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CHAPTER 1

Introduction

So�ware for Linear Algebra Targeting Exascale (SLATE) 1 is being developed as part of the
Exascale Computing Project (ECP) 2, which is a joint project of the U.S. Department of Energy’s
O�ce of Science and National Nuclear Security Administration (NNSA). SLATE will deliver
fundamental dense linear algebra capabilities for current and upcoming distributed-memory
systems, includingGPU-accelerated systems as well asmore traditionalmulti core–only systems.

SLATE provides coverage of existing LAPACK and ScaLAPACK functionality, including parallel
implementations of Basic Linear Algebra Subroutines (BLAS), matrix norms, linear systems
solvers, least squares solvers, and singular value and eigenvalue solvers. In this respect, SLATE
will serve as a replacement for ScaLAPACK, which, a�er two decades of operation, cannot be
adequately retro�tted for modern, GPU-accelerated architectures.

This working note focuses attention on several performance issues that existed in SLATE, and
how these were resolved.

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org
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CHAPTER 2

Infrastructure Improvements

2.1 Asynchronous CPU↔ Accelerator Copies

Layered infrastructure: SLATE’s programming interfaces are composed of several layers.
Driver routines solve an entire problem, such as a linear system Ax = b (routines gesv, posv).
Drivers in turn call computational routines to solve sub-problems, such as computing an LU
factorization (getrf), or performing amatrix-matrixmultiply (gemm). Computational routines in
turn rely on a set of internal routines that generally perform one step of a computational rou-
tine. For instance, in the outer k loop, slate::gemm calls a sequence of slate::internal::gemm,
each of which performs one block outer product. Most internal routines consist of a set of
independent tile operations that can be issued as a batch-gemm or an OpenMP parallel-for
loop (without task dependencies). Internal routines provide device-speci�c implementations
such as OpenMP nested tasks, parallel-for loops, or batch BLAS operations.

Memory spaces: SLATE operates on heterogeneous architectures, so the matrix data may
originate or temporarily reside on any hardware memory space available in the system, such as
host memory or GPU accelerator memory. To support multiple accelerator devices, SLATE
allows for multiple copies of a tile in di�erent device memories. The initial copy of a local tile
given by the user is marked as origin. This can be either in host memory or accelerator memory.
All other copies are marked as workspace – either a temporary copy of a remote tile, or a copy
of a local tile on another device. By default, at the end of a computation SLATE ensures that
the origin copy of a tile is up-to-date, and workspace tiles have been deleted.

2



2.1. ASYNCHRONOUS CPU↔ ACCELERATOR COPIES CHAPTER 2. INFRASTRUCTURE

Data coherency: For o�oad to GPU accelerators, SLATE implements a tile-based memory
consistency model inspired by the MOSI cache coherency protocol. Data coherency is coordi-
nated by the MOSI API, which provides routines to fetch one tile or a set of tiles into a memory
space for:

• Reading (tileGetForReading()), or for

• Writing (tileGetForWriting()), or for

• Reading and holding (tileGetAndHold()).

SLATE allows a tile to co-exist in many memory spaces. A tile instance in a memory space may
be in any of Modi�ed, Invalid, or Shared states. A tile may be orthogonally marked OnHold.
However, a computational routine or internal routine need not be aware in whichmemory space
the origin instance of a tile currently resides, nor in which memory space the most up-to-date
instance currently resides. Instead, the MOSI API will implicitly fetch a tile’s data from the
most up-to-date tile instance upon calling any of the (tileGet***()) routines.

Bottlenecks found and solutions implemented

Synchronization a�er each tile copy→MOSI Async API: A tileGet***() operation fetches
a data tile into the speci�ed memory space if it doesn’t already exist there or its data is outdated,
using the CUDA stream of the destination device. Thus, it naturally synchronizes with that
stream to ensure the tile’s data would be available immediately a�erwards.

However, we found that fetching a set of tiles does not require synchronizations a�er each
tile copy. A single synchronization at the end of looping over the set of tiles su�ces. An
Async MOSI API has been introduced, thus, eliminating excessive synchronizations and allowing
much faster data transfer rates. This improvement is re�ected in the performance of almost all
computational routines currently available in SLATE.

Pipelining data fetch of input matrices: An internal routine uses tileGetForReading() /
tileGetForWriting() to fetch a set of tiles from each input or output matrix into local memory
space. For example, internal::gemm(alpha, A, B, beta, C) sequentially calls:

1 A.tileGetForReading(A_tiles );
2 B.tileGetForReading(B_tiles );
3 C.tileGetForReading(C_tiles );

However, wrapping each tileGet***() call in an OpenMP task allows for parallel data fetching
and a better saturation of the device communication stream. Such pipelining has been applied
to all internal routines in SLATE.

Overlap of communication and computationwith dedicated streams: For a proper overlap
of communication and computation on devices, we �xed many problems in which CUDA
computation kernels were carried on communication streams, as well as cases where data
transfers from/to GPU memory were carried on CUDA computation streams. Dedicated

3



2.2. COMMUNICATION IMPROVEMENTS CHAPTER 2. INFRASTRUCTURE

CUDA streams for computations and others for communications facilitated better overlap and
pipelined work-�ows and improved performance.

Updating tile origin: In computational routines, SLATE fetches tiles to the memory space
where computations are performed. O�en, tiles are fetched as workspace copies into memory
spaces other than their origin. At the end of the computational routines, origin tile instances
need to be updated to the latest copies. SLATE provide functions, within the MOSI API, to
fetch tiles back to their origin. However, updating origin tiles was serialized among devices and
synchronous for the same device. We have taski�ed updating origin tiles per device, and used
the Async MOSI API to improve the throughput of data transfers.

Device workspace management: An origin instance of a tile is created at the �rst insertion
of the tile into its matrix only on its MPI rank based on the matrix distribution. An origin tile
instance may occupy a memory bu�er provided by the user upon matrix creation, which is
non-purgeable by SLATE, otherwise it occupies amemorybu�er created by SLATE uponmatrix
creation, which is purged only at matrix destruction. When a tile is fetched into a di�erent
MPI rank, or fetched into a di�erent memory space within the same MPI rank, it is stored in
a workspace-memory. Workspace memory is allocated on a need basis. However, allocating
device memory with cudaMalloc is expensive in that it is a synchronous operation. For that
reason, SLATE provides a lightweight memorymanagement construct that facilitates allocating
a large enough memory pool that is used later to host individual tiles. Estimating the size of
such a memory pool is a heuristic that can be optimized. It was based only on the maximum
number of tiles that need to be updated on the devices. However, tiles that need to be hosted on
the devices as read-only workspace were not accounted for. For a more consistent management
of device workspace, the MOSI API has been updated to pre-allocate the workspace memory
pool based on the number of tiles that are requested on each device. This update has removed
extensive implicit synchronizations caused by allocating device memory at runtime, thus,
improved the data transfer throughput.

Local data pre-fetch while MPI broadcasting: SLATE communicates tiles that are needed
in other MPI ranks for the next iterations of each algorithm in the form of a broadcast. Such
broadcasts are o�en carried during lookahead tasks, which allows overlapping local compu-
tations with communications needed for the next steps. A broadcast is built by scanning the
sub-matrix that will be updated and broadcasting local tiles that are needed for this update.
To improve the chances of overlapping communication and computation, we extended the
MPI broadcasting mechanism to include broadcasting local tiles into device memory for the
next steps. This extension pre-fetched data into devices’ memories during computations, and
drastically improved SLATE’s overall data-transfer throughput.

2.2 Communication Improvements

In most of the algorithms in SLATE, communication is expressed as “broadcast” operations,
where a list of tiles, labeled A, (o�en representing a row or column of the matrix) is broadcast to

4



2.2. COMMUNICATION IMPROVEMENTS CHAPTER 2. INFRASTRUCTURE
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Figure 2.1: Performance of dgemm showing the effect of improving the SLATE broadcast operation.
Using 72 nodes on Summit, one process per socket, 12× 12 process grid, tile size 1024.

list of tiles, labeled C, that would need to use the A-tiles in the future. Some of the destination
C-tiles may be local whereas others may be on remote distributed-memory nodes.

For each A-tile to be communicated, SLATE examines the list of receiver C-tiles to determine
which non-local nodes will be participating in the broadcast. The data is broadcast using amulti-
dimensional hypercube overlay network to the participating nodes. The nodes in the overlay
network send or receive the A-tile and forward it as speci�ed by the hypercube communication
pattern.

The current improvement changes the hypercube communication forwarding action from a
synchronous send to a sequence of non-blocking sends, followed by a wait-all. This localizes
the code changes to a very controllable region, minimizing the impact at the algorithmic level.

Performance experiments were done using 72 nodes on Summit, ORNL’s pre-exascale plat-
form [1]. These 72 nodes were used by binding a process-per-socket (12× 12 processes) with
three NVIDIA V100 GPUs and one 21-core POWER9 processor per socket.

Using non-blocking sends resulted in signi�cant performance improvement in the
communication-bound regions of the performance curves, as shown in Figures 2.1 for the
dgemm implementation and in Figure 2.2 for the dpotrf factorization.

5



2.2. COMMUNICATION IMPROVEMENTS CHAPTER 2. INFRASTRUCTURE
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Figure 2.2: Performance of potrf showing the effect of improving the SLATE broadcast operation.
Using 72 nodes on Summit, one process per socket, 12× 12 process grid, tile size 320.
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CHAPTER 3

QR, LQ, and GELS Improvements

SLATE uses a version of the communication avoiding QR (CAQR) factorization. In the QR
panel, each node in the panel does a local QR factorization of its tiles, yielding a triangular tile
on each node. Then the nodes collectively perform QR factorizations of pairs of the resulting
triangles, in a binary tree fashion, using LAPACK’s tpqrt routine, resulting in a single triangular
tile for the entire panel. See [2] for more details.

When applying the trailing matrix update, the same structure must be followed: apply House-
holder re�ectors from the local QR factorization using unmqr, then applyHouseholder re�ectors
from QR factorizations of pairs triangles using ttmqr, as illustrated in Figure 3.1. For each pair
of block rows, the node owning the top row sends the row, tile-by-tile, to the node owning the
bottom row; the two rows are updated, tile-by-tile; then the top row is sent back to its owner.
In the original ttmqr code, updating each pair of rows was done in a single loop, as shown in
Algorithm 1.

Algorithm 1Original ttmqr algorithm

1 // Update rows i0, i1, each of k tiles.
2 // Rank src owns row i0, dst owns row i1.
3 for (j = 0, ..., k-1) {
4 if (tile (i0, j) is local) {
5 MPI_Send tile (i0, j) to dst
6 MPI_Recv tile (i0, j) from dst
7 }
8 else if (tile (i1, j) is local) {
9 MPI_Recv tile (i0, j) from src
10 tpmqrt update of tiles (i0, j) and (i1, j)
11 MPI_Send tile (i0, j) back to src
12 }
13 }

7



CHAPTER 3. QR, LQ, AND GELS IMPROVEMENTS

This was a conservative implementation done in a single thread to ensure MPI correctness.
However, it ignores potential parallelism. We refactored this into 3 loops: �rst communicate all
tiles, then update all tiles in parallel, then communicate all tiles back, as shown in Algorithm 2.
This still ensures MPI correctness by issuing MPI calls sequentially, but applies updates in
parallel. A similar update applies to the LQ algorithm. The SVD two-stage reduction to band
algorithm bene�ts from the changes as it calls the QRand LQ updates. Since this change reduces
time spend on the CPU, which makes the GPU idle, it has a large impact on the overall QR, LQ
and GELS performance. Figures Figures 3.2 to 3.4 show the performance gain of QR, LQ, and
GELS, respectively, due to these improvements in addition to the infrastructure improvements
described in Chapter 2.

Algorithm 2 Updated ttmqr algorithm

1 // Update rows i0, i1, each of k tiles.
2 // Rank src owns row i0, dst owns row i1.
3
4 // 1. Send tiles.
5 for (j = 0, ..., k-1) {
6 if (tile (i0, j) is local) {
7 MPI_Send tile (i0, j) to dst
8 }
9 else if (tile (i1, j) is local) {
10 MPI_Recv tile (i0, j) from src
11 }
12 }
13
14 // 2. Update tiles , in parallel.
15 for (j = 0, ..., k) {
16 if (tile (i1, j) is local) {
17 #pragma omp task
18 {
19 tpmqrt update of tiles (i0, j) and (i1, j)
20 }
21 }
22 }
23 #pragma omp task wait
24
25 // 3. Send updated tiles back.
26 for (j = 0, ..., k) {
27 if (tile (i0, j) is local) {
28 MPI_Recv tile (i0, j) from dst
29 }
30 else if (tile (i1, j) is local) {
31 MPI_Send tile (i0, j) back to src
32 }
33 }

At the same time, the code was also refactored to merge the side == Left and side == Right
codes, which di�er only in swapping i and j indices.

8



CHAPTER 3. QR, LQ, AND GELS IMPROVEMENTS
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CHAPTER 4

Norm Improvements

This chapter describes the follow-up performance engineering techniques to enhance SLATE’s
multi-threaded performance for the one-norm and in�nity-norm. The one-norm and in�nity-
norm have slightly higher complexity than the other types of norms due to the need to accu-
mulate partial sums both along rows and columns.

Revisiting the partial sums accumulations at the computational routines level, a huge perfor-
mance improvement has been achieved by avoiding the zero tiles corresponding to partial
sums that do not reside on the node. Node locality is checked through the A.tileIsLocal(i, j)
call. Another performance boost accomplished on the tile level by using a direct pointer to
access the row elements of a tile (A(i, j)). Direct pointer access is accomplished by de�ning
scalar_t*Aj = &A.at(0, j), then using Aj[i] to access its row elements.

Figure 4.1 highlights the performance impact of various optimizations on the in�nity norm
using various number of nodes. It achieves gains up to [14.3x, 44.3x, 120x, 242x] using [2, 4,
8, 16] nodes, respectively. Also, Figure 4.2 reports SLATE’s in�nity norm against ScaLAPACK
in�nity norm. The SLATE’s in�nity norm achieves gains up to [15%, 29%, 31%, 20%] using [2, 4, 8,
16] nodes, respectively.
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CHAPTER 4. NORM IMPROVEMENTS
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CHAPTER 5

PBLAS Improvements

5.1 GEMM

For large C matrices, SLATE implements the general matrix multiplication (slate::gemm) as a
sequence of block outer product gemm operations, the classical SUMMA algorithm. Each outer
product gemm is implemented as a batch gemm operation on devices (internal::gemm). SLATE
also uses its lookahead mechanism to overlap data transfer of (local and remote) tiles needed in
the next iteration internal::gemm with the current iteration computations. To orchestrate this
overlap, SLATE uses OpenMP tasks with dependencies.

On the other hand, issuing independent tasks that launch CUDAkernels on devices is an e�ective
way to saturate the devices with enough computational load for better performance. However,
launching multiple CUDA kernels and data transfer requests to the same driver is bottlenecked
by the CUDA driver. Although executing these kernels on di�erent CUDA streams gives way for
possible overlap of computation and communication, the stage of launching these kernels is
serialized at the CUDA driver calls. As such, the order by which these kernels are launched is
critical to ensuring the overlap happens. Since there is no guarantee on the order by which the
OpenMP tasks launching the CUDA kernels get executed, o�en the launching of the compute
intensive CUDA kernels inside the internal::gemm get delayed by the launching of lookahead
data transfers.

To overcome this scheduling hazard, we implement a two stage internal::gemm: an
internal::gemmPrep that prepares the outer product gemm by fetching the tiles’ data and
collecting the corresponding pointer arrays, and another internal::gemmExec that executes the
outer product gemm. OpenMP dependencies are used to guarantee correct execution order.
Splitting the internal gemm into a fetch-task and an execute-task allowed a better pipelined

13
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Figure 5.1: Performance of dgemm showing the effect of improvements for GPU execution. Using 18
nodes on Summit, one process per socket: 6× 6 process grid.

execution of data transfer and kernel computations, and drastically improved the performance
of the slate::gemm computational routine.

In addition, we enhance the performance of slate::gemm by early fetching the output matrix in
parallel withMPI broadcasting of the �rst outer-product gemm. Figure 5.1 shows the cumulative
overall performance gain of slate::gemm brought by the general infrastructure improvements
as well as the split internal::gemm improvement.

5.2 HERK and SYRK

Similar to slate::gemm, the slate::herk computational routine is implemented as a sequence
of outer-product internal::herk calls. An internal::herk routine is implemented as a batched-
gemm on devices for the o�-diagonal tiles, and a set of independent, parallel herk operations
on the diagonal tiles executed on the host.

However, on the Summit supercomputer, there is a load imbalance between the host and the
devices during the slate::herk computation, as the diagonal tiles herk operation on the host
takes more time than the batch gemm for the o�-diagonal tiles executed on the powerful
NVIDIA V100 devices. To avoid the delays caused by such load-imbalance, we execute the
diagonal tiles herk operations on devices using the NVIDIA cuBLAS library.

Figure 5.2 shows the performance improvement of slate::herk brought by the general infras-
tructure improvements as well as the device herk improvement.
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Figure 5.2: Performance of dherk showing the effect of improvements for GPU execution. Using 18
nodes on Summit, one process per socket: 6× 6 process grid.

slate::syrk is the same as slate::herk, but for a symmetric instead of Hermitian matrix, and
has the same considerations. In real arithmetic, they are identical.

5.3 HER2K and SYR2K

slate::her2k is structured very similar to the slate::herk computational routine. We enhanced
the performance of slate::her2k by executing the diagonal tiles her2k on devices. Figure 5.3
shows the performance improvement of slate::her2k brought by the general infrastructure
improvements as well as the device her2k improvement.

slate::syr2k is the same as slate::her2k, but for a symmetric instead of Hermitian matrix,
and has the same considerations. In real arithmetic, they are identical.
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Figure 5.3: Performance of dher2k showing the effect of improvements for GPU execution. Using
18 nodes on Summit, one process per socket: 6× 6 process grid.
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CHAPTER 6

POTRF Improvements

SLATE implements the tile Cholesky decomposition algorithm. The original Device imple-
mentation executes the panel update tasks and the lookahead tasks on the host CPUs, and the
GPUs carry out the trailing matrix update tasks. This division of tasks assumes that the target
architectures contain nodes with the smaller CPU tasks reasonably balanced against the GPUs
trailing matrix tasks. However, recent GPU architecture performance o�en surpasses the CPU
counterpart to the degree that this division of tasks is no longer sustainable.

We optimized SLATE’s Cholesky kernel by relying more on the performance obtained from
the GPU devices. We �rst moved the panel update trsm and lookahead’s gemm onto the GPU.
In order to do this we implemented a SLATE interface to the batched cublasXtrsmBatched()
routine. The diagonal herk is also moved to the GPU to avoid data transmission back-and-forth
between the host-and-device throughout the kernel execution. Since NVIDIA does not provide
a batch implementation of herk, we thereby call the basic CUDA cublasXherk() instead.

Executing the internal routines of SLATE’s Cholesky factorization on the device alongside
the gemm of the trailing matrix update causes two critical issues: data hazard and memory
consistency. The data hazard happens when multiple routines operate on the same matrix
object at the same time. Since SLATE allocates the GPU workspaces when the matrix object is
allocated, any kernels that access the matrix object at the same time update these workspaces,
which causes the data hazard in the form of Read A�er Write (RAW) and Write A�er Read
(WAR) on these workspaces. We overcome this issue by implementing a mechanism to allocate
multiple GPU workspaces in SLATE as needed.

The second issue is memory consistency, which arises because of a race condition between the
gemm kernel call in the lookahead tasks and trailing matrix update tasks. Since the lookahead
tasks are expected to �nish before the trailing matrix update, the former one releases the
matrix tiles before the latter one �nishes. To overcome this issue, the broadcast call inside the

17
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Figure 6.1: Performance of dpotrf showing the effect of improvements for hybrid CPU+GPU
execution. Using 18 nodes on Summit, one process per socket: 6× 6 process grid, and tile size: 640.

panel-update tasks copy these tiles into the target GPUs and hold them there. A new task is
created a�er to release these tiles and free up the GPU memory.

Figures 6.1 and 6.2 show the performance improvement gains obtained by executingmost of the
Cholesky decomposition kernels on the GPU in addition to the infrastructure improvements
described in Chapter 2. Note: In the optimized tests, we change the local GPU data distribution
from “1D block column cyclic” to “1D block row cyclic” distribution tomaximize the data locality
across the devices and minimize data synchronization. Since most of the internal kernels
of the Cholesky decomposition are now executed on GPU devices, we observe a substantial
performance boost when “1D block row cyclic” distribution is used across the local GPUs, instead
of “1D block column cyclic”.
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Figure 6.2: Performance of dpotrf showing the effect of improvements for hybrid CPU+GPU
execution. Using 72 nodes on Summit, one process per socket: 12× 12 process grid, and tile size:
640 (before) and 1024 (new).
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