
1

Formulation of Requirements
for new PAPI++ Software Package
Part I: Survey Results

Heike Jagode
Anthony Danalis
Jack Dongarra

Innovative Computing Laboratory (ICL)

January 31, 2020

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes
01-2020 first publication

@techreport{2020-01-exa-papi,
author={Jagode, Heike and Danalis, Anthony and Dongarra, Jack},
title={Formulation of Requirements for new {PAPI++} Software Package, {PDN} No. 1},
institution={Innovative Computing Laboratory, University of Tennessee Knoxville},
year={2020},
month={January},
number={ICL-UT-20-02},

}

i

Contents

Contents ii

1 Introduction 1

2 Background 2
2.1 Why a new PAPI++ effort? . 2
2.2 Going Beyond Hardware Counters . 3
2.3 Summary . 3

3 ECP Applications and Software Technologies Survey 4
3.1 Results . 4

4 Consequences for PAPI++ 8
4.1 Software engineering with C++ . 9
4.2 Team of independent reviewers . 9
4.3 Stakeholders of new PAPI++ . 10

ii

CHAPTER 1

Introduction

The Exascale Performance Application Programming Interface (Exa-PAPI) project 1 is develop-
ing a new C++ Performance API (PAPI++) so�ware package from the ground up that o�ers a
standard interface and methodology for using low-level performance counters in CPUs, GPUs,
on/o�-chip memory, interconnects, and the I/O system, including energy/power management.
PAPI++ is building upon classic-PAPI functionality and strengthening its path to exascale with
a more e�cient and �exible so�ware design, one that takes advantage of C++ object-oriented
nature but preserves the low-overhead monitoring of performance counters and adds a vast
testing suite.

Scienti�c application communities, who are invested in high-performance computing (HPC),
have relied on the “classic” Performance Application Programming Interface (PAPI) to track
low-level hardware operations for the past two decades (PAPI was �rst released in 1999). The
goal of the Exa-PAPI e�ort—starting with a PAPI survey and its results, summarized in this white
paper—is to identify and articulate opportunities and possible solutions for PAPI to remain
sustainable and useful for the next two decades—and beyond.

1https://icl.utk.edu/exa-papi/

1

https://icl.utk.edu/exa-papi/

CHAPTER 2

Background

One of the many challenges ahead for programming in the exascale era is providing support for
multiple hardware architectures from the same code base. The main programming problems
to solve are portability and performance of codes, which are increasingly di�cult to achieve as
hardware architectures are becoming more and more diverse. According to several research
teams that are part of the HPC community, capitalizing on the momentum behind C++ as
well as achieving a standard, higher-level abstraction and programming model for parallelism
in the language for heterogeneous environments is the best path toward meeting exascale
requirements.

2.1 Why a new PAPI++ e�ort?

To put the new PAPI++ plan into perspective, the �rst PAPI version that o�ered a standardized,
easy-to-use interface for accessing hardware performance counters was released in 1999. The
past two decades witnessed tectonic shi�s in hardware technology followed by paradigm shi�s
in so�ware technology. During that time, PAPI has been repeatedly:

• “extended” with performance counter support for newly released CPUs,

• “redesigned” to enable hardware monitoring information that became available in other
sub-systems throughout modern computer architectures (e.g., counters found in GPUs,
on/o�-chip memory, interconnects, I/O systems), and

• “upgraded” to extend PAPI’s role further for monitoring and capping power consumption
as well as performance events that originate from other so�ware layers.

2

2.2. GOING BEYOND HARDWARE COUNTERS CHAPTER 2. BACKGROUND

No viable replacement for PAPI has emerged and established itself as the de facto standard
for monitoring hardware counters, power usage, so�ware-de�ned events, and channeling this
technological progress into a robust so�ware package. The PAPI++ package is meant to be this
replacement—with a more �exible and sustainable so�ware design.

2.2 Going Beyond Hardware Counters

In addition to providing hardware counter-based information through PAPI++, a standardizing
layer formonitoring so�ware-de�ned events (SDE) is being incorporated into the “Performance
API” to enable easy exposure of the internal behavior of runtime systems and libraries, such as
communication and math libraries, to the applications. As a result, the notion of performance
events is broadened from strictly hardware-related events to include so�ware-based informa-
tion. Enabling monitoring of both hardware and so�ware events provides more �exibility to
developers when capturing performance information.

2.3 Summary

In summary, the Exa-PAPI team is preparing PAPI support to stand up to the challenges posed
by exascale systems by:

(1) widening its applicability and providing robust support for exascale hardware resources;

(2) supporting �ner-grain measurement and control of power, thus o�ering so�ware develop-
ers a basic building block for dynamic application optimization under power constraints;

(3) extending PAPI functionality to support so�ware-de�ned events; and

(4) applying semantic analysis to hardware counters so that the application developer can
better make sense of the ever-growing list of raw hardware performance events that can
be measured during execution.

The team will be channeling the monitoring capabilities of hardware counters, power usage,
so�ware-de�ned events into a robust PAPI++ so�ware package. PAPI++ is meant to be PAPI’s
replacement—with a more �exible and sustainable so�ware design.

3

CHAPTER 3

ECP Applications and Software Technologies Survey

In January 2020, the Exa-PAPI team circulated a survey to the Exascale Computing Project (ECP)
applications (AD) and so�ware technology (ST) teams to assess their needs and requirements for
hardware and so�ware performance counter functionality. Twenty responses were collected.
Here, the responses to the most important questions are summarized.

3.1 Results

Figure 3.1: Is your application / tool / software directly calling any of the following packages? Mark
all that apply.

4

3.1. RESULTSCHAPTER 3. ECP APPLICATIONS AND SOFTWARE TECHNOLOGIES SURVEY

Figure 3.2: To what extent does your application / tool / software rely on performance counter
monitoring?

Figure 3.3: What performance counters are you using / interested in? Mark all that apply.

Figure 3.4: Are you interested in combining performance counter monitoring from different architec-
tures (CPUs, GPUs, networks, power, etc.)?

5

3.1. RESULTSCHAPTER 3. ECP APPLICATIONS AND SOFTWARE TECHNOLOGIES SURVEY

Figure 3.5: What type of PAPI events are you using / interested in? Mark all that apply.

Figure 3.6: Currently PAPI supports presets events for CPUs only. Are you interested in similar
presets for non-CPU components (e.g. AMD and NVIDIA GPUs)?

Figure 3.7: Do you prefer to use PAPI directly or indirectly via 3rd-party performance tools (e.g.
TAU, VAMPIR, Scalasca, Paraver)?.

6

3.1. RESULTSCHAPTER 3. ECP APPLICATIONS AND SOFTWARE TECHNOLOGIES SURVEY

Figure 3.8: If you answered “directly”, do you want PAPI to generate a JSON output file with
measurement results?

Figure 3.9: Which API do you need? Mark all that apply.

Other comments or feature requests for PAPI / PAPI++ are:

• We need working tools on GPUs, all vendors, and preferably the same counters. e.g. To
submit a Gordon Bell prize application. CPU performance does not look very relevant
for ECP target platforms, but we do still need to need to keep an eye on e.g. single thread
performance. A successful tool will allow us to do the same thing on multiple platforms.

• Are there counters for over�ow happening, e.g., in FP16 arithmetic.

• We don’t require PAPI, but it could be useful to use for performance analysis, and SDEs
could be nice to have as an option to report internal measurements such as number of
iterations, though this is less of a concern than in sparse linear algebra.

• Number of �ops, data communicated between CPU and GPU and via MPI, and power use
over time would probably be the measurements of most interest for us.

• Counter reproducibility/stability and veri�cation is very relevant for us, we need to know
what the variance is, and be sure that the values are correct.

7

CHAPTER 4

Consequences for PAPI++

This summary is based on the results of the survey as well as follow-up interactions with various
application and so�ware technology teams. Here we summarize the main observations.

Impact: In order to reach exascale performance levels, inevitably, one has to be able tomeasure
if and how e�cient the compute power is utilized. Many ECP applications and so�ware
technology projects—speci�cally, 85% of our survey participants—are relying on perfor-
mance counter monitoring (either completely, heavily, or somewhat) to measure progress
toward better performance and resource utilization. 78% of the respondents indicate
reliance on the PAPI library for performance counter analysis. Only 15% of the corre-
spondents indicated no need for performance counter monitoring, but were interested in
newer features, such as so�ware-de�ned events (SDEs). In fact, 67% demonstrated interest
in SDEs for their so�ware projects to report internal measurements.

Target Hardware: The survey results clearly indicate a universal agreement that all types of
architectures should be supported (3.3), including counter support for multi-core CPUs
as well as heterogeneous, accelerated architectures, and also counter support for a variety
of networks (In�niband, Gemini, Aries, In�nity Fabric) is desired. Likewise, memory
tra�c and the data communicated between CPU and GPU was solicited and explicitly
mentioned in the comment section for “feature requests”. There is also a growing interest
in monitoring energy consumption on GPUs. Between 55 and 65% of the respondents
indicated interest in power use over time on AMD GPUs and NVIDIA GPUs, respectively.

Desired APIs: In general, APIs for all common HPC programming languages are needed: C,
C++, Python, Fortran (legacy as well as modern versions). Nonetheless, the main runners
are C++ and C, with 60% indicating a signi�cant need in C++, and 80% in C interfaces.

8

4.1. SOFTWARE ENGINEERINGWITH C++ CHAPTER 4. CONSEQUENCES FOR PAPI++

In summary, the PAPI++ so�ware needs to:

• serve as a fully-functional replacement for PAPI,

• provide a C++ API while maintaining traditional APIs,

• support preset events for non-CPU components (e.g. presets for AMD, Intel, and NVIDIA
GPUs). 88% of the respondents were in favor of it,

• support monitoring of memory tra�c and data communicated between devices,

• provide a way to combine di�erent types of performance counters from di�erent archi-
tectures in the same event set. 79% of the respondents were in favor of it.

4.1 So�ware engineering with C++

Historically speaking, the PAPI framework has been implemented in C and also provides a
Fortran API. The complexity of modern hardware and so�ware systems for HPC, however,
necessitates the use of modern programming languages to ease the development process, avoid
code repetition, and keep the volume of code that’s exposed to changing requirements as
minimal as possible. While there is no question of the robustness of procedural programming
languages such as C and modern Fortran, when developing a new library from the ground up,
modern so�ware engineering demands generic programming, data abstraction and encapsula-
tion, inheritance, to name but a few, all of which can be easily expressed with C++. It is only
natural for the development of PAPI++ to adopted C++ as implementation language to leverage
its support for object-oriented programming.

As for the language speci�cation, for PAPI++ we are targeting C++11 or newer, as it introduces
many new features, such as built-in atomic support, and is completely supported by the GNU,
Intel, and LLVM compilers.

4.2 Team of independent reviewers

An important aspect of PAPI’s sustainability is our interaction with the HPC community. The
PAPI team has a solid reputation for openness, is willing to listen to stakeholder ideas and
concerns, and eager to receive feedback and code contributions. As part of the PAPI++ e�ort, we
have planned and budgeted to appoint an o�cial “red team” of experts who (a) have been using
PAPI, and (b) are willing to give us feedback on our new design decisions early in the design
cycle and long before any code release. The goal of having a red team of independent consultants
and reviewers for a new open-source so�ware project is to make sure we are developing what the
community needs—precisely by involving community experts—and that new functionalities
and design decisions are implemented and coded pro�ciently from the beginning.

9

4.3. STAKEHOLDERS OF NEWPAPI++ CHAPTER 4. CONSEQUENCES FOR PAPI++

4.3 Stakeholders of new PAPI++

The sustained deployment of PAPI over the years con�rms the validityof having onemiddleware
interface (PAPI) that provides a consistent platform, as well as operating system–independent
access to hardware performance counters within CPUs, GPUs, interconnects, and the system as a
whole. This means that third-party tools and applications have only had to handle a single hook
to PAPI in order to access all performance metrics in a system. It has been PAPI’s responsibility
to e�ciently and correctly handle all necessary details for each platform and system component.

With the ground-up development of a new PAPI++ so�ware package, by leveraging modern
C++ and extending the functionality of PAPI’s abstraction and uni�cation layer into the realm
of a more sustainable so�ware design, this project stands to strengthen the ability of the high-
level performance toolkits that utilize PAPI. Although PAPI can be used independently as a
performance monitoring library and tool for application analysis, it has found its greatest
utility as a middleware component for a number of third-party pro�ling, tracing, and sampling
toolkits, such as Caliper, CrayPat, HPCToolkit, Scalasca, Score-P, TAU, Vampir. Ultimately, all
users of PAPI++, regardless of direct use or use through end-user tools, will bene�t from the set
of innovations we will make available through this e�ort.

Without the PAPI++ e�ort, the HPC community would lack a consistent, standard interface
that o�ers the ability to not only monitor performance events for next-generation hardware,
but also to manage power/energy and export so�ware-critical events from HPC libraries—all
in a uniform way. Without PAPI++, so�ware developers are destined to use multiple APIs to
access hardware counters from across the system, which, ultimately, damages productivity.
As a result, performance assessment and improvement for multiple vendor platforms would
become exceedingly di�cult.

10

	Contents
	Introduction
	Background
	Why a new PAPI++ effort?
	Going Beyond Hardware Counters
	Summary

	ECP Applications and Software Technologies Survey
	Results

	Consequences for PAPI++
	Software engineering with C++
	Team of independent reviewers
	Stakeholders of new PAPI++

