Thus a certain independence of an image from operating

environment is provides while it is claimed that Docker runs an image considerably

faster than a virtual machine.

.

Fig. 1. Docker brief scheme of work.

Docker command line interface executes commands starting with “docker” prefix. To

run an image, we use “docker run” command. For a quick start, we can either run

hello-world image or use explicitly Linux echo command starting image ubuntu:

docker run hello-world

docker run ubuntu /bin/echo 'Hello world‘

On processing run command, Docker creates and starts a new container from the

image, downloading a new image if required. A container runs within Docker Engine

which can be considered as a kind of thin virtual machine (Fig. 1); recently Docker

Engine works within Linux, MS Windows, and MacOS. There are more than fifty

Docker commands [2]. Among the most frequently used, we mention: “docker info”

to display system-wide info; “docker images” to list images; “docker ps” to list con-

tainers (running images); “docker build” to build an image from a Dockerfile which

represents a textual file specifying how the image should be built. For instance, we

build and run image specified by the following file named Dockerfile and stored in

the current directory:

cat Dockerfile

FROM ubuntu:latest

RUN /bin/bash

docker build -t u2 .

docker run -it u2

The option “-t” specifies the image name, and the option “-it” specifies an interac-

tive mode of work; after starting, the image issues an invitation “#” waiting a bash

command to process. A Dockerfile begins with “FROM” instruction that specifies

parent image from which the current image is built. To use a file when building an

image, we copy it into the image using “COPY” instruction. Instruction “RUN” speci-

fies commands which build a new layer of the current image. When an image is start-

ed, a command specified in “CMD” instruction is executed. Dockerfiles containing all

the considered instructions are studied in Section 4.

On default, all the built images are stored locally within the current computer. It is

rather convenient to store images in a cloud repository (registry), for instance

http://hub.docker.com For this purpose we create the corresponding account and enter

it using “docker login” command. Local images are identified using 6 octets repre-

sented as a hex number, we can obtain identifies via “docker images” command. To

push an image to a repository we tag it with a name using “docker tag” command and

then push it using “docker push” command with specified name. When working on a

new computer, we can pull an image from repository using “docker pull” command.

Pushing and pulling images are studied in detail in Section 4.

3 LAPACK as de-facto Standard for Performance Benchmarks

The LAPACK library contains a collection of numerical methods to solve problems

arising from dense systems of linear equations assuming one of the following forms:

 Ax = b,

Ax = λx,

Ax = λBx,

Av = σu.

Less conceptually, the properties of matrices A and B dictate the specific of the algo-

rithmic approach taken by the LAPACK solver. The overarching methodology in-

volves the decomposition approach [12] that splits the algorithmic work into two

distinct phases: factorization and substitution. The former is commonly the computa-

tionally-intensive step that consumes majority of execution time. The latter uses the

output of the factorization to deliver the solution of the original problem at much

lower cost than the first step. Moreover, the factorization results may be reused multi-

ple times with different right-hand sides for much reduced computation time in many

practical situations. Furthermore, numerical stability of using the factors is superior to

using explicit inverse of the system matrix that may fail with overflows or division-

by-zero even when the solve with the factors would still succeed to deliver a few dig-

its of accuracy in the solution. The factorizations implemented in LAPACK include

the LU, Cholesky, and QR factorizations that are often called one-sided factorizations

because they apply numerical transformations to only one side of the original matrix

and hence do not preserve the spectral properties. In contrast, the two-sided transfor-

mations do preserve the original matrix spectrum and are used in LAPACK’s Schur

decomposition of a matrix. These two types of transformations present a different

challenge to the modern hardware and thus may be used for a wide range of evalua-

tions.

From the benchmarking standpoint, LAPACK offers a wide range of routines that

reveal performance of characteristics of the tested hardware platform. At the basic

http://hub.docker.com/

level there are BLAS subroutines that constitute the portable performance layer above

the hardware that allows the rest of LAPACK to express more complex algorithms in

an efficient manner. Using BLAS for benchmarking is an easy option to obtain trivial

hardware metrics such as bandwidth and latency of the main memory by running

some of the Level 1 and Level 2 BLAS subroutines. Moving up to Level 3 BLAS

allows the user to test compute capability of the hardware platform both in terms of

single-core performance as well as its scaling across all available sockets and cores

contained therein. In practice, more complex measures of performance are obtained

from LAPACK subroutines. One common example is the High Performance

LINPACK benchmark [13] commonly referred to as HPL. The benchmark measure

the time taken to solve a system of linear equations with a dense system matrix of an

arbitrary size by using LU factorization with partial pivoting. This can be easily im-

plemented by a single call to LAPACK’s routine DGESV() and stands to show how

LAPACK is an important performance tool. In fact, HPL has been used for decades

for measuring efficiency and comparison the largest supercomputing machines in the

world as is recorder by the TOP500 list [10]. Prior to proliferation of distributed

memory machines, the shared memory supercomputers were dominating the list and,

at that time, LAPACK’s implementation of DGESV() was a perfect software imple-

mentation of HPL eligible for running and submitting TOP500 results. Later on, a

distributed memory implementation of DGESV() was required and it had been pro-

vided by the ScaLAPACK library in the form of PDGESV() routine that not only

computes locally on each of the distributed nodes but also coordinates the solution

between the processes through an interconnect fabric, including Ethernet or Infini-

Band, and a message passing library such as MPI. However, the detailed use and

analysis of ScaLAPACK is outside of scope of this work due its complex software

stack requirements and hardware complexities associated with running a modern dis-

tributed-memory cluster. These complex hardware-software interactions complicate

evaluation of containers and might prevent from drawing proper conclusions about

the associated overheads.

Fig. 2. Scheme of LAPACK routine names.

LAPACK packet is downloaded freely from its website [8] and installed according

to the installation guide in some quarter of an hour, in its work it uses BLAS library

[9,13]. For instance, to solve a given system, we can use the following small program

that initializes matrix A and vector of the right side b statically and then calls routine

LAPACKE_sgesv to solve the corresponding system:

#include <stdio.h>

#include <lapacke.h>

#define size 3 // dimension of matrix A

int main()

{

 lapack_int n=size, nrhs=1, lda=size, ldb=1, info,

ipiv[size];

 float A[size*size] = {2.0,5.0,8.0,

 3.0,-6.0,9.0,

 4.0,7.0,-1.0};

 float b[size] = {13.0,25.0,-7.0};

 int i,j;

 info = LAPACKE_sgesv(LAPACK_ROW_MAJOR, n, nrhs, A, lda,

ipiv, b, ldb);

 for (i=0; i<n; i++) printf("%f\n", b[i]); // print vec-

tor x

}

Finally it prints the obtained vector of solutions which replaces the right side vec-

tor b. The program is written in C language and uses C interface of LAPACK called

LAPACKE, all the corresponding routines have prefix “LAPACKE_”. LAPACKE

only translates the call into the call of the corresponding LAPACK routine, sgesv in

the considered example (a scheme of LAPACK routine names abbreviation is ex-

plained by Fig. 2). The program can be built and run using the following Makefile:

include ../../make.inc

all: lp_ex1

LIBRARIES = ../../$(LAPACKELIB) ../../$(LAPACKLIB)

$(BLASLIB)

lp_ex1: lp_ex1.o $(LIBRARIES)

 $(LOADER) $(LOADOPTS) -o $@ $^

 ./$@

.c.o:

 $(CC) $(CFLAGS) -I. -I../include -c -o $@ $<

We assume that out example directory is situated at the same level as the standard

LAPACKE example directory /lapack-3.8.0/LAPACKE/example. The computed vec-

tor of solutions can be checked by substitution into equations of the system:

daze@lion:~/lapack-3.8.0/LAPACKE/example$ make

gcc -O3 -I. -I../include -c -o lp_ex1.o lp_ex1.c

gfortran -o lp_ex1 lp_ex1.o ../../liblapacke.a

../../liblapack.a ../../librefblas.a

./lp_ex1

-1.313167e+00

-1.000000e-01

1.800000e+00

daze@lion:~/lapack-3.8.0/LAPACKE/example$

Standard set of LAPACKE tests includes routines which solve a given linear sys-

tem or implement computations by the least square method. At first, a system of a

given size is generated with random elements and then it is solved, the obtained solu-

tions printed. It uses two options: “-n” to specify the system size and “-nhrs” to speci-

fy the number of right-hand sides; for instance:

daze@lion:~/lapack-3.8.0/LAPACKE/example$

./xexample_DGESV_rowmajor -n 3

 Entry Matrix A

 0.34 -0.11 0.28

 0.30 0.41 -0.30

 -0.16 0.27 -0.22

 Right Rand Side b

 0.05

 -0.02

 0.13

LAPACKE_dgesv (row-major, high-level) Example Program Re-

sults

 Solution

 -0.48

 1.19

 1.22

 Details of LU factorization

 0.34 -0.11 0.28

 0.88 0.50 -0.55

 -0.48 0.43 0.15

 Pivot indices

 1 2 3

daze@lion:~/lapack-3.8.0/LAPACKE/example$

One can check the obtained results and calculate the error, such intermediate re-

sults as LU-factorization and pivot indices are printed as well, though in the present

study we are interested mainly in LAPACK running time to use it for benchmarks.

4 Install and Run LAPACK in Docker Containers

In the present section we create a Docker image to run LAPACK tests and also an

additional image to solve the example equation from the previous section. We are

going to compare multi-layer and solid images as well that is why we create a series

of images having the following structure of directories and files of the top directory

lpd:

daze@lion:~$ ls -R lpd

lpd:

myubu1 myubu2 myubu3 myubu4 ubuntu-lapack

lpd/myubu1: Dockerfile

lpd/myubu2: Dockerfile lapack-3.8.0.tar.gz

lpd/myubu3: Dockerfile dt_example_DGESV_rowmajor.c

Makefile

lpd/myubu4: Dockerfile lp_ex1.c Makefile

lpd/ubuntu-lapack: Dockerfile lapack-3.8.0z.tar.gz

daze@lion:~$

We use a separate directory for a separate Docke image; besides the corresponding

Dockerfile that specifies how to build the image, each directory contains the required

software or other files which will be embedded into the image. We create the follow-

ing directories and build the following images which we can use separately:

─ myubu1 — recent Linux Ubuntu and essential developer tools;

─ myubu2 — adds to myubu1 LAPACK installed;

─ myubu3 — adds to myubu2 BLAS, LAPACKE, and LAPACKE examples in-

stalled;

─ myubu4 — runs a program that solves the example linear system using LAPACK;

─ ubuntu-lapack — a solid Docker image corresponding to myubu3.

Fig. 3. Scheme of Docker images for benchmarks.

Let us consider in detail how we build and try each of mentioned images. To create

image myubu1, which contains ubuntu and essential developer tools, we use the fol-

lowing Dockerfile:

FROM ubuntu:latest

RUN apt-get update && apt-get install -y \

 build-essential \

 gfortran \

 python

RUN /bin/bash

The image starts from the latest image of ubuntu and adds such developer tools as

basic compilers and make utility. We can use myubu1 separately to develop programs

in C, C++, Gfortran, and Python. The following commands allow us to build and try

myubu1:

docker image build -t myubu1 .

docker run -it myubu1

To create image myubu2, which installs LAPACK on myubu1, we use the follow-

ing Dockerfile:

FROM myubu1:latest

COPY lapack-3.8.0.tar.gz .

RUN tar -zxvf lapack-3.8.0.tar.gz

RUN cp /lapack-3.8.0/make.inc.example /lapack-

3.8.0/make.inc

RUN ulimit -s unlimited && cd /lapack-3.8.0 && make

RUN /bin/bash

The image starts from the myubu1 image and installs LAPACK on it. We can use

myubu2 separately to develop programs in Gfortran which call LAPACK functions or

run LAPACK tests written in Gfortran. The following commands allow us to build

and try myubu2:

docker image build -t myubu2 .

docker run -it myubu2

To create image myubu3, which installs BLAS, LAPACKE, and LAPACKE exam-

ples on myubu2, we use the following Dockerfile:

FROM myubu2:latest

COPY dt_example_DGESV_rowmajor.c /lapack-

3.8.0/LAPACKE/example

COPY Makefile /lapack-3.8.0/LAPACKE/example

RUN cd /lapack-3.8.0/CBLAS && make && cd /lapack-

3.8.0/LAPACKE && make && cd /lapack-3.8.0/LAPACKE/example

&& make

RUN /bin/bash

The image starts from the myubu2 image and installs BLAS, LAPACKE, and

LAPACKE examples on it. We can use myubu3 separately to develop programs in C

which call LAPACKE functions or run LAPACKE tests written in C. The following

commands allow us to build and try myubu3:

docker image build -t myubu3 .

docker run -it myubu3

To create image myubu4, which runs a program that solves the example linear sys-

tem using LAPACK, we use the following Dockerfile:

FROM myubu3:latest

RUN mkdir /lapack-3.8.0/LAPACKE/myex

COPY lp_ex1.c /lapack-3.8.0/LAPACKE/myex

COPY Makefile /lapack-3.8.0/LAPACKE/myex

RUN cd /lapack-3.8.0/LAPACKE/myex && make

CMD /lapack-3.8.0/LAPACKE/myex/lp_ex1

The image starts from the myubu3 image and installs the example program

lp_ex1.c and the corresponding Makefile. We can use myubu4 to solve the example

linear system within Docker. The following commands allow us to build and try

myubu4:

docker image build -t myubu4 .

docker run myubu4

The obtained results coincide with the results obtained using LAPACK directly. To

create a solid image ubuntu-lapack that corresponds to myubu3 and will be run on

various platforms for the benchmarks, we use the following Dockerfile:

FROM ubuntu:latest

COPY lapack-3.8.0z.tar.gz .

RUN apt-get update && apt-get install -y apt-utils build-

essential gfortran python && \

 tar -zxvf lapack-3.8.0z.tar.gz && \

 cp /lapack-3.8.0/make.inc.example /lapack-

3.8.0/make.inc && \

 ulimit -s unlimited && cd /lapack-3.8.0 && make && \

 cd /lapack-3.8.0/CBLAS && make && cd /lapack-

3.8.0/LAPACKE && make && cd /lapack-3.8.0/LAPACKE/example

&& make

RUN /bin/bash

We push the final image ubuntu-lapack to our repository at http://hub.docker.com

to make it public and use in Docker for Windows benchmarks:

docker tag ubuntu-lapack zsoftua/ubuntu-lapack

docker push zsoftua/ubuntu-lapack

When required, we can pull it from the repository:

docker pull zsoftua/ubuntu-lapack

We assume that in both cases above we are logged to a repository otherwise we can

add a prefix with repository address to the image name to the left.

5 LAPACK-Docker Benchmarks in Linux, Windows, and

MacOS

For the performance benchmarks, big systems are solved using LAPACKE, the output

is redirected to NULL device. In the simple case, we can measure the running time

using system utility time as follows:

daze@lion:~/lapack-3.8.0/LAPACKE/example$ time

./xexample_DGESV_rowmajor -n 5000 > /dev/null

real 0m38,057s

user 0m37,964s

sys 0m0,092s

daze@lion:~/lapack-3.8.0/LAPACKE/example$

Thus, the program running time for system of size 5000 is about 38,057 seconds.

For more precise evaluation, test program xexample_DGESV_rowmajor is modified

by adding code for measuring time and commenting all printing operators save error

messages, we call the resulting program dt_ xexample_DGESV_rowmajor:

daze@lion:~/lapack-3.8.0/LAPACKE/example$ time

./dt_xexample_DGESV_rowmajor -n 5000 > /dev/null

1 5000 25.868977s

real 0m26,654s

user 0m26,090s

sys 0m0,080s

daze@lion:~/lapack-3.8.0/LAPACKE/example$

The times obtained inside the program and by system utility time are very close

with the difference less than 1 second. The essential difference with the previous list-

ing is explained by the fact, the printing is commented in program dt_ xexam-

ple_DGESV_rowmajor, thus we conclude that printing consumes about one third of

time for a system of size 5000. Further we will use benchmark tests without printing

results. As for the time measuring code, the following sketch program illustrates it:

#include <time.h>

#include <bits/time.h>

#include <sys/time.h>

double magma_wtime(void)

{

 struct timeval t;

 gettimeofday(&t, NULL);

 return t.tv_sec + t.tv_usec*1e-6;

}

…

double t1,t2;

t1=magma_wtime();

info = LAPACKE_dgesv(...);

t2=magma_wtime();

…

fprintf(stderr, "%d\t%d\t%#fs\n", nrhs, n, t2-t1);

To organize tests in a sequence, we compose the following tiny script:

for n in <list of time instants>;

do

 ./dt_xexample_DGESV_rowmajor -n $n;

done

For our benchmark tests, we use the same desktop computer Hare as in [14]: Intel

Core i5 3.2GHz, 4 cores, RAM 8Gb. We compare the performance obtained directly

in Linux with the performance obtained in Docker environment which runs both on

Linux and MS Windows 10, besides we compare solid and many-layered images.

For instance, we run tests directly in Linux with:

daze@lion:~/lapack-3.8.0/LAPACKE/example$ for n in 1000

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

13000 14000 15000; do ./dt_xexample_DGESV_rowmajor -n $n;

done

and we run tests in Docker with:

daze@lion:~/lpd/ubuntu-lapack$ docker run -it myubu3

root@24e7e0f0f7c0:/# cd /lapack-3.8.0/LAPACKE/example

root@24e7e0f0f7c0:/lapack-3.8.0/LAPACKE/example# for n in

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

12000 13000 14000 15000; do ./dt_xexample_DGESV_rowmajor

-n $n; done

Basic obtained benchmarks are represented in Table 1. Matrix sizes from 1000 to

15000 are considered. We have four columns comparing a direct run of LAPACK on

Ubuntu with running it within a Docker container either as multilayer or solid image,

and finally, with running the solid Docker container within MS Windows 10. A brief

vivid comparison is shown in Fig. 4.

Table 1. Comparing benchmarks of Docker using LAPACK.

Matrix size LAPACK on

Ubuntu (s)

Docker

multi-layer image

in Ubuntu (s)

Docker solid

image in

Ubuntu (s)

Docker solid

image in MS

Windows (s)

1000 0.230743 0.231323 0.233148 0.248542

2000 1.731192 1.729169 1.731458 1.814025

3000 5.706029 5.724043 5.785270 5.987914

4000 13.272057 13.306907 13.324464 13.912880

5000 25.860373 26.286293 25.965536 27.209460

6000 44.290466 44.523421 44.483824 46.647734

7000 70.136287 70.723309 70.605154 73.950816

8000 104.262183 105.543180 105.438383 110.346505

9000 148.151378 150.613408 150.461304 157.327095

10000 202.458930 206.776427 207.061478 217.058503

11000 271.838308 277.929413 278.195353 293.229381

12000 357.815169 361.973850 362.008640 387.046685

13000 462.599758 464.142452 463.041850 499.041814

14000 586.326644 586.678216 587.664414 631.014162

15000 729.811495 733.366776 731.759509 786.755366

Fig. 4. Comparing Docker performance in Linux (Ubuntu) and Windows.

As for the chosen range of the system size, it is limited by the RAM size when

LAPACK goes out of memory. And as for Docker for Windows, the range depends on

the amount of RAM allotted to Docker Engine. When Docker starts using virtual

memory, the performance slows down considerably (Fig. 5).

Fig. 5. Docker on Windows performance fall at exceeding RAM allocated to Docker Engine.

6 Final Discussions and Conclusions

Thus, using Docker yields very little slowdown (about one percent) in Ubuntu and

little slowdown (about ten percent) in Windows that acknowledges that Docker plat-

form is a perfect solution from performance point of view as well.

We should mention that Docker performance in Windows is considerably limited

by the amount of RAM allocated to Docker Engine, a slowdown observed when ac-

tive swapping within virtual memory starts.

Note that, the benchmarks have been collected for computations over real numbers.

Recently computations over integer numbers become more significant for manifold

applications to discrete event systems [15], fuzzy logic [16], cybersecurity, and artifi-

cial intelligence domains. For benchmarks over integer numbers, we can apply packet

ParAd [14,17] recently developed based on clans composition theory [18].

7 References

1. Cloud Computing: Principles, Systems and Applications, Antonopoulos, Nick, Gillam, Lee

(Eds.), Springer, 2017.

2. Docker https://www.docker.com/

3. A. Ahmed and G. Pierre, "Docker Image Sharing in Distributed Fog Infrastructures," 2019

IEEE International Conference on Cloud Computing Technology and Science (Cloud-

Com), Sydney, Australia, 2019, pp. 135-142. doi: 10.1109/CloudCom.2019.00030

4. Rajkumar Buyya; Satish Narayana Srirama, "A Lightweight Container Middleware for

Edge Cloud Architectures," in Fog and Edge Computing: Principles and Paradigm , Wiley,

2019, pp.145-170.

5. P. Zhang, M. Zhou and X. Wang, "An Intelligent Optimization Method for Optimal Virtual

Machine Allocation in Cloud Data Centers," in IEEE Transactions on Automation Science

and Engineering. doi: 10.1109/TASE.2020.2975225

6. A. Lingayat, R. R. Badre and A. Kumar Gupta, "Performance Evaluation for Deploying

Docker Containers On Baremetal and Virtual Machine," 2018 3rd International Conference

on Communication and Electronics Systems (ICCES), Coimbatore, India, 2018, pp. 1019-

1023.

7. Emiliano Casalicchio and Vanessa Perciballi. 2017. Measuring Docker Performance: What

a Mess!!! In Proceedings of the 8th ACM/SPEC on International Conference on Perfor-

mance Engineering Companion (ICPE вЂ™17 Companion). Association for Computing

Machinery, New York, NY, USA, 11вЂ“16.

8. LAPACK http://www.netlib.org/lapack/

9. E. Angerson et al., "LAPACK: A portable linear algebra library for high-performance

computers," Supercomputing '90:Proceedings of the 1990 ACM/IEEE Conference on Su-

percomputing, New York, NY, USA, 1990, pp. 2-11.

10. Top500 http://top500.org

11. G. Xie and Y. Xiao, "How to Benchmark Supercomputers," 2015 14th International Sym-

posium on Distributed Computing and Applications for Business Engineering and Science

(DCABES), Guiyang, 2015, pp. 364-367.

12. G. W. Stewart. The decompositional approach to matrix computation. Computing in Sci-

ence & Engineering, 2(1):50-59, Jan/Feb 2000.

13. Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet, The LINPACK Benchmark: Past,

Present, and Future, Concurrency and Computation: Practice and Experience, 15(9):803-

820, August 10, 2003.

14. Dmitry Zaitsev, Stanimire Tomov, Jack Dongarra. Solving Linear Diophantine Systems on

Parallel Architectures, IEEE Transactions on Parallel and Distributed Systems, 30(5),

2019, 1158–1169. DOI: 10.1109/TPDS.2018.2873354

15. Zaitsev D.A. Verification of Computing Grids with Special Edge Conditions by Infinite

Petri Nets, Automatic Control and Computer Sciences, 2013, Vol. 47, No. 7, pp. 403–412.

DOI: 10.3103/S0146411613070262

16. Zaitsev D.A., Sarbei V.G., Sleptsov A.I., Synthesis of continuous-valued logic functions

defined in tabular form, Cybernetics and Systems Analysis, Volume 34, Number 2 (1998),

190-195. DOI: 10.1007/BF02742068

17. ParAd http://github.com/dazeorgacm/ParAd

18. Zaitsev D.A. Sequential composition of linear systems’ clans, Information Sciences, Vol.

363, 292–307. Online 12 February 2016. DOI: 10.1016/j.ins.2016.02.016

