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Abstract. Platform as a Service (PaaS) cloud computing model becomes wide-

spread implemented within Docker Containers. Docker uses operating system 

level virtualization to deliver software in packages called containers. Containers 

are isolated from one another and comprise all the required software, including 

operating system API, libraries and configuration files. With such advantageous 

integrity one can doubt on Docker performance. The present paper applies 

packet LAPACK, which is widely used for performance benchmarks of super-

computers, to collect and compare benchmarks of Docker on Linux Ubuntu and 

MS Windows platforms. After a brief overview of Docker and LAPACK, a se-

ries of Docker images containing LAPACK is created and run, abundant 

benchmarks obtained and represented in tabular and graphical form. From the 

final discussion, we conclude that Docker runs with nearly the same perfor-

mance on both Linux and Windows platforms, the slowdown does not exceed 

some ten percent. Though Docker performance in Windows is essentially lim-

ited by the amount of RAM allocated to Docker Engine.  

Keywords. Cloud computing, PaaS, Docker, benchmark, LAPACK, Top500 

1 Introduction 

A concept of cloud computing [1], widely spread recently, means on-demand availa-

bility of computer system resources. Peter Mell and Tim Grance from National Insti-

tute of Standards and Technology (NIST) define cloud computing as a model for ena-

bling ubiquitous, convenient, on-demand network access to a shared pool of configu-

rable computing resources that can be rapidly provisioned and released with minimal 

management effort or service provider interaction. Their cloud model is composed of 

five essential characteristics, three service models, and four deployment models. Five 

essential characteristics include: on-demand self-service, broad network access, re-

source pooling, rapid elasticity, and measured service. The service models include: 

Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a 
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Service (IaaS). Deployment models are the following: Private cloud, Community 

cloud, Public cloud, and Hybrid cloud.  

Among known implementations of PaaS service model, Docker Containers [2-4] 

are rapidly developing and attracting more and more customers in various application 

areas. Docker uses operating system level virtualization to deliver software in pack-

ages called containers. Containers are isolated from one another and contain all the 

required software, including operating system API, libraries and configuration files. 

Containers can communicate with each other through well-defined channels. All con-

tainers are run by a single operating-system kernel and are thus more lightweight than 

virtual machines [5-6]. The software that hosts the containers is called Docker Engine 

and is installed now on Linux, MS Windows, and Apple MacOS platforms. Works on 

Docker has started in 2010 and first released in 2013. Recently Docker wins millions 

of developers and customers offering a public repository of containers. It supports 

also parallel and distributed computing with Docker Swarm technology.  

Developers of Docker claim that the application within a container runs quickly 

and reliably from one computing environment to another. On the one hand, it is ut-

most convenient tool encapsulating within a single container everything required to 

run an application – all dependencies including operating system API, libraries, con-

figurations etc. On the other hand, it is efficient because it is light-weighted compared 

with the virtual machine concept. Moreover, it is ubiquitous, running everywhere 

where Docker Engine is installed and access to repository of containers is provided. 

Thus, it looks like a miracle that looks a bit of suspicious for IT professionals [6,7]. 

The design of research presented in the paper was either to prove it strictly and con-

vincingly or to depose a legend.  

In the present paper after a brief overview of Docker Container technology, we 

come to LAPACK software [8,9], widely applied for performance benchmarks includ-

ing modern supercomputers [10,11]; then we meticulously create a series of contain-

ers to run LAPACK, compose one solid container for benchmarks, and upload it to 

Docker Hub repository; we run the LAPACK container on Ubuntu Linux  and MS 

Windows 10 platforms installed on the same computer and also planning to supply 

additional information regarding benchmarks for Apple MacOS platform in future; 

finally we represent benchmarks graphically and discuss obtained results. A conclu-

sion that Docker completely corresponds to the company claims showing rather good 

performance for any available platform accomplishes the paper. 

2 Basics of Developing and Running Docker Containers 

Docker [2-4] represents one of the most successful implementations of the PaaS 

Cloud Computing concept. A Docker image encapsulates an application together with 

its entire environment including libraries and operating system and runs on Docker 

Engine. Docker Engine can be started on Linix, Windows, MacOS and in future on 

other operating systems. Thus a certain independence of an image from operating 

environment is provides while it is claimed that Docker runs an image considerably 

faster than a virtual machine.  



 

. 

Fig. 1. Docker brief scheme of work. 

Docker command line interface executes commands starting with “docker” prefix. To 

run an image, we use “docker run” command. For a quick start, we can either run 

hello-world image or use explicitly Linux echo command starting image ubuntu: 

docker run hello-world 

docker run ubuntu /bin/echo 'Hello world‘ 

On processing run command, Docker creates and starts a new container from the 

image, downloading a new image if required. A container runs within Docker Engine 

which can be considered as a kind of thin virtual machine (Fig. 1); recently Docker 

Engine works within Linux, MS Windows,  and MacOS. There are more than fifty 

Docker commands [2]. Among the most frequently used, we mention: “docker info” 

to display system-wide info; “docker images” to list images; “docker ps” to list con-

tainers (running images); “docker build” to build an image from a Dockerfile which 

represents a textual file specifying how the image should be built. For instance, we 

build and run image specified by the following file named Dockerfile and stored in 

the current directory: 

cat Dockerfile 

FROM ubuntu:latest 

RUN /bin/bash 

docker build -t u2 . 

docker run -it u2 

# 

The option “-t” specifies the image name, and the option “-it” specifies an interac-

tive mode of work; after starting, the image issues an invitation “#” waiting a bash 

command to process. A Dockerfile begins with “FROM” instruction that specifies 

parent image from which the current image is built. To use a file when building an 

image, we copy it into the image using “COPY” instruction. Instruction “RUN” speci-



fies commands which build a new layer of the current image. When an image is start-

ed, a command specified in “CMD” instruction is executed. Dockerfiles containing all 

the considered instructions are studied in Section 4.  

On default, all the built images are stored locally within the current computer. It is 

rather convenient to store images in a cloud repository (registry), for instance 

http://hub.docker.com For this purpose we create the corresponding account and enter 

it using “docker login” command. Local images are identified using 6 octets repre-

sented as a hex number, we can obtain identifies via “docker images” command. To 

push an image to a repository we tag it with a name using “docker tag” command and 

then push it using “docker push” command with specified name. When working on a 

new computer, we can pull an image from repository using “docker pull” command. 

Pushing and pulling images are studied in detail in Section 4. 

3 LAPACK as de-facto Standard for Performance Benchmarks 

The LAPACK library contains a collection of numerical methods to solve problems 

arising from dense systems of linear equations assuming one of the following forms: 

 

 Ax = b,  

Ax = λx,  

Ax = λBx,  

Av = σu.   

 

Less conceptually, the properties of matrices A and B dictate the specific of the algo-

rithmic approach taken by the LAPACK solver. The overarching methodology in-

volves the decomposition approach [12] that splits the algorithmic work into two 

distinct phases: factorization and substitution. The former is commonly the computa-

tionally-intensive step that consumes majority of execution time. The latter uses the 

output of the factorization to deliver the solution of the original problem at much 

lower cost than the first step. Moreover, the factorization results may be reused multi-

ple times with different right-hand sides for much reduced computation time in many 

practical situations. Furthermore, numerical stability of using the factors is superior to 

using explicit inverse of the system matrix that may fail with overflows or division-

by-zero even when the solve with the factors would still succeed to deliver a few dig-

its of accuracy in the solution. The factorizations implemented in LAPACK include 

the LU, Cholesky, and QR factorizations that are often called one-sided factorizations 

because they apply numerical transformations to only one side of the original matrix 

and hence do not preserve the spectral properties. In contrast, the two-sided transfor-

mations do preserve the original matrix spectrum and are used in LAPACK’s Schur 

decomposition of a matrix. These two types of transformations present a different 

challenge to the modern hardware and thus may be used for a wide range of evalua-

tions. 

From the benchmarking standpoint, LAPACK offers a wide range of routines that 

reveal performance of characteristics of the tested hardware platform. At the basic 
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level there are BLAS subroutines that constitute the portable performance layer above 

the hardware that allows the rest of LAPACK to express more complex algorithms in 

an efficient manner. Using BLAS for benchmarking is an easy option to obtain trivial 

hardware metrics such as bandwidth and latency of the main memory by running 

some of the Level 1 and Level 2 BLAS subroutines. Moving up to Level 3 BLAS 

allows the user to test compute capability of the hardware platform both in terms of 

single-core performance as well as its scaling across all available sockets and cores 

contained therein. In practice, more complex measures of performance are obtained 

from LAPACK subroutines. One common example is the High Performance 

LINPACK benchmark [13] commonly referred to as HPL. The benchmark measure 

the time taken to solve a system of linear equations with a dense system matrix of an 

arbitrary size by using LU factorization with partial pivoting. This can be easily im-

plemented by a single call to LAPACK’s routine DGESV() and stands to show how 

LAPACK is an important performance tool. In fact, HPL has been used for decades 

for measuring efficiency and comparison the largest supercomputing machines in the 

world as is recorder by the TOP500 list [10]. Prior to proliferation of distributed 

memory machines, the shared memory supercomputers were dominating the list and, 

at that time, LAPACK’s implementation of DGESV() was a perfect software imple-

mentation of HPL eligible for running and submitting TOP500 results. Later on, a 

distributed memory implementation of DGESV() was required and it had been pro-

vided by the ScaLAPACK library in the form of PDGESV() routine that not only 

computes locally on each of the distributed nodes but also coordinates the solution 

between the processes through an interconnect fabric, including Ethernet or Infini-

Band, and a message passing library such as MPI. However, the detailed use and 

analysis of ScaLAPACK is outside of scope of this work due its complex software 

stack requirements and hardware complexities associated with running a modern dis-

tributed-memory cluster. These complex hardware-software interactions complicate 

evaluation of containers and might prevent from drawing proper conclusions about 

the associated overheads. 

 

 

Fig. 2. Scheme of LAPACK routine names. 

 



LAPACK packet is downloaded freely from its website [8] and installed according 

to the installation guide in some quarter of an hour, in its work it uses BLAS library 

[9,13]. For instance, to solve a given system, we can use the following small program 

that initializes matrix A and vector of the right side b statically and then calls routine 

LAPACKE_sgesv to solve the corresponding system: 

#include <stdio.h> 

#include <lapacke.h> 

#define size 3      // dimension of matrix A 

int main() 

{ 

  lapack_int n=size, nrhs=1, lda=size, ldb=1, info, 

ipiv[size]; 

  float A[size*size] = {2.0,5.0,8.0, 

                        3.0,-6.0,9.0, 

                        4.0,7.0,-1.0}; 

  float b[size] =      {13.0,25.0,-7.0}; 

  int i,j; 

  info = LAPACKE_sgesv(LAPACK_ROW_MAJOR, n, nrhs, A, lda, 

ipiv, b, ldb);      

  for (i=0; i<n; i++) printf("%f\n", b[i]); // print vec-

tor x 

}   

Finally it prints the obtained vector of solutions which replaces the right side vec-

tor b. The program is written in C language and uses C interface of LAPACK called 

LAPACKE, all the corresponding routines have prefix “LAPACKE_”. LAPACKE 

only translates the call into the call of the corresponding LAPACK routine, sgesv in 

the considered example (a scheme of LAPACK routine names abbreviation is ex-

plained by Fig. 2). The program can be built and run using the following Makefile: 

include ../../make.inc 

all: lp_ex1 

LIBRARIES = ../../$(LAPACKELIB) ../../$(LAPACKLIB) 

$(BLASLIB) 

lp_ex1: lp_ex1.o $(LIBRARIES) 

 $(LOADER) $(LOADOPTS) -o $@ $^ 

 ./$@ 

.c.o: 

 $(CC) $(CFLAGS) -I. -I../include -c -o $@ $< 

We assume that out example directory is situated at the same level as the standard 

LAPACKE example directory /lapack-3.8.0/LAPACKE/example. The computed vec-

tor of solutions can be checked by substitution into equations of the system: 

daze@lion:~/lapack-3.8.0/LAPACKE/example$ make 

gcc -O3 -I. -I../include -c -o lp_ex1.o lp_ex1.c 



gfortran -o lp_ex1 lp_ex1.o ../../liblapacke.a 

../../liblapack.a ../../librefblas.a 

./lp_ex1 

-1.313167e+00 

-1.000000e-01 

1.800000e+00 

daze@lion:~/lapack-3.8.0/LAPACKE/example$ 

Standard set of LAPACKE tests includes routines which solve a given linear sys-

tem or implement computations by the least square method. At first, a system of a 

given size is generated with random elements and then it is solved, the obtained solu-

tions printed. It uses two options: “-n” to specify the system size and “-nhrs” to speci-

fy the number of right-hand sides; for instance: 

daze@lion:~/lapack-3.8.0/LAPACKE/example$ 

./xexample_DGESV_rowmajor -n 3 

 Entry Matrix A 

   0.34  -0.11   0.28 

   0.30   0.41  -0.30 

  -0.16   0.27  -0.22 

 Right Rand Side b 

   0.05 

  -0.02 

   0.13 

LAPACKE_dgesv (row-major, high-level) Example Program Re-

sults 

 Solution 

  -0.48 

   1.19 

   1.22 

 Details of LU factorization 

   0.34  -0.11   0.28 

   0.88   0.50  -0.55 

  -0.48   0.43   0.15 

 Pivot indices 

      1      2      3 

daze@lion:~/lapack-3.8.0/LAPACKE/example$  

One can check the obtained results and calculate the error, such intermediate re-

sults as LU-factorization and pivot indices are printed as well, though in the present 

study we are interested mainly in LAPACK running time to use it for benchmarks.  



4 Install and Run LAPACK in Docker Containers 

In the present section we create a Docker image to run LAPACK tests and also an 

additional image to solve the example equation from the previous section. We are 

going to compare multi-layer and solid images as well that is why we create a series 

of images having the following structure of directories and files of the top directory 

lpd: 

daze@lion:~$ ls -R lpd 

lpd: 

myubu1  myubu2  myubu3  myubu4  ubuntu-lapack 

lpd/myubu1: Dockerfile 

lpd/myubu2: Dockerfile  lapack-3.8.0.tar.gz 

lpd/myubu3: Dockerfile  dt_example_DGESV_rowmajor.c  

Makefile 

lpd/myubu4: Dockerfile  lp_ex1.c  Makefile 

lpd/ubuntu-lapack: Dockerfile lapack-3.8.0z.tar.gz 

daze@lion:~$  

We use a separate directory for a separate Docke image; besides the corresponding 

Dockerfile that specifies how to build the image, each directory contains the required 

software or other files which will be embedded into the image. We create the follow-

ing directories and build the following images which we can use separately: 

─ myubu1 — recent Linux Ubuntu and essential developer tools; 

─ myubu2 — adds to myubu1 LAPACK installed; 

─ myubu3 — adds to myubu2 BLAS, LAPACKE, and LAPACKE examples in-

stalled; 

─ myubu4 — runs a program that solves the example linear system using LAPACK; 

─ ubuntu-lapack — a solid Docker image corresponding to myubu3. 

 

 
 

Fig. 3. Scheme of Docker images for benchmarks. 



 

Let us consider in detail how we build and try each of mentioned images. To create 

image myubu1, which contains ubuntu and essential developer tools, we use the fol-

lowing Dockerfile: 

FROM ubuntu:latest 

RUN apt-get update && apt-get install -y \ 

     build-essential \ 

     gfortran \ 

     python 

RUN /bin/bash 

The image starts from the latest image of ubuntu and adds such developer tools as 

basic compilers and make utility. We can use myubu1 separately to develop programs 

in C, C++, Gfortran, and Python. The following commands allow us to build and try 

myubu1: 

docker image build -t myubu1 . 

docker run -it myubu1 

To create image myubu2, which installs LAPACK on myubu1, we use the follow-

ing Dockerfile: 

FROM myubu1:latest 

COPY lapack-3.8.0.tar.gz . 

RUN tar -zxvf lapack-3.8.0.tar.gz 

RUN cp /lapack-3.8.0/make.inc.example /lapack-

3.8.0/make.inc 

RUN ulimit -s unlimited && cd /lapack-3.8.0 && make 

RUN /bin/bash 

The image starts from the myubu1 image and installs LAPACK on it. We can use 

myubu2 separately to develop programs in Gfortran which call LAPACK functions or 

run LAPACK tests written in Gfortran. The following commands allow us to build 

and try myubu2: 

docker image build -t myubu2 . 

docker run -it myubu2 

To create image myubu3, which installs BLAS, LAPACKE, and LAPACKE exam-

ples on myubu2, we use the following Dockerfile: 

FROM myubu2:latest 

COPY dt_example_DGESV_rowmajor.c /lapack-

3.8.0/LAPACKE/example 

COPY Makefile /lapack-3.8.0/LAPACKE/example 



RUN cd /lapack-3.8.0/CBLAS && make && cd /lapack-

3.8.0/LAPACKE && make && cd /lapack-3.8.0/LAPACKE/example 

&& make 

RUN /bin/bash 

The image starts from the myubu2 image and installs BLAS, LAPACKE, and 

LAPACKE examples on it. We can use myubu3 separately to develop programs in C 

which call LAPACKE functions or run LAPACKE tests written in C. The following 

commands allow us to build and try myubu3: 

docker image build -t myubu3 . 

docker run -it myubu3 

To create image myubu4, which runs a program that solves the example linear sys-

tem using LAPACK, we use the following Dockerfile: 

FROM myubu3:latest 

RUN mkdir /lapack-3.8.0/LAPACKE/myex 

COPY lp_ex1.c /lapack-3.8.0/LAPACKE/myex 

COPY Makefile /lapack-3.8.0/LAPACKE/myex 

RUN cd /lapack-3.8.0/LAPACKE/myex && make 

CMD /lapack-3.8.0/LAPACKE/myex/lp_ex1 

The image starts from the myubu3 image and installs the example program 

lp_ex1.c and the corresponding Makefile. We can use myubu4 to solve the example 

linear system within Docker. The following commands allow us to build and try 

myubu4: 

docker image build -t myubu4 . 

docker run myubu4 

The obtained results coincide with the results obtained using LAPACK directly. To 

create a solid image ubuntu-lapack that corresponds to myubu3 and will be run on 

various platforms for the benchmarks, we use the following Dockerfile: 

FROM ubuntu:latest 

COPY lapack-3.8.0z.tar.gz . 

RUN apt-get update && apt-get install -y apt-utils build-

essential gfortran python && \ 

     tar -zxvf lapack-3.8.0z.tar.gz && \ 

     cp /lapack-3.8.0/make.inc.example /lapack-

3.8.0/make.inc && \ 

     ulimit -s unlimited && cd /lapack-3.8.0 && make && \ 

     cd /lapack-3.8.0/CBLAS && make && cd /lapack-

3.8.0/LAPACKE && make && cd /lapack-3.8.0/LAPACKE/example 

&& make  

RUN /bin/bash 



We push the final image ubuntu-lapack to our repository at http://hub.docker.com 

to make it public and use in Docker for Windows benchmarks: 

docker tag ubuntu-lapack zsoftua/ubuntu-lapack 

docker push zsoftua/ubuntu-lapack 

When required, we can pull it from the repository: 

docker pull zsoftua/ubuntu-lapack 

We assume that in both cases above we are logged to a repository otherwise we can 

add a prefix with repository address to the image name to the left.  

5 LAPACK-Docker Benchmarks in Linux, Windows, and 

MacOS 

For the performance benchmarks, big systems are solved using LAPACKE, the output 

is redirected to NULL device. In the simple case, we can measure the running time 

using system utility time as follows: 

daze@lion:~/lapack-3.8.0/LAPACKE/example$ time 

./xexample_DGESV_rowmajor -n 5000 > /dev/null 

real 0m38,057s 

user 0m37,964s 

sys 0m0,092s 

daze@lion:~/lapack-3.8.0/LAPACKE/example$  

Thus, the program running time for system of size 5000 is about 38,057 seconds. 

For more precise evaluation, test program xexample_DGESV_rowmajor is modified 

by adding code for measuring time and commenting all printing operators save error 

messages, we call the resulting program  dt_ xexample_DGESV_rowmajor:  

daze@lion:~/lapack-3.8.0/LAPACKE/example$ time 

./dt_xexample_DGESV_rowmajor -n 5000 > /dev/null 

1 5000 25.868977s 

real 0m26,654s 

user 0m26,090s 

sys 0m0,080s 

daze@lion:~/lapack-3.8.0/LAPACKE/example$ 

The times obtained inside the program and by system utility time are very close 

with the difference less than 1 second. The essential difference with the previous list-

ing is explained by the fact, the printing is commented in program  dt_ xexam-

ple_DGESV_rowmajor, thus we conclude that printing consumes about one third of 

time for a system of size 5000. Further we will use benchmark tests without printing 

results. As for the time measuring code, the following sketch program illustrates it: 



#include <time.h> 

#include <bits/time.h> 

#include <sys/time.h> 

double magma_wtime( void ) 

{ 

  struct timeval t; 

  gettimeofday( &t, NULL ); 

  return t.tv_sec + t.tv_usec*1e-6; 

} 

… 

double t1,t2; 

t1=magma_wtime(); 

info = LAPACKE_dgesv(...); 

t2=magma_wtime(); 

… 

fprintf( stderr, "%d\t%d\t%#fs\n", nrhs, n, t2-t1 ); 

To organize tests in a sequence, we compose the following tiny script: 

for n in <list of time instants>;  

do 

  ./dt_xexample_DGESV_rowmajor -n $n;  

done 

For our benchmark tests, we use the same desktop computer Hare as in [14]: Intel 

Core i5 3.2GHz, 4 cores, RAM 8Gb.  We compare the performance obtained directly 

in Linux with the performance obtained in Docker environment which runs both on 

Linux and MS Windows 10, besides we compare solid and many-layered images.  

For instance, we run tests directly in Linux with: 

daze@lion:~/lapack-3.8.0/LAPACKE/example$ for n in 1000 

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 

13000 14000 15000; do ./dt_xexample_DGESV_rowmajor -n $n; 

done 

and we run tests in Docker with: 

daze@lion:~/lpd/ubuntu-lapack$ docker run -it myubu3 

root@24e7e0f0f7c0:/# cd /lapack-3.8.0/LAPACKE/example 

root@24e7e0f0f7c0:/lapack-3.8.0/LAPACKE/example# for n in 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 

12000 13000 14000 15000; do ./dt_xexample_DGESV_rowmajor 

-n $n; done 

Basic obtained benchmarks are represented in Table 1. Matrix sizes from 1000 to 

15000 are considered. We have four columns comparing a direct run of LAPACK on 

Ubuntu with running it within a Docker container either as multilayer or solid image, 



and finally, with running the solid Docker container within MS Windows 10. A brief 

vivid comparison is shown in Fig. 4. 

Table 1. Comparing benchmarks of Docker using LAPACK. 

Matrix size LAPACK on 

Ubuntu (s) 

Docker 

multi-layer image 

in Ubuntu (s) 

Docker solid 

image in 

Ubuntu (s) 

Docker solid 

image in MS 

Windows (s) 

1000 0.230743 0.231323 0.233148 0.248542 

2000 1.731192 1.729169 1.731458 1.814025 

3000 5.706029 5.724043 5.785270 5.987914 

4000 13.272057 13.306907 13.324464 13.912880 

5000 25.860373 26.286293 25.965536 27.209460 

6000 44.290466 44.523421 44.483824 46.647734 

7000 70.136287 70.723309 70.605154 73.950816 

8000 104.262183 105.543180 105.438383 110.346505 

9000 148.151378 150.613408 150.461304 157.327095 

10000 202.458930 206.776427 207.061478 217.058503 

11000 271.838308 277.929413 278.195353 293.229381 

12000 357.815169 361.973850 362.008640 387.046685 

13000 462.599758 464.142452 463.041850 499.041814 

14000 586.326644 586.678216 587.664414 631.014162 

15000 729.811495 733.366776 731.759509 786.755366 

 

 

 

Fig. 4. Comparing Docker performance in Linux (Ubuntu) and Windows. 



As for the chosen range of the system size, it is limited by the RAM size when 

LAPACK goes out of memory. And as for Docker for Windows, the range depends on 

the amount of RAM allotted to Docker Engine. When Docker starts using virtual 

memory, the performance slows down considerably (Fig. 5). 

 

 

Fig. 5. Docker on Windows performance fall at exceeding RAM allocated to Docker Engine. 

6 Final Discussions and Conclusions 

Thus, using Docker yields very little slowdown (about one percent) in Ubuntu and 

little slowdown (about ten percent) in Windows that acknowledges that Docker plat-

form is a perfect solution from performance point of view as well. 

We should mention that Docker performance in Windows is considerably limited 

by the amount of RAM allocated to Docker Engine, a slowdown observed when ac-

tive swapping within virtual memory starts. 

Note that, the benchmarks have been collected for computations over real numbers. 

Recently computations over integer numbers become more significant for manifold 

applications to discrete event systems [15], fuzzy logic [16], cybersecurity, and artifi-

cial intelligence domains. For benchmarks over integer numbers, we can apply packet 

ParAd [14,17] recently developed based on clans composition theory [18].  
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