
Asynchronous SGD for DNN training on
Shared-memory Parallel Architectures

1st Florent Lopez
Innovative Computing Laboratory

University of Tennessee
Knoxville, USA

flopez@icl.utk.edu

2nd Edmond Chow
College of Computing

Georgia Institute of Technology
Atlanta, USA

echow@cc.gatech.edu

3rd Stanimire Tomov
Innovative Computing Laboratory

University of Tennessee
Knoxville, USA

tomov@icl.utk.edu

4th Jack Dongarra
Innovative Computing Laboratory

University of Tennessee
Knoxville, USA

dongarra@icl.utk.edu

Abstract—We present a parallel asynchronous Stochastic Gra-
dient Descent algorithm for shared memory architectures. Differ-
ent from previous asynchronous algorithms, we consider the case
where the gradient updates are not particularly sparse. In the
context of the MagmaDNN framework, we compare the parallel
efficiency of the asynchronous implementation with that of the
traditional synchronous implementation. Tests are performed for
training deep neural networks on multicore CPUs and GPU
devices.

Index Terms—Deep learning, Stochastic Gradient Descent,
Asynchronous iterative methods, multicore CPU, GPU

I. INTRODUCTION

The Stochastic Gradient Descent (SGD) algorithm is widely
employed for training machine learning models such as Deep
Neural Networks (DNNs). One of its most popular variants,
namely the minibatch SGD, not only offers good convergence
properties but is also easily parallelizable. However, parallel
implementations of minibatch SGD can be inefficient and can
have poor speedups due to the need for synchronization [1].
One solution to alleviate this problem is to perform operations
asynchronously, in which case the improved efficiency of
operations must be able to compensate for the degradation of
the convergence due to the noise introduced by asynchrony.
In shared-memory environments, the “Hogwild!” [2] asyn-
chronous SGD algorithm has been shown to be efficient for
training machine learning models when the gradient updates
are sparse. In the context of distributed-memory systems, ap-
proaches using a parameter server, where asynchrony mitigate
the communication costs, have been employed for training
large scale DNNs [3], [4]. A study of the convergence be-
haviour for these asynchronous models is presented in [5].

In the context of the MagmaDNN framework [6], we
implemented both synchronous and asynchronous parallel
minibatch SGD. The asynchronous SGD algorithm presented
in this paper is designed to be efficient on shared-memory
architectures even when the gradient updates are not sparse.
Using the OpenMP standard and the CUDA library, training

can be performed on either multicore CPUs or NVIDIA GPUs.
We test our algorithms on a Multi Layer Perceptron (MLP)
and a Convolutional Neural Network (CNN) to perform clas-
sification tasks. We analyze the scalability and performance of
these algorithms in terms of time to convergence, and show the
benefits of the asynchronous algorithm over the synchronous
algorithm. As mentioned, in this work, we focus on the case
in which the SGD updates are not particularly sparse.

II. MODEL TRAINING WITH SGD

We seek to minimize the objective function J(x, y, w) =
1
m

∑m
i=1 L(f(x

(i), w), y(i)) for the parameter w over a the
training set composed of m samples denoted x and corre-
sponding labels denoted y. the function f represents our model
and L corresponds to the loss function.

The SGD algorithm is an iterative procedure where the
parameter, denoted wk at the k-th iteration, is updated along
a descent direction approximated at a single random sample j
such that wk+1 ← wk − αgk where the step size α is known
as the learning rate and gk = ∇wJ(x(j), y(j), wk). However
using only one sample generally leads to a poor estimate of
the search direction and does not make an efficient use of
the compute capabilities of modern machines. Alternatively,
the batch SGD uses all available samples in the training set
to calculate an averaged search direction from the gradients
for each sample. This enables a good exploitation of the
computational resources but can be unnecessarily expensive
when there is (near) redundancy in the data, and often leads to
poor generalizability of the trained models. Instead, the mini-
batch SGD uses a subset of the samples, resulting in a better
trade-off between computational efficiency, convergence, and
generalization. Moreover, we use momentum in the model
updates which means that new iterates are computed using
previous search directions such as: wk+1 ← wk − αzk where
zk = βzk−1 + (1− β)gk and β is the momentum parameter.

III. PARALLEL SGD METHODS

There are several opportunities for parallelism that can be
exploited in the minibatch SGD. This includes data parallelism
where the batch of samples is split between several workers to
compute the gradient in parallel, and, model parallelism where
the model is distributed across the workers and processed in
parallel. In this study we propose a strategy based on data
parallelism and discuss the opportunities for model parallelism
that appear in our approach.

It should be noted that in the context of DNN training,
the choice of a stopping criterion is not trivial. A common
approach consists in testing the loss of the model against a
validation set and stop iterating whenever the loss is no longer
decreasing. This however, requires dedicating computational
resources during the training to evaluate the loss which impacts
the performance of the training itself. In the context of our
performance and scalability study, we prefer not to perform
validation tests during the training and use a time limit instead.
In this case, we compute the model accuracy at the end of the
procedure to evaluate the convergence of our SGD variants.

A. Synchronous SGD

Algorithm 1 Parallel SGD
1: while t < time budget do
2: g ← 0
3: for i = 1, N do in parallel
4: wlocal ← w
5: Randomly select a batch x (with labels y)
6: Compute glocal := ∇wJ(x, y, wlocal)
7: AtomicUpdate(g ← g + glocal)
8: end for
9: w ← w − α

N g
10: end while

In Algorithm 1 we show the pseudocode for the syn-
chronous parallel implementation of the SGD algorithm. At
each iteration, the global gradient denoted g is computed
in parallel by N workers before updating the global model
parameter, denoted w, with a SGD step using a single worker.
Each worker uses a copy of the model represented by wlocal

to compute the local gradients, glocal, that are reduced into
the global one. This parallelization strategy can impact the
convergence in several ways. If the batch size is fixed across
the workers, increasing the number of workers is equivalent
to increasing the batch size in the serial algorithm. In this
case, the speed of convergence can be affected (it may go up
or it may go down). Further, it is often observed that using
large batch sizes generally leads to models that generalize
poorly [7]. When increasing the number of workers, the time
per iteration is expected to increase due to the atomic reduction
of the local gradients. Alternatively, the batch size in each
worker can be reduced and for example be divided by N in
order to reduce the time for calculating the global gradient.
However, considering that the batch sizes used in practice
are relatively small, this strategy might not provide much

benefit as it dramatically reduces the arithmetic intensity of
operations.

Our parallel implementation relies on OpenMP tasks that are
created at each iteration and synchronized before the model is
updated by the main thread. In the CPU implementation, the
gradient computations are directly executed on a CPU core
whereas in the GPU implementation, each task is associated
with a CUDA stream in which the CUDA kernels are launched
and are executed independently from one another.

B. Asynchronous SGD

Algorithm 2 Parallel ASGD: master worker
1: g ← 0
2: while t < time budget do
3: w ← w − α

N−1 g
4: end while

Algorithm 3 Parallel ASGD: slave workers
1: glocal ← 0
2: while t < time budget do
3: wlocal ← w
4: AtomicUpdate(g ← g − glocal)
5: Randomly select a batch x and labels y
6: Compute glocal := ∇wJ(x, y, wlocal)
7: AtomicUpdate(g ← g + glocal)
8: end while

Our asynchronous variant of the parallel SGD uses N
workers, where one worker, defined as the master, performs
the SGD iterations as shown in Algorithm 2, while the other
N-1 workers, defined as the slave workers, follow Algorithm 3
to compute the global gradient in parallel. As shown in
Figure 3 slave workers compute their local gradients using
randomly selected batches from the training set and subtract
their previously computed gradient to the global one before
updating it with the newly computed one. Note that we chose
to perform the gradient update atomically as it led to better
convergence in our experiments. Apart from this reduction,
other operations such that the global gradient read in the
master worker, and, the local model update from the global
model in the slave workers are done non-atomically. In contrast
to the Hogwild! algorithm, we perform the global model
update in a single worker that is the master worker. This
choice is motivated be the fact that the model updates can
be dense and therefore concurrent updates could harm the
convergence. It should also be noted that this algorithm differs
from the parameter server approach presented in [4] and [3]
because in our case, first, the master does not wait on new
gradient updates to iterate and, second, the updates are not
done atomically allowing for slave workers to read the model
during the update.

IV. EXPERIMENTAL RESULTS

We now show experimental results for our implementation
of the parallel SGD algorithm to perform classification using

0 5 10 15 20 25 30
t (s)

0.0

0.2

0.4

0.6

0.8

1.0
Ac
cu
ra
cy

threads: 1
threads: 2
threads: 4
threads: 8
threads: 16
threads: 32

(a) Synchronous SGD

0 5 10 15 20 25 30
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

threads: 2
threads: 4
threads: 8
threads: 16
threads: 32

(b) Asynchronous SGD

Fig. 1. Accuracy vs training times for the parallel synchronous (a) and synchronous (b) SGD algorithm for the MLP network training on the MNIST dataset.
The training is performed on a 2×20 cores CPUs for a number of threads ranging between 2 and 32.

two different datasets. First we train a MLP model, with
three fully connected layers, to classify images from the
MNIST dataset [8] on a multicore CPU. Second, we train a
CNN model, with one convolutional, one max pooling and 2
fully connected layers, to perform image classification on the
CIFAR-10 dataset [9] on a GPU. In addition, the CNN model
also includes a dropout layer which helps avoid overfitting the
model.

We run our experiments on an NVIDIA DGX-1 system
equipped with 2×20 cores Intel Xeon CPU E5-2698 v4
clocked at 2.2 GHz and 8×V100 NVIDIA GPU devices. In the
following we set the batch size to 32, independently from the
number of workers and we use a learning rate equal to 10−3.
The momentum parameter is set to 0.99. We run the training
on these DNN models for time budgets varying between 1 and
30 seconds and measure the model accuracy afterwards.

A. MLP training on Multicore CPU

In Figure 1(a) we show the accuracy of the MLP model
on the classification task for the synchronous algorithm when
using a number of threads ranging between 2 and 32. We
see that when training our MLP model with the synchronous
algorithm, the speed of convergence is degraded when the
number of threads is increased. This can be explained by the
following factors: Although the overall batch size used to com-
pute the global gradient increases with the number of threads,
the iteration count does not vary much as a result of using
larger batch sizes. For example, when using 2 threads, it takes
1071 iterations to reach 40% accuracy against 990 iterations
when using 16 threads. However, because the scalability of the
parallel gradient computation is quite inefficient, partly due to
the atomic reduction, increasing the number of threads actually
slows down speed of convergence.

We can see in Figure 1(b) that the speed of convergence
for the asynchronous algorithm is relatively poor when using
few threads and can dramatically improved by increasing the
number of threads. As an example, although the algorithm

only reaches slightly less than 40% accuracy after 30 seconds
of training when using 2 threads, it is able to reach 80%
accuracy in the same amount of time when using 32 threads.
In this experiment, we observed that the number of SGD steps
performed by the main thread is relatively independent from
the number of workers. On another hand, the total number
of global gradient updates tend to increase with the number
of workers although as in the synchronous case, the gradients
updates are limited by the atomic reduction. This results in an
improvement in the convergence of the algorithm. We found
that the maximum total number of gradient updates is obtained
when using 8 threads, for which the performance is less than
when using 4, 16 or 32 threads. This suggests that computing
more gradients updates per SGD step does not necessarily
improve the convergence. We believe that this can be caused
by the increased number of conflicts while accessing the global
variable concurrently.

B. CNN training on GPU

The accuracy achieved when training the CNN model on
the GPU with the synchronous SGD is shown in Figure 2(a).
Similar to the observation made with the MLP training, the
speed of convergence of the synchronous SGD algorithm
decreases when increasing the number of CUDA streams. As
in the previous experiment we observed that, increasing the
number of workers, which is equivalent to increasing the batch
size, does not reduce the number of iteration significantly
whereas the cost per iteration for computing the global gra-
dient increases. As a result, the synchronous SGD is slowed
down by increasing the number of workers. Note that it would
certainly be more suitable for this synchronous algorithm
to use batched kernels [10] for computing the gradients in
parallel on the GPU, especially for such small granularity of
operations.

As we see in Figure 2(b), the asynchronous algorithm
reaches good speed of convergence when using 2 streams
and outperforms the best synchronous training times obtained

0 5 10 15 20 25 30
t (s)

0.0

0.2

0.4

0.6

0.8

1.0
Ac
cu
ra
cy

streams: 1
streams: 2
streams: 4
streams: 8
streams: 16
streams: 32

(a) Synchronous SGD

0 5 10 15 20 25 30
t (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

streams: 2
streams: 4
streams: 8
streams: 16
streams: 32

(b) Asynchronous SGD

Fig. 2. Accuracy vs training times for the parallel synchronous (a) and synchronous (b) SGD algorithm for the CNN network training on the CIFAR-10
dataset. The training is performed on a NVIDIA V100 GPU for a number of CUDA streams ranging between 2 and 32.

in serial mode. However, increasing the number of workers
beyond that gives no benefits as opposed to the multicore case.
This can be explained by the fact that, unlike the multicore
case, the number of iterations is reduced when we increase
the number of workers. This is the result of the distribution
of the GPU resources between the streams which is done
dynamically and without control from the user.

V. DISCUSSION

Our experiments suggest that the convergence of the asyn-
chronous algorithm depends on the balance between the num-
ber of model updates (or SGD iterations) and the number of
gradient updates. If the time for computing gradients greatly
surpass the cost for performing a SGD iteration, the conver-
gence would certainly be slowed down. This would happen,
for example, when training deeper and more complex models.
Additionally, exploiting model parallelism, such as updating
each of the DNN layers in parallel, could also deteriorate the
convergence by introducing imbalance between the number
of SGD steps and gradient udpates. Finally, it has been
suggested [11] that asynchrony can have a stabilization effect
similar to using momentum, and can improve the convergence
of SGD. This could partially explain the good convergence
behavior obtained with our asynchronous algorithm.

One limitation of our approach lies in the memory footprint
required for the training since we need multiple copies of the
model. This can be particularly constraining for training deeper
models on very large datasets, and especially on systems
with limited memory like GPUs. One solution consists of
distributing the dataset and possibly the model across several
CPU or GPU nodes. In this case potential convergence issues
can arise because internode communication, being much more
costly than on a shared memory system, could drastically limit
the updates to the global gradient.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented an asynchronous SGD
algorithm for training DNNs which not only offers good

convergence but is able to outperform the synchronous variant
on multicore CPUs and GPUs. In the future we plan to
implement a distributed-memory version of our algorithms.

REFERENCES

[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural proba-
bilistic language model,” J. Mach. Learn. Res., vol. 3, pp. 1137–1155,
Mar. 2003.

[2] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild! a lock-free
approach to parallelizing stochastic gradient descent,” in Proceedings
of the 24th International Conference on Neural Information Processing
Systems, ser. NIPS’11. Red Hook, NY, USA: Curran Associates Inc.,
2011, p. 693–701.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. aurelio
Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, “Large
scale distributed deep networks,” in Advances in Neural Information
Processing Systems 25. Curran Associates, Inc., 2012, pp. 1223–1231.

[4] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’14. USA: USENIX Association, 2014, p. 583–598.

[5] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochas-
tic gradient for nonconvex optimization,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 2, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015, p.
2737–2745.

[6] D. Nichols, N.-S. Tomov, F. Betancourt, S. Tomov, K. Wong, and
J. Dongarra, “Magmadnn: Towards high-performance data analytics
and machine learning for data-driven scientific computing,” in High
Performance Computing. Cham: Springer International Publishing,
2019, pp. 490–503.

[7] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” CoRR, vol. abs/1609.04836, 2016.

[8] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST dataset of
handwritten digits,” http://yann.lecun.com/exdb/mnist/, 1998.

[9] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[10] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J.
Higham, J. Hogg, P. V. Lara, P. Luszczek, M. Zounon, S. D. Relton,
S. Tomov, T. Costa, and S. Knepper, “Batched blas (basic linear algebra
subprograms) 2018 specification,” 2018-07 2018.

[11] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré, “Asynchrony begets mo-
mentum, with an application to deep learning,” in 54th Annual Allerton
Conference on Communication, Control, and Computing, Allerton 2016,
Monticello, IL, USA, September 27-30, 2016, 2016, pp. 997–1004.

