
13

Implementing Singular Value
and Symmetric/Hermitian Eigenvalue
Solvers
Mark Gates
Kadir Akbudak
Mohammed Al Farhan
Ali Charara
Jakub Kurzak
Dalal Sukkari
Asim YarKhan
Jack Dongarra

Innovative Computing Laboratory

June 26, 2023

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes

2019-09 first publication
2020-04 added generalized Hermitian definite eigenvalues (Section 2.3) and eigenvectors

(Section 2.6)
2021-12 added divide and conquer (Chapter 3) and optimization (Chapter 4)
2022-11 added details of Hermitian to Hermitian band (Section 2.5)
2023-06 added details of divide and conquer

@techreport{gates2019implementing,

author={Gates, Mark and Akbudak, Kadir and Al Farhan, Mohammed

and Charara, Ali and Kurzak, Jakub and Sukkari, Dalal

and YarKhan, Asim and Dongarra, Jack},

title={{SLATE} Working Note 13:

Implementing Singular Value and Symmetric/Hermitian Eigenvalue Solvers},

institution={Innovative Computing Laboratory, University of Tennessee},

year={2023},

month={June},

number={ICL-UT-19-07},

note={first published 2019-09, revision 2023-06}

}

i

Contents

Contents ii

List of Figures iii

1 Introduction 1
1.1 Significance of SLATE . 1
1.2 Design of SLATE . 3

2 Implementation 6
2.1 Singular Value Decomposition . 6
2.2 Hermitian Eigenvalue Problem . 7
2.3 Generalized Hermitian Definite Eigenvalue Problem 7
2.4 Three Stage Algorithms . 8
2.5 Hermitian to Hermitian band reduction (he2hb) . 14

2.5.1 Single node . 14
2.5.2 Multi-node . 15

2.6 Eigenvector Computation . 21
2.6.1 Eigenvectors of tridiagonal matrix . 21
2.6.2 Second stage back-transformation . 22
2.6.3 First stage back-transformation . 23

3 Divide and conquer 26
3.1 Cuppen’s method . 26

3.1.1 Historical note on choice of θ . 27
3.1.2 Secular equation . 28
3.1.3 Deflation . 29
3.1.4 Back-transformation . 30
3.1.5 Summary . 33
3.1.6 Examples . 34
3.1.7 Example 0: no deflation . 36

ii

3.1.8 Example 1: type 1 deflation — serial . 37
3.1.9 Example 2: type 2 deflation — serial . 39
3.1.10 Example 3: type 1 and 2 deflation — serial 41
3.1.11 Eigenvectors via Löwner Theorem . 43
3.1.12 Cost . 45

3.2 Routines . 46
3.2.1 stedc . 46
3.2.2 stedc solve . 47
3.2.3 stedc merge . 48
3.2.4 stedc z vector . 49
3.2.5 stedc deflate . 50
3.2.6 stedc secular . 52
3.2.7 stedc sort . 53

4 Optimization 55
4.1 Hermitian to Hermitian band reduction (he2hb) . 55
4.2 Hermitian to Hermitian band reduction (he2hb) . 55
4.3 Back-transformation (unmtr hb2st) . 56

5 Performance 59
5.1 Environment . 59

5.1.1 Hardware . 59
5.1.2 Software . 59

5.2 Results . 60

Bibliography 63

iii

List of Figures

1.1 Dependencies of ECP applications on dense linear algebra software. 2
1.2 SLATE in the ECP software stack. 3
1.3 Code size comparison - ScaLAPACK vs SLATE . 5

2.1 Three stage Hermitian eigenvalue and SVD algorithms. 11
2.2 One panel of the first stage reduction to band form. 11
2.3 Bulge-chasing algorithm. 12
2.4 Hermitian bulge-chasing algorithm. 12
2.5 2D block-cyclic distribution. 15
2.6 Hermitian matrix multiply Wa = AVa (hemm). Tiles that have 2 colors (blue/red or

green/red) are computed as partial sums on 2 nodes, then reduced. 16
2.7 Hermitian rank 2k (her2k) update, Ak −= VaW

H
a +WaV

H
a 17

2.8 Hermitian matrix multiply Wb = AVb (hemm). 18
2.9 Hermitian rank 2k (her2k) update, Ak −= VbW

H
b +WbV

H
b 18

2.10 Hermitian matrix multiply Wc = AVc (hemm). 19
2.11 Hermitian rank 2k (her2k) update, Ak −= VcW

H
c +WcV

H
c 19

2.12 Nodes and tiles that are updated by each Qr from panel. 20
2.13 Redistribute 1D block row cyclic distributed matrix using 4× 1 grid into a 2D block

cyclic distribution using 2× 2 grid. 22
2.14 Second stage back transformation, with V block size jb = 3 vectors. Block reflector 3

is highlighted to show overlap. 23
2.15 Dependencies allow up to

⌈
mt
2

⌉
parallel tasks. 24

4.1 Performance of he2hb Using 1 and 2 nodes on Summit, 1× 1 and 2× 2 process grids. 56
4.2 Overlap the panel factorization with subsequent data movements. 57
4.3 The performance impact by overlapping the panel factorization with subsequent data

movements. 57
4.4 Performance results of Hermitian to Hermitian band reduction, using 1 node , 1× 1

process grid. nb = 128,320, ib= 16, 48 for CPU, GPU tests, panel-threads=10 . . . 57

iv

4.5 Performance of unmtr hb2st on a host with two 20-core Intel Broadwell Xeon E5-2698
v4 CPUs and one NVIDIA V100 activated. N=16384. As seen in the figure, the device
implementation provides up to 6x speedup. 58

5.1 Summit node architecture. 60
5.2 SVD performance comparison. 61
5.3 Generalized to standard eigenvalue performance comparison. 62
5.4 Profile of eigenvalue solver implementations showing each phase for N=12288. One

node of Summit is used. 62

v

CHAPTER 1

Introduction

1.1 Significance of SLATE

Software for Linear Algebra Targeting Exascale (SLATE) 1 is being developed as part of the
Exascale Computing Project (ECP) 2, which is a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration (NNSA). SLATE will deliver
fundamental dense linear algebra capabilities for current and upcoming distributed-memory
systems, including GPU-accelerated systems as well as more traditional multi core–only systems.

SLATE will provide coverage of existing LAPACK and ScaLAPACK functionality, including
parallel implementations of Basic Linear Algebra Subroutines (BLAS), linear systems solvers,
least squares solvers, and singular value and eigenvalue solvers. In this respect, SLATE will serve
as a replacement for LAPACK and ScaLAPACK, which, after two decades of operation, cannot
be adequately retrofitted for modern, GPU-accelerated architectures.

Figure 1.1 shows how heavily ECP applications depend on dense linear algebra software. A direct
dependency means that the application’s source code contains calls to the library’s routines.
An indirect dependency means that the applications needs to be linked with the library due to
another component depending on it. Out of 60 ECP applications, 38 depend on BLAS – either
directly on indirectly – 40 depend on LAPACK, and 14 depend on ScaLAPACK. In other words,
the use of dense linear algebra software is ubiquitous among the ECP applications.

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1

http://icl.utk.edu/slate/
https://www.exascaleproject.org

1.1. SIGNIFICANCE OF SLATE CHAPTER 1. INTRODUCTION

Application BLAS LAPACK SCALAPACK
AMPE

AMReX
CANDLE

CEED-MAGMA
CEED-MFEM

CEED-Nek5000
CEED-OCCA
CEED-PUMI

Chroma
Combustion-PELE

CPS
Diablo

E3SM-MMF-ACME-MMF
EQSIM-SW4

ExaBiome-GOTTCHA
ExaBiome-HipMCL

ExaBiome-MetaHipMer
ExaCA

ExaConstit
ExaFEL-LUNUS

ExaFEL-M-TIP
ExaFEL-psana

ExaGraph-AWPM
ExaGraph-HipMCL

ExaGraph-Kokkoskernels
ExaGraph-Zoltan2

ExaMPM
ExaSGD-GOSS

ExaSGD-GridPACK
ExaSGD-PIPS

ExaSGD-StructJuMP
ExaSky-HACC/CosmoTools

ExaSky-Nyx
ExaSMD-Nek5000
ExaSMR-OpenMC

ExaSMR-Shift
ExaStar-Castro
ExaStar-FLASH

ExaWind-Nalu
GAMESS
LAMMPS

LATTE
LIBCCHEM

MEUMAPPS-SL
MEUMAPPS-SS

MFIX-Exa
MILS

NWChemEx
ParSplice

PICSAR
QMCPACK

Subsurface-Chombo-Crunch
Subsurface-GEOS

Truchas-PBF
Tusas

Urban-WRF
WarpX

WCMAPP-XGC
WDMApp-GENE

xaFEL-CCTBX

Figure 1.1: Dependencies of ECP applications on dense linear algebra software.

2

1.2. DESIGN OF SLATE CHAPTER 1. INTRODUCTION

1.2 Design of SLATE

SLATE is built on top of standards, such as MPI and OpenMP, and de facto standard industry
solutions such as NVIDIA CUDA and AMD HIP. SLATE also relies on high performance
implementations of numerical kernels from vendor libraries, such as Intel oneMKL, IBM ESSL,
NVIDIA cuBLAS, and AMD rocBLAS. SLATE interacts with these libraries through a layer of
C++ APIs. Figure 1.2 shows SLATE’s position in the ECP software stack.

Figure 1.2: SLATE in the ECP software stack.

The following paragraphs outline the foundations of SLATE’s design.

Object-Oriented Design: The design of SLATE revolves around the Tile class and the Matrix
class hierarchy. The Tile class is intended as a simple class for maintaining the properties
of individual tiles and implementing core serial tile operations, such as tile BLAS, while the
Matrix class hierarchy maintains the state of distributed matrices throughout the execution
of parallel matrix algorithms in a distributed-memory environment. Currently, the classes
are structured as follows:

BaseMatrix is an abstract base class for all matrices.

Matrix represents a general m× n matrix.

BaseTrapezoidMatrix is an abstract base class for all matrices stored as upper-
trapezoid or lower-trapezoid. For upper matrices, tiles A(i, j) are stored for i ≤ j.
For lower matrices, tiles A(i, j) are stored for i ≥ j.

TrapezoidMatrix represents an upper-trapezoid or a lower-trapezoid, m × n
matrix. The opposite triangle is implicitly zero.

TriangularMatrix represents an upper-triangular or a lower-triangular,
n× n matrix.

SymmetricMatrix represents a symmetric, n×n matrix, with only the upper or
lower triangle stored. The opposite triangle is implicitly known by symmetry
(Aj,i = Ai,j).

HermitianMatrix represents a Hermitian, n×n matrix, with only the upper or
lower triangle stored. The opposite triangle is implicitly known by symmetry
(Aj,i = Āi,j).

3

1.2. DESIGN OF SLATE CHAPTER 1. INTRODUCTION

Tiled Matrix Layout: The new matrix storage introduced in SLATE is one of its most impact-
ful features. In this respect, SLATE represents a radical departure from other distributed
linear algebra software such as ScaLAPACK or Elemental, where the local matrix occupies
a contiguous memory region on each process. In contrast, tiles are first class objects
in SLATE that can be individually allocated and passed to low-level tile routines. In
SLATE, the matrix consists of a collection of individual tiles with no correlation between
their positions in the matrix and their memory locations. At the same time, SLATE also
supports tiles pointing to data in a traditional ScaLAPACK matrix layout, thereby easing
an application’s transition from ScaLAPACK to SLATE.

Handling of side, uplo, trans: The classical BLAS takes parameters such as side, uplo,
trans (named “op” in SLATE), and diag to specify operation variants. Traditionally, this
has meant that implementations have numerous cases. The reference BLAS has nine cases
in zgemm and eight cases in ztrmm (times several sub-cases). ScaLAPACK and PLASMA
likewise have eight cases in ztrmm. In contrast, by storing both uplo and op within the
matrix object itself, and supporting inexpensive shallow copy transposition, SLATE can
implement just one or two cases and map all the other cases to that implementation
by appropriate transpositions. For instance, SLATE only implements one case for gemm
(NoTrans, NoTrans) and handles all other cases by swapping indices of tiles and setting
trans appropriately for the underlying tile operations.

Templating of Precisions: SLATE handles multiple precisions by C++ templating, so there
is only one precision-independent version of the code, which is then instantiated for the
desired precisions. Operations are defined so that they can be applied consistently across
all precisions. SLATE’s BLAS++ component provides overloaded, precision-independent
wrappers for all underlying, node-level BLAS, and SLATE’s PBLAS are built on top of
these. Currently, the SLATE library has explicit instantiations of the four main data types:
float, double, std::complex<float>, and std::complex<double>. The SLATE code
should be able to accommodate other data types, such as half, double-double, or quad
precision, given appropriate underlying node-level BLAS.

Templating of Execution Targets: Parallelism is expressed in SLATE’s computational rou-
tines. Each computational routine solves a sub-problem, such as computing an LU factor-
ization (getrf) or solving a linear system given an LU factorization (getrs). In SLATE,
these routines are templated for different targets (CPU or GPU), with the code typically
independent of the target. The user can choose among various target implementations:

Target::HostTask means multithreaded execution by a set of OpenMP tasks.

Target::HostNest means multithreaded execution by a nested “parallel for” loop.

Target::HostBatch means multithreaded execution by calling a batched BLAS routine.

Target::Devices means (multi-)GPU execution using calls to batched BLAS.

MPI Communication: Communication in SLATE relies on explicit dataflow information.
When a tile is needed for computation, it is broadcast to all the processes where it is
required. Rather than explicitly listing MPI ranks, the broadcast is expressed in terms of
the destination (sub)matrix to be updated. This way, SLATE’s messaging layer is oblivious
to the mapping of tiles to processes. Also, multiple broadcasts are aggregated to allow for
pipelining of MPI messages with transfers between the host and the devices. Since the set

4

1.2. DESIGN OF SLATE CHAPTER 1. INTRODUCTION

of processes involved in a broadcast is determined dynamically, the use of MPI collectives
is not ideal, as it would require setting up a new subcommunicator for each broadcast.
Instead, SLATE uses point-to-point MPI communication following a hypercube pattern to
broadcast the data.

Node-Level Coherency: For offload to GPU accelerators, SLATE implements a memory
consistency model, inspired by the MOSI cache coherency protocol [1, 2], on a tile-by-tile
basis. For read-only access, tiles are mirrored in the memories of, possibly multiple, GPU
devices and deleted when no longer needed. For write access, tiles are migrated to the
GPU memory and returned to the CPU memory afterwards if needed. A tile’s instance
can be in one of three states: Modified, Shared, or Invalid. Additional flag OnHold can be
set along any state, as follows:

Modified (M) indicates that the tile’s data is modified. Other instances should be Invalid.
The instance cannot be purged.

Shared (S) indicates that the tile’s data is up-to-date. Other instances may be Shared or
Invalid. The instance may be purged unless it is on hold.

Invalid (I) indicates that the tile’s data is obsolete. Other instances may be Modified,
Shared, or Invalid. The instance may be purged unless it is on hold.

OnHold (O) is a flag orthogonal to the other three states that indicates a hold is set on
the tile instance, and the instance cannot be purged until the hold is released.

Dynamic Scheduling: Dataflow scheduling (omp task depend) is used to execute a task graph
with nodes corresponding to large blocks of the matrix. Dependencies are tracked using
dummy vectors, where each element represents a block of the matrix, rather than the
matrix data itself. For multi-core execution, each large block is dispatched to multiple
cores—using either nested tasking (omp task) or batched BLAS. For GPU execution, calls
to batched BLAS are used specifically to deliver fast processing of matrix blocks that are
represented as large collections of tiles.

One of the main benefits of SLATE’s architecture is dramatic reduction in the size of the
source code, compared to ScaLAPACK (Figure 1.3). As of August 2019, with more than two
thirds of ScaLAPACK’s functionality covered, SLATE’s source code is 8× to 9× smaller than
ScaLAPACK’s.

0

250

500

750

1000

1250

1500

1750

2000

0

100000

200000

300000

400000

500000

FILES LINES OF CODE
EXCLUDING COMMENTS

1,839

204

441,894

52,923

Figure 1.3: Code size comparison - ScaLAPACK vs SLATE (numbers from August 2019).

5

CHAPTER 2

Implementation

2.1 Singular Value Decomposition

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex
matrix A of the form UΣV H , where U is an m ×m real or complex unitary matrix, Σ is an
m× n rectangular diagonal matrix with non-negative real numbers on the diagonal, and V is
n× n real or complex unitary matrix. The diagonal entries σi of Σ are known as the singular
values of A. The columns of U and the columns of V are known as the left-singular vectors
and the right-singular vectors of A, respectively. Typically the values σi are ordered such that
σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0. Typically, only the first min(m,n) columns of U and rows of V
are computed, yielding the “reduced” or “economy-size” SVD, since the remaining columns of U
and rows of V are multiplied by the zero part of Σ and do not contribute to A.

The SVD is the generalization of the eigendecomposition of a positive semidefinite normal matrix
to any m × n matrix via an extension of the polar decomposition. The SVD is related to
the eigendecomposition in the following way. The singular values are the square roots of the
eigenvalues of ATA, the columns of V are the corresponding eigenvectors, and the columns of U
are the eigenvectors of AAT .

The discovery of the SVD is attributed to four famous mathematicians, who seem to have come
across it independently: Eugenio Beltrami (in 1873), Camille Jordan (in 1874), James Joseph
Sylvester (in 1889), Léon César Autonneand (in 1915). The first proof of the singular value
decomposition for rectangular and complex matrices seems to be by Carl Eckart and Gale J.
Young in 1936 [3].

First practical methods for computing the SVD are attributed to Kogbetliantz and Hestenes [4]
and resemble closely the Jacobi eigenvalue algorithm, which uses Jacobi (Givens) plane rotations.

6

2.2. HERMITIAN EIGENVALUE PROBLEM CHAPTER 2. IMPLEMENTATION

These were replaced by the method of Golub and Kahan [5], which uses Householder reflections
to reduce to bidiagonal, then plane rotations to continue the reduction to diagonal. The most
popular algorithm used today is the variant of the Golub/Kahan algorithm published by Golub
and Reinsch [6].

2.2 Hermitian Eigenvalue Problem

In linear algebra, an eigendecomposition or spectral decomposition is the factorization of a matrix
into a canonical form, where the matrix is represented in terms of its eigenvalues and eigenvectors.
An eigenvector or characteristic vector of a linear transformation is a nonzero vector that changes
by a scalar factor when that linear transformation is applied to it. That is, a (non-zero) vector x
of dimension n is an eigenvector of a square n × n matrix A if it satisfies the linear equation
Ax = λx. In other words, the eigenvectors are the vectors that the linear transformation A
merely elongates or shrinks, and the amount that they elongate/shrink by is the eigenvalue.

A square n× n matrix A with n linearly independent eigenvectors qi (where i = 1, ..., n) can be
factored as A = XΛX−1 where X is the square n×n matrix whose ith column is the eigenvector
xi of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues,
Λii = λi. Only diagonalizable matrices can be factorized in this way.

Any Hermitian matrix can be diagonalized by a unitary matrix, and the resulting diagonal matrix
has only real entries. This implies that all eigenvalues of a Hermitian matrix A with dimension
n are real, and that A has n linearly independent eigenvectors. Moreover, a Hermitian matrix
has orthogonal eigenvectors for distinct eigenvalues. Given that conjugate transpose of a unitary
matrix is also its inverse, the Hermitian eigenvalue problem boils down to A = XΛXH . This
means A = XΛXT in the case of real symmetric matrices.

Historically, eigenvalues arose in the study of quadratic forms and differential equations. The
initial discoveries are attributed to Euler, Lagrange, and Cauchy. The list of mathematicians
who contributed to the field includes such famous names as Fourier, Sturm, Hermite, Brioschi,
Clebsch, Weierstrass, Liouville, Schwarz, and Poincaré. Generally, Hilbert is credited with using
the German word eigen, which means “own”, to denote eigenvalues and eigenvectors, though he
may have been following a related usage by Helmholtz.

The first numerical algorithm for computing eigenvalues and eigenvectors appeared in 1929,
when Von Mises published the power method. One of the most popular methods today, the QR
algorithm, was proposed independently by Francis [7] and Kublanovskaya [8] in 1961.

2.3 Generalized Hermitian Definite Eigenvalue Problem

The generalized Hermitian definite eigenvalue problem has various types:

• Type 1: Az = λBz,

• Type 2: ABz = λz,

• Type 3: BAz = λz,

7

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

where A is Hermitian and B is Hermitian positive-definite.

To solve it, we first reduce it to the standard eigenvalue form, Âx = λx. The reductions for
types (2) and (3) are identical; they differ in the back-transformation. First, form the Cholesky
factorization of B as either B = LLH with lower triangular L, or B = UHU with upper triangular
U . Then form Â, which overwrites A, as:

• Type 1: compute Â = L−1AL−H or Â = U−HAU−1, as shown in Algorithm 1;

• Type 2 or 3: compute Â = LHAL or Â = UAUH , as shown in Algorithm 2.

Only the lower or upper triangles of A, Â, and B are stored and computed on, the opposite
triangle being known from symmetry. The hegst routine (Hermitian generalized to standard)
takes A and the Cholesky factor L or U of B as input; the lower or upper triangle of Â overwrites
the lower or upper triangle of A on output.

After solving the standard eigenvalue problem, Âx = λx, an eigenvector x is back-transformed
to be an eigenvector z of the generalized eigenvalue problem as follows:

• Type 1 or 2: z = L−Hx or z = U−1x using trsm;

• Type 3: z = Lx or z = UHx using trmm.

2.4 Three Stage Algorithms

We solve both the SVD and the Hermitian eigenvalue problem by a three stage algorithm, shown
in Figure 2.1:

(1) First stage reduction from full to triangular band (SVD) or Hermitian band (eigenvalue)
form, which uses Level 3 BLAS.

(2) Second stage reduction band to real bidiagonal (SVD) or real symmetric tridiagonal
(eigenvalue) form. This uses a bulge chasing algorithm.

(3) Third stage reduction to diagonal form, revealing the singular values or eigenvalues. Cur-
rently we use QR iteration, but could also use divide and conquer, MRRR, bisection, or
other solver.

This is in contrast to the traditional algorithm used in LAPACK and ScaLAPACK that goes
directly from full to bidiagonal or symmetric tridiagonal, which uses Level 2 BLAS and is
memory-bandwidth limited. If m ≫ n (or m ≪ n), the SVD has an optional initial reduction
from tall (or wide) to square, using a QR (or LQ) factorization.

(In the literature, this three stage algorithm is often called a two stage algorithm, meaning the
reduction from dense to tri/bi-diagonal is two stages. The reduction to diagonal is then a separate
phase of the algorithm.)

For the SVD, the first stage proceeds by computing a QR factorization of a block column to
annihilate entries below the diagonal, and updating the trailing matrix, as shown in Figure 2.2.

8

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

Algorithm 1 Reduction to standard form (type 1) pseudocode.

1: function hegst(type, A, B)
2: for k = 1, . . . , nt // nt = number of block rows in A.
3: // A(k, k) = B(k, k)−1 ∗A(k, k) ∗B(k, k)−H .
4: hegst(type, A(k, k), B(k, k))
5: // A(k + 1 : nt, k) = A(k + 1 : nt, k) ∗B(k, k)H .
6: for m = k + 1, . . . , nt
7: trsm(B(k, k), A(m, k))
8: end
9: // A(k + 1 : nt, k) = [B(k + 1 : nt, k) ∗A(k, k)] +A(k + 1 : nt, k).

10: for m = k + 1, . . . , nt
11: hemm(A(k, k), B(m, k), A(m, k))
12: end
13: // A(k+1 : nt, k+1 : nt) = [A(k+1 : nt, k)∗B(k+1 : nt, k)]+A(k+1 : nt, k+1 : nt).
14: for m = k + 1, . . . , nt
15: for n = k + 1, . . . , nt
16: her2k(A(m, k), B(m, k), A(m,n))
17: end
18: end
19: // A(k + 1 : nt, k) = [B(k + 1 : nt, k) ∗A(k, k)] +A(k + 1 : nt, k).
20: for m = k + 1, . . . , nt
21: hemm(A(k, k), B(m, k), A(m, k))
22: end
23: // A(k + 1 : nt, k) = B(k + 1 : nt, k + 1 : nt) ∗A(k + 1 : nt, k).
24: for m = k + 1, . . . , nt
25: for n = k + 1, . . . , nt
26: trsm(B(m,n), A(m, k))
27: end
28: end
29: end
30: return A
31: end function

9

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

Algorithm 2 Reduction to standard form (type 2 or 3) pseudocode.

1: function hegst(type, A, B)
2: for k = 1, . . . , nt // nt = number of block rows in A.
3: // A(k, 1 : k) = [A(k, 1 : k) ∗B(1 : k, 1 : k)].
4: for m = 1, . . . , k
5: for n = 1, . . . , k
6: trmm(B(m,n), A(k,m))
7: end
8: end
9: // A(k, 1 : k) = [A(k, k) ∗B(k, 1 : k)] +A(k, 1 : k).

10: for m = 1, . . . , k
11: hemm(A(k, k), B(k,m), A(k,m))
12: end
13: // A(1 : k, 1 : k) = [A(k, 1 : k)H ∗B(k, (1 : k)H] +A(1 : k, 1 : k).
14: for m = 1, . . . , k
15: for n = 1, . . . , k
16: her2k(A(k,m), B(k,m), A(m,n))
17: end
18: end
19: // A(k, 1 : k) = [A(k, k) ∗B(k, 1 : k)] +A(k, 1 : k).
20: for m = 1, . . . , k
21: hemm(A(k, k), B(k,m), A(k,m))
22: end
23: // A(k, 1 : k) = [B(k, k)H ∗A(k, 1 : k)].
24: for m = 1, . . . , k
25: trmm(B(k, k), A(k,m))
26: end
27: // A(k, k) = B(k, k)H ∗A(k, k) ∗B(k, k).
28: hegst(type, A(k, k), B(k, k))
29: end
30: return A
31: end function

10

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

A Λ

1. Hermitian
to band
(he2hb)

2. band to
tridiagonal

(hb2st)

3. tridiagonal
eigenvalue solver

(sterf, etc.)

traditional (hetrd)

Â Σ

1. general
to band
(ge2tb)

2. band to
bidiagonal

(tb2bd)

3. bidiagonal
SVD solver
(bdsqr, etc.)

A

0. tall to
square
(geqrf)

traditional (gebrd)

Figure 2.1: Three stage Hermitian eigenvalue and SVD algorithms.
Three stage Hermitian eigenvalue (top) and SVD (bottom) algorithms.

trailing
matrix

} nb

Q
R

 p
an

el

trailing
matrix

LQ panel

Figure 2.2: One panel of the first stage reduction to band form.

11

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

It then computes an LQ factorization of a block row to annihilate entries right of the upper
bandwidth, and updates the trailing matrix. It repeats factoring block columns and block rows,
until the entire matrix is brought to band form. The width of the block columns and rows is the
resulting matrix bandwidth, nb.

T1,5

task T1,1

(a) initial band matrix

task T1,1

T1,5

T1,3

T1,4

kernel 3

kernel 2

kernel 1

T1,2

(b) tasks in sweep 1

T1,5

task T1,1

sweep 1

sweep 2

(c) overlap of sweeps

Figure 2.3: Bulge-chasing algorithm. “o” indicates eliminated elements; “+” indicates fill. Arrows
show application of Householder reflector on left (→), which update a block row, and on right (↓),
which update a block column.

Figure 2.4: Hermitian bulge-chasing algorithm. Only the lower triangle is accessed; the upper
triangle is known implicitly by symmetry.

The second stage reduces the band form to the final bidiagonal form using a bulge chasing
technique. It involves 6nbn

2 operations, so it takes a small percentage of the total operations,
which decreases with n. The operations are memory bound, but are fused together as Level 2.5
BLAS [9] for cache efficiency. We designed the algorithm to use fine-grained, memory-aware
tasks in an out-of-order, data-flow task-scheduling technique that enhances data locality [10, 11].

The second stage proceeds in a series of sweeps, each sweep bringing one row to bidiagonal and
chasing the created fill-in elements down to the bottom right of the matrix using successive
orthogonal transformations. It uses three kernels. Kernel 1 (yellow task T1,1 in Section 2.4)
applies a Householder reflector from the right (indicated by the down arrow) to eliminate a row
right of the superdiagonal, which also creates a bulge of fill-in beneath the diagonal. It then
applies a Householder reflector from the left (indicated by the right arrow) to eliminate the
first column of the bulge below the diagonal, and applies the update to the first block column
only. The remainder of the bulge is not eliminated, but is instead left for subsequent sweeps to
eliminate, as they would reintroduce the same nonzeros.

12

2.4. THREE STAGE ALGORITHMS CHAPTER 2. IMPLEMENTATION

Kernel 2 (blue task T1,2) continues to apply the left Householder reflector from kernel 1 (or
kernel 3) to the next block column, creating a bulge above the upper bandwidth. It then applies
a right Householder reflector to eliminate the first row of the bulge right of the upper bandwidth,
updating only the first block row.

Kernel 3 (red task T1,3) continues to apply the right Householder reflector from kernel 2, creating
a bulge below the main diagonal. As in kernel 1, it then applies a left Householder reflector to
eliminate the first column of the bulge below the diagonal and updates just the current block
column. After kernel 3, kernel 2 is called again (blue task T1,4) to continue application of the left
Householder reflector in the next block column. A sweep consists of calling kernel 1 to bring a
row to bidiagonal, followed by repeated calls to kernels 2 and 3 to eliminate the first column or
row of the resulting bulges, until the bulges are chased off the bottom-right of the matrix.

For parallelism, once a sweep has finished the first kernel 3, a new sweep can start in parallel.
This new sweep is shifted over one column and down one row, as shown in Section 2.4. Before task
i in sweep s, denoted as Ts,i, can start, it depends on task Ts−1, i+3 in the previous sweep being
finished, to ensure that kernels do not update the same entries simultaneously. To maximize
cache reuse, tasks are assigned to cores based on their data location. Ideally, the band matrix
fits into the cores’ combined caches, and each sweep cycles through the cores as it progresses
down the band.

For the Hermitian eigenvalue problem, the second stage shown in Figure 2.4 is very similar to the
SVD second stage. Where the SVD has different reflectors from the right and left, here the same
reflector is applied from the left and the right. Symmetry is taken into account, so only entries
in the lower triangle are computed, while entries in the upper triangle are known by symmetry.

13

2.5. HERMITIAN TO HERMITIAN BAND REDUCTION (HE2HB)CHAPTER 2. IMPLEMENTATION

2.5 Hermitian to Hermitian band reduction (he2hb)

2.5.1 Single node

Colon notation i : k = i, . . . , k includes both i and k as in Matlab (unlike Python).

Algorithm 3 Hermitian to Hermitian band (he2hb).

for k = 0 : nt− 1
// Denote k-th trailing sub-matrix Ak = Ak+1:nt−1, k+1:nt−1

// Panel, Householder vectors V , and workspace W are block columns,
// kt× 1 tiles for kt = nt− k − 1.
Panel factorization: QR = Ak+1:nt−1, k where Q = I − V TV H

W = AkV hemm, kt× kt · kt× 1
W = WT = (AkV)T trmm, right, kt× 1 · 1× 1
// Symmetric update
// X is 1-by-1 Hermitian tile (“TVAVT” in code)
X = V HW = V H(AkV T) inner-product gemm, 1×kt ·kt×1
X = THX = TH(V HAkV T) trmm, left, 1× 1 · 1× 1
Y = W − 1

2V X = AkV T − V (THV HAkV T) gemm, kt× 1 · 1× 1
Ak = Ak − V Y H − Y V H her2k, kt× 1 · 1× kt

end

Derivation of Hermitian 2-sided update.

A = QHAQ

= (I − V THV H)A(I − V TV H)

= (I − V THV H)(A−AV TV H)

= (I − V THV H)(A−WV H)

= A−WV H − V THV HA∗ + V THV HWV H

= A−WV H − VWH + V THV HWV H

= A− (VWH − 1
2V THV HWV H)− (WV H − 1

2V THV HWV H)

= A− V (WH − 1
2T

HV HWV H)− (W − 1
2V THV HW)V H

= A− V (W − 1
2V (THV HW)∗)H − (W − 1

2V THV HW)V H

= A− V Y H − Y V H

where

W = AV T,

Y = W − 1
2V (THV HW) = W − 1

2V (THV HAV T).

A∗ is where we use that A = AH . Note that X = THV HW = THV HAV T is also Hermitian.

14

2.5. HERMITIAN TO HERMITIAN BAND REDUCTION (HE2HB)CHAPTER 2. IMPLEMENTATION

2.5.2 Multi-node

For a distributed, multi-node alogrithm, we use a 2D block-cyclic distribution, shown in Figure 2.5.
Each tile is labeled with its node (MPI rank). For later illustration purposes, we start the sub-
matrix at the 3rd block row and column, so the first tile is on node 8 instead of node 0. Tiles
in the lower triangle are stored. Tiles in the upper triangle are not stored and are known by
symmetry; the rotated labels indicate the node where the symmetric tile is stored. Nodes on the
diagonal of the MPI process grid (here, {0, 4, 8}) we call diagonal nodes.

8 8
88

8 8

8

8

8

8

8

8

8 888
7 7

7

7

7 7

7

7

7

7 7 7

6 6
6

6

6 6

6

6

6

6 66

5

5

5

5

5 5

5 5 5

5 5
5

4 4
44

4 4

4

4

4

3 3
3

3

3 3

2 2
2

2

2

2

2 2

2 2
2

2

1 1
1

1

1 1 1

1

1

1

1 1

0
00

0

0 0

0

0

0
2

5

8

4

7

1

3

6

9

0

2 5 84 71 3 6 90

(a) Sub-matrix starting at 3rd block row and column.

8
7
6

5
4
3

2
1
0

(b) MPI nodes (ranks) in 3× 3 process grid.

Figure 2.5: 2D block-cyclic distribution.

Summarizing Algorithm 3, there are 4 basic steps in each iteration:

QR = Apanel panel factorization with Q = I − V TV H , (2.1)

W = AkV T hemm, trmm (2.2)

Y = W − 1
2V (THV HW) gemm, trmm, gemm (2.3)

Ak −= V Y H + Y HV her2k (2.4)

We use CAQR for a multi-node algorithm. In each panel, there is a local QR factorization
within each node, giving a local block Householder reflector, then a tree reduction of resulting Ri

triangles, giving small coupling Householder reflectors. For a p× p grid, each panel has p local
QR factorizations, except the last p panels have fewer local panels. For p = 3, this results in
block Householder vectors Va, Vb, and Vc. For column 0 in Figure 2.5, Va is computed on node 6
(dark green), Vb on node 7 (medium green), and Vc on node 8 (light green).

15

2.5. HERMITIAN TO HERMITIAN BAND REDUCTION (HE2HB)CHAPTER 2. IMPLEMENTATION

Computing W = AV (hemm)

After the panel factorization, we start the trailing matrix update by applying Qa on the left and
right to update Ak. We computeWa = AVaTa, and Ya by (2.3), then update Ak −= VaY

H
a +YaV

H
a .

Figure 2.6 depicts Wa = AVa, which involves nodes {0, 1, 2, 3, 6}, with diagonal node 0. Tiles that
have 2 colors (blue/red or green/red) are computed as partial sums on 2 nodes, then sum-reduced
on both nodes, although for some edge tiles only 1 node contributes. Diagonal node 0 (dark red)
has only local contributions. Blank tiles in Va are zero, which eliminates contributions from the
whited-out regions of Ak. This yields

Wi =
∑

j ∈ panel rank rows

AijVj , for i = k + 1, . . . , nt− 1, (2.5)

where panel_rank_rows = {1, 4, 7} is a list of non-zero block-rows in Va, which are local
block-rows on node 6. For a tile Aij in the upper triangle of Ak, we conjugate-transpose the
corresponding tile in the lower triangle, AH

ji , so (2.5) becomes

Wi =
∑

j ∈ panel rank rows,
i ≥ j (Aij in lower)

AijVj +
∑

j ∈ panel rank rows,
i < j (Aji in lower)

AH
jiVj . (2.6)

The first of these sums is done on the node where the local rows matches panel_rank_rows;
the second sum is done on the node where the local columns matches panel_rank_rows. For
diagonal nodes, the local rows and local columns are the same, so the entire sum is local. For
diagonal tiles, AjjVj is a hemm instead of a gemm. Each node computes and uses Wi where i is
in its local rows or its local columns.

8 8
88

8 8

8

8

8

7 7
7

7

7 7

6 6
6

6

6 6

6 6
6

5

5

5

5

5 5

5 5 5

5 5
5

4 4
44

4 4

4

4

4

3 3
3

3

3 3

3 3
3

2 2
2

2

2 2

2

2

2

2 22

2
2 2

2
2

2

1 1
1

1

1 1

1

1

1

1 1 1

1
1 1

1
1
1

0

0

0

0

0

0

0 00

0

0
0

0

0
0

0 00 6
6
6

6
6
6

6
6
6

6

6

6

w1
w4
w7

=

w2
w5
w8

w3
w6
w9

=

=

w1

w4

w7

w2

w5

w8

w3

w6

w9

=

VaAkWa

Figure 2.6: Hermitian matrix multiply Wa = AVa (hemm). Tiles that have 2 colors (blue/red or
green/red) are computed as partial sums on 2 nodes, then reduced.

16

2.5. HERMITIAN TO HERMITIAN BAND REDUCTION (HE2HB)CHAPTER 2. IMPLEMENTATION

Computing A −= VWH +WV H (her2k)

Figure 2.7 shows the two products VaW
H
a and WaV

H
a . Due to zero blocks in Va, the whited-out

rows and columns of Ak are not updated, and we need to compute blocks only in the lower
triangle, as blocks in the upper triangle are the same by symmetry. Diagonal node 0 (dark red)
has non-zero blocks in both products and can be updated using a standard Hermitian rank 2k
(her2k) operation. Nodes 3 (blue) and 6 (green) have non-zero blocks only in VaW

H
a , which

comes from applying Qa on the left, while nodes 1 (red) and 2 (light red) have non-zero blocks
only in WaV

H
a , which comes from applying Qa on the right. Thus we have a custom routine,

her2k_offdiag_ranks, that applies either a left or a right update as needed. (We keep the
her2k name, as the overall operation is a rank 2k update, even though for individual tiles it is
only rank k.)

her2k

+

8 8
88

8 8

8

8

8

8 8
88

8 8

8

8

8

7 7
7

7

7 7

7 7
7

7

7 7

6 6
6

6

6 6

6 6
6

6

6 6

6

6

6

6 66

6
6
6

6
6

6
6 6

6
6

6 66
6 66

6 66

5

5

5

5

5 5

5 5 5

5 5
5

5

5

5

5

5 5

5 5 5

5 5
5

4 4
44

4 4

4

4

4

4 4
44

4 4

4

4

4

3 3
3

3

3 3

3 3
3

3

3 3

3
3 3

2 2
2

2

2 2

2 2
2

2

2 2

2

2

2

2 22

2

2

2

2 22

2
2 2

2
2

2

1 1
1

1

1 1

1 1
1

1

1 1

1

1

1

1 1 1

1

1

1

1 1 1

1
1 1

1
1
1

0

0

0

0

0

0

0

0

0

0

0 00

0

0

0 00

0
0

0

0
0

0

0
0

0

0
0

0

w1 w4 w7w2 w5 w8w3 w6 w9

w1

w4

w7

w2

w5

w8

w3

w6

w9

w1 w4 w7

w2 w5
w3 w6

w1
w4
w7

w2
w5
w8

w3
w6
w9

Apply Va WaH left update Apply Wa VaH right update

Figure 2.7: Hermitian rank 2k (her2k) update, Ak −= VaW
H
a +WaV

H
a .

17

2.5. HERMITIAN TO HERMITIAN BAND REDUCTION (HE2HB)CHAPTER 2. IMPLEMENTATION

Applying Qb

After applying Qa, we apply Qb = I − VbTbV
H
b , as shown in Figures 2.8 and 2.9. This largely

follows the same structure as applying Qa, but involves nodes {1, 3, 4, 5, 7}, with diagonal node 4.

When applying Qa on the right previously, node 1 used W2, W5, W8, corresponding to the local
rows on node 1. Here, applying Qb on the left, node 1 uses W1, W4, W7, corresponding to the
local columns on node 1. This pattern holds for all the nodes: a left update uses Wi for i in
the node’s local rows; a right update uses Wi for i in the node’s local columns. In a symmetric
update the local rows and local columns are the same.

8

8 8

8 8
8

8

8

8

7 7
7

7

7 7

7 7
7

6 6
6

6

6 6

5 5 5

5 5
5

5

5

5

5

5 5 5
5
5

5
5 5

4 4
44

4 4

4

4

4

4 4
44

4 4

4
4

4

3 3
3

3

3 3

3
3 3

2 2
2

2

2 2

2

2

2
2 22

1 1
1

1

1 1

1

1

1

1 1 1

1 1
1

1 1 1

0

0

0

0

0

0

0 00

7
7
7

7
7
7

7
7
7

7

7

7

w1
=

w2
w5
w8

w3
w6
w9

=

=

w4
w7w1

w2

w5

w8

w3

w6

w9

w4

w7

=

w1
VbAkWb

Figure 2.8: Hermitian matrix multiply Wb = AVb (hemm).

her2k

+

8

8 8

8

8 8

8 8
8

8 8
8

8

8

8

8

8

8

7

7 7

7 7
7

7 7
7

7

7 7

7 7 7

7

7

7

7
7
7

7 7 7

7 7 7

7 7

7
7
7

7
7 7

7
7

6

6 6

6 6
6

6 6
6

6

6 6

5 5 5

5 5
5

5

5

5

5

5 5

5 5 5

5 5
5

5

5

5

5

5 5

5
5
5

5
5 5

4 4
4

4 4
44

4 4

4

4 4

4

4

4

4

4

4

4
4 4

4
4

4

4
4 4

4
4

4

3 3
3

3 3
3

3

3 3

3

3 3

3
3 3

2 2
2

2 2
2

2

2 2

2

2 2

2

2

2

2 22

2

2

2

2 22

1 1
1

1 1
1

1

1 1

1

1 1

1

1

1

1 1 1

1

1

1

1 1 1

1
1 1

1
1
1

0 0

0 0

0

0

0

0

0

0

0 00

0

0

0 00w1w1
w2

w5

w8

w3

w6

w9

w4

w7

w1w1 w2 w5 w8w3 w6 w9w4 w7

w2 w5 w8

w2
w5
w8

w3
w6
w9

w4
w7

w1 w4 w7

w3 w6

Apply Vb WbH left update Apply Wb VbH right update

Figure 2.9: Hermitian rank 2k (her2k) update, Ak −= VbW
H
b +WbV

H
b .

18

2.5. HERMITIAN TO HERMITIAN BAND REDUCTION (HE2HB)CHAPTER 2. IMPLEMENTATION

Applying Qc

After applying Qa and Qb, we apply Qc = I − VcTcV
H
c , as shown in Figures 2.10 and 2.11. This

largely follows the same structure as applying Qa and Qb, but involves nodes {2, 5, 6, 7, 8}, with
diagonal node 4.

8 8
88

8 8

8

8

8

8 8
88

8 8

8
8

8

8
8

8

8
8

8

8

7 7
7

7

7 7

7
7 7

6 6
6

6

6 6

6
6 6

5

5

5

5

5 5

5 5 5

5 5
5

5 5 5
5 5

5

4 4
44

4 4

4

4

4

3

3

3

3 3

2 2
2

2

2 2

2

2

2

2 22

2 2
2

2 22

1 1
1

1

1 1

1

1

1

1 1 1
0

0

0

0

0

0

0 00

8

8

8

8
8

8

8
8

8

8
8

8

w1

w2

w1

w2

=

w5
w8

w3
w6
w9

=

=

w4
w7

w2

w5

w8

w3

w6

w9

w1

w4

w7

=

VcAkWc

Figure 2.10: Hermitian matrix multiply Wc = AVc (hemm).

her2k

+

8 8
88

8 8

8

8

8

8 8
88

8 8

8

8

8

8 88

8

8

8

8
8 8

8
8

8

8
8

8

8
8

8

8
8

8

8
8 8

8
8

8

8 88
88

88

7 7
7

7

7 7

7 7
7

7

7 7

7
7 7

6 6
6

6

6 6

6 6
6

6

6 6

6
6 6

5

5

5

5

5 5

5 5 5

5 5
5

5

5

5

5

5 5

5 5 5

5 5
5

5

5
5
5 5

5

4 4
44

4 4

4

4

4

4 4
44

4 4

4

4

4

3

3

3

3 3

3

3

3

3 3

2 2
2

2

2 2

2 2
2

2

2 2

2

2

2

2 22

2

2

2

2 22

2
2 2

2
2

2

1 1
1

1

1 1

1 1
1

1

1 1

1

1

1

1 1 1

1

1

1

1 1 1

0

0

0

0

0

0

0

0

0

0

0 00

0

0

0 00

w2

w5

w8

w3

w6

w9

w1

w4

w7

w2 w5 w8w3 w6 w9w1 w4 w7

w3 w6 w9

w1 w4 w7

w2 w5 w8

w3
w6
w9

w4
w7

w5
w8

Apply Wc VcH right updateApply Vc WcH left update

Figure 2.11: Hermitian rank 2k (her2k) update, Ak −= VcW
H
c +WcV

H
c .

19

2.5. HERMITIAN TO HERMITIAN BAND REDUCTION (HE2HB)CHAPTER 2. IMPLEMENTATION

Participating nodes

Examining the MPI process grid, we see that each V updates one process row and one process
column. The diagonal node at the intersection of that row and column does a 2-sided update
(her2k), while nodes in the process row do a left update, and nodes in the process column do a
right update, as shown in Figure 2.12. Since nodes 5 and 7 don’t participate in Qa, they can
immediately proceed with applying Qb. Similarly, all diagonal nodes, {0, 4, 8}, can be updated
at the start.

8
8 8

8
8

8

7
7 7

6
6 6

5
5
5

5
5 5

4
4

4

4
4 4

3
3 3

2
2 2

2 22

1
1 1

1 11

0
0 0

0
0

0

right

le
ft

(a) Applying Qa updates
MPI row and column 1.

8
8 8

8
8

8

7
7 7

6
6
6

6
6 6

5
5
5

5
5 5

4
4 4

4
4

4

3
3
3

3
3 3

2
2 2

2 22

1
1 1

1 11

0
0 0

0
0

0

right

le
ft

(b) Applying Qb updates
MPI row and column 2.

8
8 8

8
8

8

7
7 7

6
6
6

6
6 6

5

5
5
5 5

5

4
4 4

4
4

4

3
3
3

3
3 3

2
2 2

2 22

1
1 1

1 11

0
0 0

0
0

0

right

le
ft

(c) Applying Qc updates
MPI row and column 3.

Figure 2.12: Nodes and tiles that are updated by each Qr from panel.

20

2.6. EIGENVECTOR COMPUTATION CHAPTER 2. IMPLEMENTATION

Multi-node Algorithm

Algorithm 4 Hermitian to Hermitian band (he2hb).

for k = 0 : nt− 1
// Denote k-th trailing sub-matrix as Ak = Ak+1:nt−1, k+1:nt−1.
// Panel, Householder vectors V , and workspace W are block columns,
// kt× 1 tiles for kt = nt− k − 1.
local panel factorization: QR = Ak+1:nt−1, k where Q = I − V TV H

triangle panel reduction
for r = 1 : p with p nodes in panel

panel rank = panel ranks[r]
if I am in process row r or column r then

W = AkVr hemm, kt× kt · kt× 1
W = WTr = (AkVr)Tr trmm, right, kt× 1 · 1× 1
if I am diagonal node then

// Symmetric update
// X is 1-by-1 Hermitian tile (“TVAVT” in code)
X = V H

r W inner-product gemm, 1×kt ·kt×1
X = TH

r X = TH
r V H

r AkVrTr trmm, left, 1× 1 · 1× 1
Y = W − 1

2VrX gemm, kt× 1 · 1× 1
Ak = Ak − VrY

H − Y V H
r her2k, kt× 1 · 1× kt

else
// Offdiagonal update
Ak −= VrW

H or Ak −= WV H
r her2k offdiag ranks, kt× 1 · 1× kt

end
end // if in process row/col

end // for r
apply update from triangle panel reduction (hettmqr)

end // for k

2.6 Eigenvector Computation

The three stage Hermitian approach to solve the eigenvalue problem of a dense matrix is to first
reduce it to Hermitian band matrix form, A = Q1BQH

1 using Householder reflectors, then reduce
the banded matrix further into a real symmetric tridiagonal matrix B = Q2TQ

H
2 , finally, compute

the eigenpairs of the tridiagonal matrix using an iterative method such as QR iteration, or the
recursive approach of divide-and-conquer, such that T = Q3ΛQ

H
3 . The subsequent eigenvectors

are then accumulated during the back transformation phase, i.e., X = Q1Q2Q3 to calculate the
eigenvectors X of the original matrix A.

2.6.1 Eigenvectors of tridiagonal matrix

Once the tridiagonal reduction is achieved, the implicit QR eigensolver steqr2 calculates the
eigenvalues and optionally its associated eigenvectors of the condensed matrix structure. In

21

2.6. EIGENVECTOR COMPUTATION CHAPTER 2. IMPLEMENTATION

Figure 2.13: Redistribute 1D block row cyclic distributed matrix using 4× 1 grid into a 2D block
cyclic distribution using 2× 2 grid.

SLATE (and ScaLAPACK), the steqr2 is a modified version of the LAPACK routine steqr which
allows each process to perform updates on the distributed matrix Q2, and achieve parallelization
during this step.

Algorithm 5 shows the call to the tridiagonal eigensolver steqr2. First, a matrix to store the
eigenvectors Q3,1D of the tridaigonal matrix T is created using a 1D block row cyclic with a
np × 1 process grid, where np is the number of MPI processes. Then each process updates up
to (n/nb)/np rows of the matrix Q3,1D, where n is the matrix size and nb is the block size used
to distribute the rows of Q3,1D. Finally, the matrix of the eigenvectors is redistributed to a 2D
block cyclic distribution as illustrated in Figure 2.13.

Algorithm 5 Tridiagonal Eigensolver using steqr2 pseudocode.

function steqr2(T , Q3)
// The “1D block row cyclic” grid configuration
1D = np × 1
// Compute the number of rows owned by each processor
nrc = (n/nb)/np

// Build SLATE matrix Q3,1D using the 1-dim grid
Q3,1D = Matrix(nrc, nb, np, 1)
// Call steqr2 to compute the eigenpairs of the tridiagonal matrix
(Q3,1DΛQ

H
3,1D) = steqr2(T)

// The “2D block cyclic” grid configuration
2D = p× q
// Redistribute the 1-dim eigenvector matrix into 2-dim matrix
Q3 = redistribute(Q3,1D)

end function

2.6.2 Second stage back-transformation

The second stage back-transformation multiplies the vectors Q3 by Q2 from the second stage
reduction from band to tridiagonal form (“bulge chasing”), to form Q2Q3. SLATE uses a
distributed version of the scheme developed by [12]. The Householder vectors generated during
the bulge chasing (Figure 2.4) are stored in a matrix V , shown in Figure 2.14. Conceptually, the

22

2.6. EIGENVECTOR COMPUTATION CHAPTER 2. IMPLEMENTATION

1

1

1

2

2

2

3

3

4

4

5

5

6

6

7
8 9 10

(a) Householder
vectors, numbered by
sweep.

1

1

2

2

3

3

4
5
6
7
2

4

3

5

6

7 1

(b) Dependencies
between blocks of
vectors.

3

4

(c) Application of block
reflectors 3 and 4
overlaps.

2435 6 7
1

(d) Blocks stored in packed order.

Figure 2.14: Second stage back transformation, with V block size jb = 3 vectors. Block reflector 3
is highlighted to show overlap.

vectors from each sweep i are stored in column i of the lower triangular matrix V . The vectors
are blocked together into parallelograms, as shown in Section 2.6.2, to form block Householder
reflectors, Hr = I − VrTrV

H
r where Vr is the rth block of V , using the compact WY format [13].

Thus Q2 = Hk · · ·H2H1. Application of these Hr overlap, illustrated in Section 2.6.2, creating
the dependencies between them shown in Section 2.6.2. These dependencies allow up to

⌈
mt
2

⌉
updates to occur in parallel. Figure 2.15 shows these blocks and the corresponding tasks for a
10× 10 block matrix. For instance, all four dark blue tasks update different rows of Q3 and so
can run in parallel. Using the OpenMP task scheduler makes taking advantage of this parallelism
very easy. The routine unmtr_hb2st, outlined in Algorithm 6, applies Q to a matrix C; for
eigenvectors, C = Q3. Application of each Hr becomes a single task, with dependencies on the
two rows it updates, row[i] and row[i+ 1]. The parallelism in Section 2.6.2 occurs automatically
based on these dependencies. Within a row of C, updating each tile is independent, so we can
use nested parallelism in the parallel for loop.

In SLATE, each parallelogram block Vr is 2nb × nb. To ease computation, instead of storing
blocks in a lower triangular matrix (Section 2.6.2), each block is stored as one 2nb × nb tile, with
explicit zeros in the upper and lower triangular areas, as shown in Section 2.6.2. This allows us,
for instance, to use LAPACK’s larft function to compute Tr from Vr, and to use gemm instead
of trmm. Normally, Vr has unit diagonal. SLATE stores the Householder τ values on the diagonal
of Vr. During computation, the diagonal is set to 1’s, and the τ values are restored afterwards.

2.6.3 First stage back-transformation

The first stage back-transformation multiplies the vectors (Q2Q3) by Q1 from the first stage
reduction to band, to form X = Q1(Q2Q3). The routine unmtr_he2hb applies Q1 or QH

1 on
the left or right of a matrix C, which is then overwritten by Q1C, QH

1 C, CQ1, or CQH
1 . For

eigenvectors, we need only the left, no-transpose case with C = Q2Q3, to form the eigenvectors
X = Q1(Q2Q3). It is essentially identical to applying Q from a QR factorization, but shifted by

23

2.6. EIGENVECTOR COMPUTATION CHAPTER 2. IMPLEMENTATION

0 1 2 3 4 5 6 7 8 9 10
block cols

0

1

2

3

4

5

6

7

8

9

10

bl
oc

k
ro

ws

(a) Blocks of vectors, colored by independent
blocks.

0
time

0

1

2

3

4

5

6

7

8

9

10

bl
oc

k
ro

ws

(b) Simulated run showing task parallelism.

Figure 2.15: Dependencies allow up to
⌈
mt
2

⌉
parallel tasks.

Algorithm 6 unmtr hb2st back-transformation pseudocode. Indices are block rows/cols.

function unmtr hb2st(V,C)
// C is mt× nt block rows/cols, blocksize nb × nb

// V is mt(mt+ 1)/2 blocks, blocksize 2nb × nb

for j = mt− 1 to 0
for i = j to mt− 1

task depend in, out on row[i] and row[i+ 1]
r = i− j + j ·mt− j(j − 1)/2
Broadcast Vr

Compute T from Vr (larft)
D = VrT (gemm or trmm)
parallel for k = 0 to nt− 1

if Ci:i+1,k are local then
// Compute QC = (I − V TV H)C
W = V H

r Ci:i+1,k

Ci:i+1,k = Ci:i+1,k −DW
end

end
end task

end
end

end function

24

2.6. EIGENVECTOR COMPUTATION CHAPTER 2. IMPLEMENTATION

one block-row since we reduced to band form instead of triangular form, as in QR. Thus, as in
LAPACK, we can leverage the existing unmqr routine that applies Q from a QR factorization.

25

CHAPTER 3

Divide and conquer

The solution of the tridiagonal eigenvalue decomposition (EVD) can use several different methods:
QR iteration, divide and conquer, bisection, or MRRR. Here we derive the divide and conquer
algorithm proposed by Cuppen [14], which is significantly faster than QR iteration. Our derivation
largely follows that of Tisseur and Dongarra [15], with clarifications and notes related to the
implementation in SLATE.

3.1 Cuppen’s method

Define tridiagonal matrix T ∈ Rn×n with eigenvalue decomposition T = WΛW T where Λ is
diagonal and W is orthogonal. Split T into the rank-1 update

T =

[
T̊1 Θρeke

T
1

Θρe1e
T
k T̊2

]
=

[
T1 0
0 T2

]
+ ρvvT with v =

[
ek
Θe1

]
. (3.1)

where T1 is n1 × n1, T2 is n2 × n2, and Θρ = Tn1+1,n1 is the off-diagonal element, with Θ = ±1

such that ρ > 0 (see Section 3.1.1). T̊1 and T1 differ in only the bottom-right element, and T̊2

and T2 differ in only the top-left element:(
T1

)
n1,n1

=
(
T̊1

)
n1,n1

− ρ,(
T2

)
1,1

=
(
T̊2

)
1,1

− ρ.

Recursively solve eigen decompositions for T1 and T2, yielding

T1 = Q1D1Q
T
1 , (3.2)

T2 = Q2D2Q
T
2 . (3.3)

26

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

Then the eigen decomposition of T is given by

T = QDQT + ρvvT

= Q(D + ρzzT)QT

with

Q =

[
Q1 0
0 Q2

]
, D =

[
D1 0
0 D2

]
, z = QTv.

From the definition of v, z is the last row of Q1, and Θ times the first row of Q2. Given
Equation (3.2), compute the eigen decomposition

D + ρzzT = UΛUT

as shown in Section 3.1.2. Finally, the eigen decomposition of T is

T = Q(D + ρzzT)QT = Q(UΛUT)QT = WΛW T , W = QU .

3.1.1 Historical note on choice of θ

In Tisseur and Dongarra [15], for ρ = θTn1+1,n1 (what they refer to as θβ), scalar θ is chosen to
avoid cancellation, per Dongarra and Sorensen [16]. This is shown in Algorithm 7, though some
details are lacking. See http://www.netlib.org/misc/SEV/ for code. As used here, Θ = θ−1, but
we restrict Θ = ±1, so Θ = θ−1 = θ.

Algorithm 7 Choice of θ in Dongarra and Sorensen [16]

if sign(T̂1(n1, n1)) == sign(T̂2(1, 1)) then
// −θβ has same sign as diagonal elements T̂1(n1, n1) and T̂2(1, 1).
θ = − sign(T̂1(n1, n1)) · sign(β)

else
// Unclear: −θβ has same sign as one of diagonal elements,
// and magnitude of θ chosen to avoid cancellation when
// θ−1β is subtracted from the other diagonal element.

end

Inconsistent with this, (Sca)LAPACK implicitly chooses θ = sign(Tn1+1,n1), since it does:

!! pdlaed0.f, line 148 -149

!! T1_{n1, n1} -= rho

!! T2_{1, 1 } -= rho

D(I-1) = D(I-1) - ABS(E(I-1))

D(I) = D(I) - ABS(E(I-1))

!! pdlade0.f, line 214 -215

!! Pass E(ID+N1 -1) as rho

CALL PDLAED1(MATSIZ , N1, D(ID), ID, Q, IQ, JQ, DESCQ , &

E(ID+N1 -1), WORK , IWORK(SUBPBS +1), IINFO)

!! pdlaed2.f, line 206

!! rho = | 2 rho | = | 2 T_{n1+1, n1} |

!! = 2 theta T_{n1+1, n1}, theta = sign(T_{n1+1, n1}).

!! Factor of 2 comes from normalizing [z1, z2].

RHO = ABS(TWO*RHO)

27

http://www.netlib.org/misc/SEV/

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

SLATE follows (Sca)LAPACK’s convention, since LAPACK’s secular equation solver (laed4)
requires ρ > 0.

3.1.2 Secular equation

The characteristic equation is det(A− λI) = 0. In this case,

det(D + ρzzT − λI) = 0.

Applying Sylvester’s determinant theorem, with non-singular X = D − λI, we obtain

det(X + ρzzT) = 0

det(XX−1(X + ρzzT)) = 0

det(X) det(I + ρX−1zzT) = 0

det(I + ρ(X−1z)zT) = 0 assuming X is non-singular

1 + ρzT (X−1z) = 0 Sylvester’s determinant theorem.

This is the secular equation, so called because of centuries-long secular (non-periodic) perturbations
of planetary orbits (see wikipedia).

Eigenvalues of D + ρzzT are roots {λj} of the secular equation

f(λ) = 1 + ρzT (D − λI)−1z = 1 + ρ

n∑
i=1

z2i
di − λ

, (3.4)

with corresponding (unnormalized) eigenvectors

uj = (D − λjI)
−1z =

z1
d1 − λj

...

zn
dn − λj

, j = 1, . . . , n. (3.5)

Solving Equation (3.4) uses a custom non-linear solver developed by Li [17]. However, direct ap-
plication of Equation (3.5) to compute eigenvectors can lead to loss of precision and orthogonality;
see Section 3.1.11.

The secular equation solver assumes, without loss of generality, that ρ > 0. To accomplish this,
set Θ = sign(Tn1+1,n1), which negates z2 and ρ; see Section 3.1.1.

The secular equation solver further requires that D is sorted in ascending order, accomplished by
applying permutation Ps represented by vector isort (INDX)1 to obtain sorted Ds, zs,Us from
unsorted D, z,U :

Ps(D + ρzzT)P T
s = Ds + ρzsz

T
s

1Variable names in SLATE code and ScaLAPACK code (in parenthesis), respectively.

28

https://en.wikipedia.org/wiki/Determinant#Sylvester's_determinant_theorem
https://en.wikipedia.org/wiki/Characteristic_polynomial#Secular_function_and_secular_equation

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.3 Deflation

When an eigenvalue has already converged, it can be deflated from the secular equation, reducing
the secular equation size by 1. [15] set tolerance

η = ϵ
∥∥D + ρzzT

∥∥
2
≤ ϵ

(
∥D∥2 + |ρ|

∥∥zzT
∥∥
2

)
= ϵ(max

j
|dj |+ |ρ|)

since ∥z∥2 = 1. However, (Sca)LAPACK uses

η = 8umax(max
j

|dj | ,max
j

|zj |)

where u is unit roundoff (ϵ/2) (i.e., u = lamch("e")). It’s unclear where this tolerance is derived
from; presumably from LAPACK code in [18].

Two types of deflation can occur. The first is if zj = 0 for some j, then dj is an eigenvalue of T
with eigenvector ej . More generally, when zj is nearly zero, deflate if

|ρzj | ≤ η.

The second type of deflation occurs if D has eigenvalue dj of multiplicity m > 1, we can rotate
to zero out all but one of the corresponding zj . More generally, when di and dj (js1 and js2

(PJ and NJ) 1) are nearly equal, deflate if

|zizj | · |di − dj |√
z2i + z2j

≤ η.

This is the off-diagonal term when applying Gij to 2× 2 of di and dj values:

Gij

[
Di,i

Dj,j

]
GT

ij =

[
c2di + s2dj −csdi + csdj
−csdi + csdj s2di + c2dj

]
If these off-diagonal terms are negligible, then D is still diagonal. The Givens rotation Gij that
applies to rows i and j is defined as

Gij =

[
c s
−s c

]
, s = −zi

r
, c =

zj
r
, r =

√
z2i + z2j , c2 + s2 = 1 (by construction).

(Formally, Gij is embedded in an n× n identity matrix.) Let Gd be the product of all Givens
rotations and let Pd, represented by ideflate (INDXP)1, be the permutation for both sorting
and deflating eigenvalues (i.e., Pd includes the effect of Ps). Then

PdGd(D + ρzzT)(PdGd)
T =

[
Dsec + ρzsecz

T
sec 0

0 Λdfl

]
+E, ∥E∥2 ≤ cη. (3.6)

where

Dsec + ρzsecz
T
sec = UsecΛsecU

T
sec

is the secular equation with its EVD, Λdfl are deflated eigenvalues, and E is the error. Then the
EVD of (3.6) is

UdΛdU
T
d , where Ud =

[
Usec 0
0 I

]
, Λd =

[
Λsec 0
0 Λdfl

]
,

yielding

D + ρzzT = (PdGd)
TUdΛdU

T
d (PdGd) = UΛdU .

29

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.4 Back-transformation

The main cost of divide-and-conquer is computing W = QU . With deflation,

QU = Q(PdGd)
TUd

=

[
Q1 0
0 Q2

]
GT

dP
T
d

[
Usec 0
0 I

]
.

The GT
dP

T
d term can be multiplied on the left into Q, or on the right into Ud.

First, consider multiplying on the right. This leaves the Q1 and Q2 block sparsity structure in
Q, but GT

dP
T
d Ud destroys the block sparsity structure in Ud, yielding something similar to the

non-deflated case, with n3 flops:

QU = Q
(
GT

dP
T
d Ud

)
=

[
Q1 0
0 Q2

](
GT

dP
T
d

[
Usec 0
0 I

])
=

[
Q1 0
0 Q2

] [
U1

U2

]
=

[
Q1U1

Q2U2

]
.

Now consider multiplying on the left, QGT
dP

T
d . Add another permutation Pt, represented by

itype (INDX)1, to retain some block sparsity structure inQ. (In ScaLAPACK, the Pt permutation
overwrites the Ps permutation in INDX.) Pt orders cols of QGT

dP
T
d into 4 column types:

• column type 1 are non-zero in only the top n1 rows,

• column type 2 are non-zero in all rows (“dense”),

• column type 3 are non-zero in only the bottom n2 rows,

• column type 4 are deflated; they may be non-zero in all rows.

Pt operates on only the first n− n′
d cols of QGT

dP
T
d and rows of Ud, leaving unaffected the last

30

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

n′
d cols or rows corresponding to deflated eigenvalues.

QU =
(
QGT

dP
T
d

)
Ud (3.7)

=
(
QGT

dP
T
d Pt

) (
P T
t Ud

)
(3.8)

=

[]
n1 {Qt}1,1 {Qt}1,2 0 {Qt}1,4
n2 0 {Qt}2,2 {Qt}2,3 {Qt}2,4

ns1 ns2 ns3 n′
d

[]
P T
t Usec 0 ns1 + ns2 + ns3

0 I n′
d

ns1 + ns2 + ns3 n′
d

(3.9)

=

[]
{Qt}1,1:2{Ut}1:2 {Qt}1,4
{Qt}2,2:3{Ut}2:3 {Qt}2,4 (3.10)

= QtUt, (3.11)

Ut =

{Ut}1 0
{Ut}2 0
{Ut}3 0

0 I

 , (3.12)

where

• {Qt}1,1 has ns1 non-deflated cols from Q1 of column type 1 that are non-zero in only the
top n1 rows. These can be a non-deflated col from type 2 deflation, if both cols involved
were from Q1, so the Givens rotation doesn’t destroy the block structure.

• {Qt}2,3 has ns3 non-deflated cols from Q2 of column type 3 that are non-zero in only the
bottom n2 rows. Again, these can be a non-deflated col from type 2 deflation, if both cols
involved were from Q2.

•
[
{Qt}1,2
{Qt}2,2

]
has ns3 non-deflated cols from either Q1 or Q2 of column type 2 that are non-
zero in all n rows, which arise as the non-deflated eigenvector in type 2 deflation when one
col is from Q1 and one from Q2, where the Givens rotation filled in all rows. In parallel,
these include some columns from types 1 and 3, as explained below.

•
[
{Qt}1,4
{Qt}2,4

]
are cols from deflated eigenvalues (column type 4).

No block structure is assumed. For type 2 deflation, if one col was from Q1 and
one from Q2, then the Givens rotation filled in all rows, destroying the block structure.

• In the serial algorithm, n′
d = nd eigenvalues are deflated. In the parallel algorithm, nd

eigenvalues are deflated, but the block has size n′
d ≤ nd due to restrictions on Pt permuting

only locally within a node.

This yields the two gemm operations in (3.10) to compute W = QU .

31

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

In parallel, the Qt matrix has a local block structure like this, but the global structure is different.

Compared to Tisseur and Dongarra [15], matrices here are renamed from Q̄ toQt, and renumbered
using the column type as the second index:[]

Q̄1,1 Q̄1,2 0 Q̄1,3

0 Q̄2,1 Q̄2,2 Q̄1,3

Tisseur

−→

[]
{Qt}1,1 {Qt}1,2 0 {Qt}1,4

0 {Qt}2,2 {Qt}2,3 {Qt}2,4

SLATE

32

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.5 Summary

T =

[
T1 0
0 T2

]
+ ρvvT with v =

[
en1

e1

]
,

= QDQT + ρvvT with Q =

[
Q1 0
0 Q2

]
, D =

[
D1 0
0 D2

]
,

= Q(D + ρzzT)QT with z = QTv =

[
{Q1}Tn1,:

{Q2}T1,:

]
,

= Q(UΛUT)QT

= WΛW T

Applying permutation Ps to sort eigenvalues in the deflation routine,

Ds = PsD, zs = Psz.

Applying permutation Pd and Givens rotations Gd to sort and deflate eigenvalues,

(PdGd)(D + ρzzT)(PdGd)
T =

[
Dsec + ρzsecz

T
sec 0

0 Λdfl

]
= UdΛdU

T
d ,

with

Ud =

[
Usec 0
0 I

]
, Λd =

[
Λsec 0
0 Λdfl

]
.

Hence,

U = (PdGd)
TUd.

Applying permutation Pt to group column types, we obtain the eigenvectors

W = QU = Q(PdGd)
TUd = Q(PdGd)

T (PtP
T
t)Ud

=

[
{Qt}1,1 {Qt}1,2 0 {Qt}1,4

0 {Qt}2,2 {Qt}2,3 {Qt}2,4

]
{Ut}1
{Ut}2
{Ut}3
0 I

with

Qt = QGT
dP

T
d Pt, Ut = P T

t Ud.

Note for deflation, the transpose P T
d is applied to Q, but for grouping column types, the

untransposed Pt (the inverse of P T
t) is applied to Q. Or in Matlab notation:

Qd = Q(:, ideflate),

Qt(:, itype) = Qd, not Qt = Qd(:, itype).

33

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.6 Examples

Notes:

• Let n1 = 4, n2 = 4, n = n1 + n2 = 8, nb = 2, npcol = 2 (number of process columns).

• deflate shows the type of deflation for that column, blank for none.

• pcolumn shows the process column.

• coltype shows the column type:

(1) Unaffected by deflation, part of Q1.

(2) Non-deflated eigenvector from type 2 deflation that is non-zero in all rows.

(3) Unaffected by deflation, part of Q2.

(4) Deflated, either type 1 or deflated eigenvector in type 2 deflation.

• Q(1, :) is first row of Q,
Q(n, :) is last row of Q. Together they serve to show the block sparsity of Q.

• The decimal in D values (0.1 or 0.3) denotes the original column type (1 or 3).

• z and Q values are not realistic (e.g., not normalized), they are just for ease of tracking
how values are permuted. z = D/10.

Each example will show how various vectors and matrices are affected by permutations.

In the output, ε represents an arbitrary small value that will invoke type 2 deflation.

Original The original D eigenvalues, z vector, and Q matrix of eigenvectors.

Sorted By applying permutation Ps represented by vector isort (INDX)1, D = PsD0 values
are sorted. To get the Ps matrix, using Matlab notation:

I = eye(n, n);

Ps = I(isort, :);

We will use these notations interchangeably:

D0(isort) = PsD0,

Q(:, isort) = QP T
s .

Deflated With permutation Pd given by ideflate (INDXP)1, deflated eigenvectors (col type 4,
light orange) are moved to the end and sorted descending. (todo: any reason for sorting deflated
eigvals?) Non-deflated eigenvalues are sorted ascending, as required by the secular equation
solver. Pd includes both deflation and sorting. Columns of Q corresponding to type 2 deflation
have lost their block sparsity, becoming dense (.1 → .12 or .14 and .3 → .32 or .34 to indicate
modified values, where the second digit denotes its new column type).

34

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

Locally permuted With permutation Pt given by itype (INDX)1,
within pcolumn 0 (dark blue), col types are sorted, e.g.: 1, 2, 2, 4;
within pcolumn 1 (light blue), col types are sorted, e.g.: 3, 3, 4, 4.[
{Qt}1,1 {Qt}1,2

]
spans columns 1–5 (dark purple), to cover all col type 1 and 2. It also includes

a couple col type 3, but this would not necessarily occur. It could also include col type 4.[
{Qt}2,2 {Qt}2,3

]
spans columns 2–5 (light purple), to cover all col type 2 and 3. In this case,

it does not include any col type 1 or 4, but it could.

The code copies Qt(:, itype) = Q(:, ideflate), that is, QtP
T
t = QP T

d . Thus Qt(:, itype) is in the
same order as D(ideflate).

Globally permuted If we globally permuted the matrix (e.g., in the serial algorithm), col
types would be sorted globally: 1, 2, 3, 4.

In this case,
[
¯̄Q11

¯̄Q12

]
would span columns 1–3 (dark purple), to cover all col type 1 and 2.

No col type 3 would be included.[
¯̄Q22

¯̄Q23

]
would span columns 2–5 (light purple), to cover all col type 2 and 3. No col type 1

would be included.

Again, the code doesn’t compute igbar. It computes iglobal such that QG = Qg(:, iQ). Hence
igbar = itype(iQ).

35

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.7 Example 0: no deflation

Using the above setup, with no entries deflated. With no deflation, Pt = Pd, so P T
t Pd = I and

Qt = Q.

To run the example in parallel:

slate/test> mpirun -np 4 ./tester --dim 8 --nb 2 \

--verbose 1 --ref n --print-precision 2 --print-width 6 \

stedc_deflate

D = 2.10 4.10 6.10 8.10 3.30 6.30 9.30 12.30
z = 0.21 0.41 0.61 0.81 0.33 0.63 0.93 1.23

Q(1, :) = 0.21 0.41 0.61 0.81 0 0 0 0.
Q(n, :) = 0 0 0 0 0.33 0.63 0.93 1.23

pcolumn = 0 0 1 1 0 0 1 1
coltype = 1 1 1 1 3 3 3 3

Ps = isort = 0 4 1 2 5 3 6 7
Ds = PsD = D(isort) = 2.10 3.30 4.10 6.10 6.30 8.10 9.30 12.30

zs = Psz = z(isort) = 0.21 0.33 0.41 0.61 0.63 0.81 0.93 1.23
Q(1, isort) = 0.21 0 0.41 0.61 0 0.81 0 0.
Q(n, isort) = 0 0.33 0 0 0.63 0 0.93 1.23

pcolumn(isort) = 0 0 0 1 0 1 1 1
coltype(isort) = 1 3 1 1 3 1 3 3

Pd = ideflate = 0 4 1 2 5 3 6 7
Dd = PdD = D(ideflate) = 2.10 3.30 4.10 6.10 6.30 8.10 9.30 12.30

Dsecular = 2.10 3.30 4.10 6.10 6.30 8.10 9.30 12.30
zd = Pdz = z(ideflate) = 2.97 4.67 5.80 8.63 8.91 11.46 13.15 17.39

zsecular = 0.21 0.33 0.41 0.61 0.63 0.81 0.93 1.23
Q(1, ideflate) = 0.21 0 0.41 0.61 0 0.81 0 0.
Q(n, ideflate) = 0 0.33 0 0 0.63 0 0.93 1.23

pcolumn(ideflate) = 0 0 0 1 0 1 1 1
coltype(ideflate) = 1 3 1 1 3 1 3 3

coltype post-deflation = 1 1 1 1 3 3 3 3

Pt = itype = 0 4 1 2 5 3 6 7
PT
t Pd = 0 1 2 3 4 5 6 7

PT
t PdD = 2.10 4.10 6.10 8.10 3.30 6.30 9.30 12.30

Ddeflated = — — — — — — — —
Qt(1, :) = 0.21 0.41 0.61 0.81 0 0 0 0.
Qt(n, :) = 0 0 0 0 0.33 0.63 0.93 1.23

PT
t Pd pcolumn = 0 0 1 1 0 0 1 1
PT
t Pd coltype = 1 1 1 1 3 3 3 3

local PT
t Pd pcolumn = 0 0 0 0 1 1 1 1

local PT
t Pd coltype = 1 1 3 3 1 1 3 3

Pg = iglobal = 0 1 2 3 4 5 6 7
PgP

T
t PdD = 2.10 4.10 6.10 8.10 3.30 6.30 9.30 12.30

PgP
T
t Pd coltype = 1 1 1 1 3 3 3 3

36

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.8 Example 1: type 1 deflation — serial

Using the above setup, then set d0 ≈ 0, d4 ≈ 0, d7 ≈ 0, which triggers type 1 deflation for those
3 eigvals. In serial, all 3 are moved to the end of the matrix. Having no type 2 deflation, there
are no coltype 2.

To run the example in serial:

slate/test> mpirun -np 1 ./tester --dim 8 --nb 2 --deflate ’0 4 6’ \

--verbose 1 --ref n --print-precision 2 --print-width 6 \

stedc_deflate

D = 2.10 4.10 6.10 8.10 3.30 6.30 9.30 12.30
z = ε 0.41 0.61 0.81 ε 0.63 ε 1.23

Q(1, :) = 0.21 0.41 0.61 0.81 0 0 0 0.
Q(n, :) = 0 0 0 0 0.33 0.63 0.93 1.23

pcolumn = 0 0 0 0 0 0 0 0
coltype = 1 1 1 1 3 3 3 3

Ps = isort = 0 4 1 2 5 3 6 7
Ds = PsD = D(isort) = 2.10 3.30 4.10 6.10 6.30 8.10 9.30 12.30

zs = Psz = z(isort) = ε ε 0.41 0.61 0.63 0.81 ε 1.23
Q(1, isort) = 0.21 0 0.41 0.61 0 0.81 0 0.
Q(n, isort) = 0 0.33 0 0 0.63 0 0.93 1.23

pcolumn(isort) = 0 0 0 0 0 0 0 0
coltype(isort) = 1 3 1 1 3 1 3 3

Pd = ideflate = 1 2 5 3 7 6 4 0
Dd = PdD = D(ideflate) = 4.10 6.10 6.30 8.10 12.30 9.30 3.30 2.10

Dsecular = 4.10 6.10 6.30 8.10 12.30 — — —
zd = Pdz = z(ideflate) = 5.80 8.63 8.91 11.46 17.39 13.15 4.67 2.97

zsecular = 0.41 0.61 0.63 0.81 1.23 — — —
Q(1, ideflate) = 0.41 0.61 0 0.81 0 0 0 0.21
Q(n, ideflate) = 0 0 0.63 0 1.23 0.93 0.33 0.

pcolumn(ideflate) = 0 0 0 0 0 0 0 0
coltype(ideflate) = 1 1 3 1 3 4 4 4

coltype post-deflation = 4 1 1 1 4 3 4 3

Pt = itype = 0 1 3 2 4 5 6 7
PT
t Pd = 1 2 3 5 7 6 4 0

PT
t PdD = 4.10 6.10 8.10 6.30 12.30 9.30 3.30 2.10

Ddeflated = — — — — — 9.30 3.30 2.10
Qt(1, :) = 0.41 0.61 0.81 0 0 0 0 0.21
Qt(n, :) = 0 0 0 0.63 1.23 0.93 0.33 0.

PT
t Pd pcolumn = 0 0 0 0 0 0 0 0
PT
t Pd coltype = 1 1 1 3 3 4 4 4

local PT
t Pd pcolumn = 0 0 0 0 0 0 0 0

local PT
t Pd coltype = 1 1 1 3 3 4 4 4

Pg = iglobal = 0 1 2 3 4 5 6 7
PgP

T
t PdD = 4.10 6.10 8.10 6.30 12.30 9.30 3.30 2.10

PgP
T
t Pd coltype = 1 1 1 3 3 4 4 4

37

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

Example 1: type 1 deflation — parallel

In parallel with 2 process columns (4 MPI ranks in 2× 2 grid), entries 0 and 4 are moved to the
end of process col 0, so are unfortunately included in {Qt}1,1:2 and {Qt}2,2:3, while entry 7 is
moved to the end of process col 1.

To run the example in parallel:

slate/test> mpirun -np 4 ./tester --dim 8 --nb 2 --deflate ’0 4 6’ \

--verbose 1 --ref n --print-precision 2 --print-width 6 \

stedc_deflate

D = 2.10 4.10 6.10 8.10 3.30 6.30 9.30 12.30
z = ε 0.41 0.61 0.81 ε 0.63 ε 1.23

Q(1, :) = 0.21 0.41 0.61 0.81 0 0 0 0.
Q(n, :) = 0 0 0 0 0.33 0.63 0.93 1.23

pcolumn = 0 0 1 1 0 0 1 1
coltype = 1 1 1 1 3 3 3 3

Ps = isort = 0 4 1 2 5 3 6 7
Ds = PsD = D(isort) = 2.10 3.30 4.10 6.10 6.30 8.10 9.30 12.30

zs = Psz = z(isort) = ε ε 0.41 0.61 0.63 0.81 ε 1.23
Q(1, isort) = 0.21 0 0.41 0.61 0 0.81 0 0.
Q(n, isort) = 0 0.33 0 0 0.63 0 0.93 1.23

pcolumn(isort) = 0 0 0 1 0 1 1 1
coltype(isort) = 1 3 1 1 3 1 3 3

Pd = ideflate = 1 2 5 3 7 6 4 0
Dd = PdD = D(ideflate) = 4.10 6.10 6.30 8.10 12.30 9.30 3.30 2.10

Dsecular = 4.10 6.10 6.30 8.10 12.30 — — —
zd = Pdz = z(ideflate) = 5.80 8.63 8.91 11.46 17.39 13.15 4.67 2.97

zsecular = 0.41 0.61 0.63 0.81 1.23 — — —
Q(1, ideflate) = 0.41 0.61 0 0.81 0 0 0 0.21
Q(n, ideflate) = 0 0 0.63 0 1.23 0.93 0.33 0.

pcolumn(ideflate) = 0 1 0 1 1 1 0 0
coltype(ideflate) = 1 1 3 1 3 4 4 4

coltype post-deflation = 4 1 1 1 4 3 4 3

Pt = itype = 0 2 1 3 6 7 4 5
PT
t Pd = 1 5 2 3 4 0 7 6

PT
t PdD = 4.10 6.30 6.10 8.10 3.30 2.10 12.30 9.30

Ddeflated = — — — — 3.30 2.10 — 9.30
Qt(1, :) = 0.41 0 0.61 0.81 0 0.21 0 0.
Qt(n, :) = 0 0.63 0 0 0.33 0 1.23 0.93

PT
t Pd pcolumn = 0 0 1 1 0 0 1 1
PT
t Pd coltype = 1 3 1 1 4 4 3 4

local PT
t Pd pcolumn = 0 0 0 0 1 1 1 1

local PT
t Pd coltype = 1 3 4 4 1 1 3 4

Pg = iglobal = 0 2 3 1 6 7 4 5
PgP

T
t PdD = 4.10 6.10 8.10 6.30 12.30 9.30 3.30 2.10

PgP
T
t Pd coltype = 1 1 1 3 3 4 4 4

38

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.9 Example 2: type 2 deflation — serial

Using the above setup, deflate pairs {d0, d5} and {d4, d7}. The first entry of each pair is deflated
(column type 4). Since d0 is in Q1 and d5 is in Q2, d5 becomes column type 2. Since d4 and d7
are both in Q2, d7 remains column type 3.

To run the example in serial:

slate/test> mpirun -np 1 ./tester --dim 8 --nb 2 --deflate ’0/5 4/7’ \

--verbose 1 --ref n --print-precision 2 --print-width 6 \

stedc_deflate

D = 2.10 4.10 6.10 8.10 3.30 2.10 9.30 3.30
z = 0.21 0.41 0.61 0.81 0.33 0.63 0.93 1.23

Q(1, :) = 0.21 0.41 0.61 0.81 0 0 0 0.
Q(n, :) = 0 0 0 0 0.33 0.63 0.93 1.23

pcolumn = 0 0 0 0 0 0 0 0
coltype = 1 1 1 1 3 3 3 3

Ps = isort = 0 5 4 7 1 2 3 6
Ds = PsD = D(isort) = 2.10 2.10 3.30 3.30 4.10 6.10 8.10 9.30

zs = Psz = z(isort) = 0.21 0.63 0.33 1.23 0.41 0.61 0.81 0.93
Q(1, isort) = 0.21 0 0 0 0.41 0.61 0.81 0.
Q(n, isort) = 0 0.63 0.33 1.23 0 0 0 0.93

pcolumn(isort) = 0 0 0 0 0 0 0 0
coltype(isort) = 1 3 3 3 1 1 1 3

Pd = ideflate = 5 7 1 2 3 6 4 0
Dd = PdD = D(ideflate) = 2.10 3.30 4.10 6.10 8.10 9.30 3.30 2.10

Dsecular = 2.10 3.30 4.10 6.10 8.10 9.30 — —
zd = Pdz = z(ideflate) = 2.97 4.67 5.80 8.63 11.46 13.15 4.67 2.97

zsecular = 0.66 1.27 0.41 0.61 0.81 0.93 — —
Q(1, ideflate) = 0.07 0 0.41 0.61 0.81 0 0 0.20
Q(n, ideflate) = 0.60 1.27 0 0 0 0.93 ε −0.20

pcolumn(ideflate) = 0 0 0 0 0 0 0 0
coltype(ideflate) = 2 3 1 1 1 3 4 4

coltype post-deflation = 4 1 1 1 4 2 3 3

Pt = itype = 3 4 0 1 2 5 6 7
PT
t Pd = 1 2 3 5 7 6 4 0

PT
t PdD = 4.10 6.10 8.10 2.10 3.30 9.30 3.30 2.10

Ddeflated = — — — — — — 3.30 2.10
Qt(1, :) = 0.41 0.61 0.81 0.07 0 0 0 0.20
Qt(n, :) = 0 0 0 0.60 1.27 0.93 ε −0.20

PT
t Pd pcolumn = 0 0 0 0 0 0 0 0
PT
t Pd coltype = 1 1 1 2 3 3 4 4

local PT
t Pd pcolumn = 0 0 0 0 0 0 0 0

local PT
t Pd coltype = 1 1 1 2 3 3 4 4

Pg = iglobal = 0 1 2 3 4 5 6 7
PgP

T
t PdD = 4.10 6.10 8.10 2.10 3.30 9.30 3.30 2.10

PgP
T
t Pd coltype = 1 1 1 2 3 3 4 4

39

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

Example 2: type 2 deflation — parallel

Lorem ipsum.

To run the example in parallel:

slate/test> mpirun -np 4 ./tester --dim 8 --nb 2 --deflate ’0/5 4/7’ \

--verbose 1 --ref n --print-precision 2 --print-width 6 \

stedc_deflate

D = 2.10 4.10 6.10 8.10 3.30 2.10 9.30 3.30
z = 0.21 0.41 0.61 0.81 0.33 0.63 0.93 1.23

Q(1, :) = 0.21 0.41 0.61 0.81 0 0 0 0.
Q(n, :) = 0 0 0 0 0.33 0.63 0.93 1.23

pcolumn = 0 0 1 1 0 0 1 1
coltype = 1 1 1 1 3 3 3 3

Ps = isort = 0 5 4 7 1 2 3 6
Ds = PsD = D(isort) = 2.10 2.10 3.30 3.30 4.10 6.10 8.10 9.30

zs = Psz = z(isort) = 0.21 0.63 0.33 1.23 0.41 0.61 0.81 0.93
Q(1, isort) = 0.21 0 0 0 0.41 0.61 0.81 0.
Q(n, isort) = 0 0.63 0.33 1.23 0 0 0 0.93

pcolumn(isort) = 0 0 0 1 0 1 1 1
coltype(isort) = 1 3 3 3 1 1 1 3

Pd = ideflate = 5 7 1 2 3 6 4 0
Dd = PdD = D(ideflate) = 2.10 3.30 4.10 6.10 8.10 9.30 3.30 2.10

Dsecular = 2.10 3.30 4.10 6.10 8.10 9.30 — —
zd = Pdz = z(ideflate) = 2.97 4.67 5.80 8.63 11.46 13.15 4.67 2.97

zsecular = 0.66 1.27 0.41 0.61 0.81 0.93 — —
Q(1, ideflate) = 0.07 0 0.41 0.61 0.81 0 0 0.20
Q(n, ideflate) = 0.60 1.27 0 0 0 0.93 ε −0.20

pcolumn(ideflate) = 0 1 0 1 1 1 0 0
coltype(ideflate) = 2 3 1 1 1 3 4 4

coltype post-deflation = 4 1 1 1 4 2 3 3

Pt = itype = 1 6 0 2 3 7 4 5
PT
t Pd = 1 5 2 3 4 0 7 6

PT
t PdD = 4.10 2.10 6.10 8.10 3.30 2.10 3.30 9.30

Ddeflated = — — — — 3.30 2.10 — —
Qt(1, :) = 0.41 0.07 0.61 0.81 0 0.20 0 0.
Qt(n, :) = 0 0.60 0 0 ε −0.20 1.27 0.93

PT
t Pd pcolumn = 0 0 1 1 0 0 1 1
PT
t Pd coltype = 1 2 1 1 4 4 3 3

local PT
t Pd pcolumn = 0 0 0 0 1 1 1 1

local PT
t Pd coltype = 1 2 4 4 1 1 3 3

Pg = iglobal = 0 2 3 1 6 7 4 5
PgP

T
t PdD = 4.10 6.10 8.10 2.10 3.30 9.30 3.30 2.10

PgP
T
t Pd coltype = 1 1 1 2 3 3 4 4

40

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.10 Example 3: type 1 and 2 deflation — serial

Using the above setup, deflate d3 (type 1) and pairs {d1, d4} and {d2, d5} (type 2).

To run the example in serial:

slate/test> mpirun -np 1 ./tester --dim 8 --nb 2 --deflate ’3 1/4 2/5’ \

--verbose 1 --ref n --print-precision 2 --print-width 6 \

stedc_deflate

D = 2.10 4.10 6.10 8.10 4.10 6.10 9.30 12.30
z = 0.21 0.41 0.61 ε 0.33 0.63 0.93 1.23

Q(1, :) = 0.21 0.41 0.61 0.81 0 0 0 0.
Q(n, :) = 0 0 0 0 0.33 0.63 0.93 1.23

pcolumn = 0 0 0 0 0 0 0 0
coltype = 1 1 1 1 3 3 3 3

Ps = isort = 0 1 4 2 5 3 6 7
Ds = PsD = D(isort) = 2.10 4.10 4.10 6.10 6.10 8.10 9.30 12.30

zs = Psz = z(isort) = 0.21 0.41 0.33 0.61 0.63 ε 0.93 1.23
Q(1, isort) = 0.21 0.41 0 0.61 0 0.81 0 0.
Q(n, isort) = 0 0 0.33 0 0.63 0 0.93 1.23

pcolumn(isort) = 0 0 0 0 0 0 0 0
coltype(isort) = 1 1 3 1 3 1 3 3

Pd = ideflate = 0 4 5 6 7 3 2 1
Dd = PdD = D(ideflate) = 2.10 4.10 6.10 9.30 12.30 8.10 6.10 4.10

Dsecular = 2.10 4.10 6.10 9.30 12.30 — — —
zd = Pdz = z(ideflate) = 2.97 5.80 8.63 13.15 17.39 11.46 8.63 5.80

zsecular = 0.21 0.53 0.88 0.93 1.23 — — —
Q(1, ideflate) = 0.21 0.32 0.42 0 0 0.81 0.44 0.26
Q(n, ideflate) = 0 0.21 0.45 0.93 1.23 0 −0.44 −0.26

pcolumn(ideflate) = 0 0 0 0 0 0 0 0
coltype(ideflate) = 1 2 2 3 3 4 4 4

coltype post-deflation = 1 4 4 4 2 2 3 3

Pt = itype = 0 1 2 3 4 5 6 7
PT
t Pd = 0 4 5 6 7 3 2 1

PT
t PdD = 2.10 4.10 6.10 9.30 12.30 8.10 6.10 4.10

Ddeflated = — — — — — 8.10 6.10 4.10
Qt(1, :) = 0.21 0.32 0.42 0 0 0.81 0.44 0.26
Qt(n, :) = 0 0.21 0.45 0.93 1.23 0 −0.44 −0.26

PT
t Pd pcolumn = 0 0 0 0 0 0 0 0
PT
t Pd coltype = 1 2 2 3 3 4 4 4

local PT
t Pd pcolumn = 0 0 0 0 0 0 0 0

local PT
t Pd coltype = 1 2 2 3 3 4 4 4

Pg = iglobal = 0 1 2 3 4 5 6 7
PgP

T
t PdD = 2.10 4.10 6.10 9.30 12.30 8.10 6.10 4.10

PgP
T
t Pd coltype = 1 2 2 3 3 4 4 4

41

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

Example 3: type 1 and 2 deflation — parallel

Lorem ipsum.

To run the example in parallel:

slate/test> mpirun -np 4 ./tester --dim 8 --nb 2 --deflate ’3 1/4 2/5’ \

--verbose 1 --ref n --print-precision 2 --print-width 6 \

stedc_deflate

D = 2.10 4.10 6.10 8.10 4.10 6.10 9.30 12.30
z = 0.21 0.41 0.61 ε 0.33 0.63 0.93 1.23

Q(1, :) = 0.21 0.41 0.61 0.81 0 0 0 0.
Q(n, :) = 0 0 0 0 0.33 0.63 0.93 1.23

pcolumn = 0 0 1 1 0 0 1 1
coltype = 1 1 1 1 3 3 3 3

Ps = isort = 0 1 4 2 5 3 6 7
Ds = PsD = D(isort) = 2.10 4.10 4.10 6.10 6.10 8.10 9.30 12.30

zs = Psz = z(isort) = 0.21 0.41 0.33 0.61 0.63 ε 0.93 1.23
Q(1, isort) = 0.21 0.41 0 0.61 0 0.81 0 0.
Q(n, isort) = 0 0 0.33 0 0.63 0 0.93 1.23

pcolumn(isort) = 0 0 0 1 0 1 1 1
coltype(isort) = 1 1 3 1 3 1 3 3

Pd = ideflate = 0 4 5 6 7 3 2 1
Dd = PdD = D(ideflate) = 2.10 4.10 6.10 9.30 12.30 8.10 6.10 4.10

Dsecular = 2.10 4.10 6.10 9.30 12.30 — — —
zd = Pdz = z(ideflate) = 2.97 5.80 8.63 13.15 17.39 11.46 8.63 5.80

zsecular = 0.21 0.53 0.88 0.93 1.23 — — —
Q(1, ideflate) = 0.21 0.32 0.42 0 0 0.81 0.44 0.26
Q(n, ideflate) = 0 0.21 0.45 0.93 1.23 0 −0.44 −0.26

pcolumn(ideflate) = 0 0 0 1 1 1 1 0
coltype(ideflate) = 1 2 2 3 3 4 4 4

coltype post-deflation = 1 4 4 4 2 2 3 3

Pt = itype = 0 1 4 2 3 6 7 5
PT
t Pd = 0 4 6 7 5 1 3 2

PT
t PdD = 2.10 4.10 9.30 12.30 6.10 4.10 8.10 6.10

Ddeflated = — — — — — 4.10 8.10 6.10
Qt(1, :) = 0.21 0.32 0 0 0.42 0.26 0.81 0.44
Qt(n, :) = 0 0.21 0.93 1.23 0.45 −0.26 0 −0.44

PT
t Pd pcolumn = 0 0 1 1 0 0 1 1
PT
t Pd coltype = 1 2 3 3 2 4 4 4

local PT
t Pd pcolumn = 0 0 0 0 1 1 1 1

local PT
t Pd coltype = 1 2 2 4 3 3 4 4

Pg = iglobal = 0 1 4 2 3 6 7 5
PgP

T
t PdD = 2.10 4.10 6.10 9.30 12.30 8.10 6.10 4.10

PgP
T
t Pd coltype = 1 2 2 3 3 4 4 4

42

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.11 Eigenvectors via Löwner Theorem

When computing eigenvectors from the computed eigenvalues {λ̃j} of D + ρzzT using (3.5),
repeated here,

uj = (D − λjI)
−1z =

z1
d1 − λj

...

zn
dn − λj

for j = 1, . . . , n,

if di ≈ λj , then zi/(di − λj) can be inaccurate, causing a loss of orthogonality in U . Instead,
consider {λ̃j} as exact eigenvalues of the modified system D + ρz̃z̃T . See derivation in Tisseur
and Dongarra [15]; here each term is multiplied by −1 to match laed4 code. Result:2

z̃i = ±

√√√√√−
∏n

j=1 di − λ̃j∏n
j=1
j ̸=i

di − dj
, = ±

√√√√−
∏n

j=1 δi,j∏n
j=1
j ̸=i

di − dj
with δi,j = di − λ̃j ,

yielding (unnormalized) eigenvectors

ũj = (D − λ̃jI)
−1z̃ =

z̃1

d1 − λ̃j

...

z̃n

dn − λ̃j

=

z̃1
δ1,j

...

z̃n
δn,j

= z̃ ⊘ δj for j = 1, . . . , n,

where ⊘ denotes element-wise division (Matlab ./).

Both Tisseur and Dongarra [15] and Gu and Eisenstat [19] seem to gloss over the sign of z̃i.
(Sca)LAPACK copies the sign from zi in dlaed3.f:

w(i) = sign(sqrt(-w(i)), s(i))

where w (ztilde) contains the “first k (nsecular) values of the final deflation-altered z-vector”,
per dlaed2.

2Tisseur has upper limit
∏i−1

j=1
j ̸=i

; Gu and Eisenstat [19] correctly has
∏n

j=1
j ̸=i

.

43

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

Parallelization of eigenvectors

ScaLAPACK computes ns roots on p processes as follows:
nc = n/npcol (klc) is the number of eigenvalues each process column computes.
nr = nc/nprow (klr) is the number of eigenvalues each process row within a process column
computes.
Each process computes nr eigenvalues, calling LAPACK’s laed4 for each. (Within each pcol,
prow 0 (or drow?) computes any remainder. Globally, pcol 0 (or dcol?) computes any remainder.)

After each call to laed4, each process updates its z̄ vector of partial products, multiplying one
more term:

z̄i =

∏nr
k=1(di − λ̃kl)∏nr
k=1
kg ̸=i

(di − dkg)
=

∏nr
k=1 δi,i∏nr

k=1
kg ̸=i

(dkg − di)
for i = 1 . . . n,

where kg maps from local index k to global index kg.

Then it does a global multiply reduction (in a 2D fashion) of z̄, similar to MPI_Reduce. The root
node finishes the computation of z̃,

z̃i = sign(zi)

√
−

∏
process p

z̄
(p)
i for i = 1 . . . n,

then broadcasts z̃.

It also gathers (in a 2D fashion) the computed eigenvalues, Λ̃, to the root node, then broadcasts
it back out, similar to MPI_Allgather.

Now, each process computes its local portion of the U matrix, per the 2D block cyclic distribution.
For each column j of U that pcol p owns, each process in pcol p redundantly re-computes the
corresponding eigenvalue λj and δj vector. Each process in pcol then redundantly computes the
entire vector uj = z̃j ⊘ δj , takes its norm, and normalizes and saves just the portion that the
process owns. Note this calls laed4 redundantly nprow times, thus limiting its parallel speedup
to npcol times. However, it is O(n2) work, so may not take significant time.

Despite the definition

δi,j = di − λ̃j ,

using that definition — even with the compute λ̃j — produces inaccurate results (as confirmed
in MAGMA). This is unfortunate as recomputing δ in that fashion would avoid all the redundant
laed4 calls. It’s also unclear since Gu and Eisenstat [19] seems to use that definition. Neither
Rutter [18] nor Li [17] seem to discuss computing δi,j in laed4 and why that might be necessary
for stability.

Alternatively, it could skip all this redundant computation by saving the δj vectors and com-
municating them, and doing a distributed computation of column norms to normalize the
vectors.

44

3.1. CUPPEN’S METHOD CHAPTER 3. DIVIDE AND CONQUER

3.1.12 Cost

Without deflation, flops for multiplying QU is n3+O(n2), since it is two gemms of size n
2 ×

n
2 ×n:

QU =

[
Q1 0
0 Q2

] [
U1U2

]
=

[
Q1U1

Q2U2

]
.

The total cost for divide-and-conquer thus satisfies the recursion

tn = n3 + 2tn/2

with solution

tn ≈ 4
3n

3 +O(n2).

With deflation, flops can be O(n2.3) on average, or O(n2) in special cases.

45

3.2. ROUTINES CHAPTER 3. DIVIDE AND CONQUER

3.2 Routines

3.2.1 stedc

Symmetric Tridiagonal Eigenvalue Divide & Conquer solver, top-level routine called from heev.

Algorithm 8 Main divide & conquer driver

function stedc(D, E, Q)
input: real tridiagonal matrix A represented by diagonal D and sub-diagonal E vectors
output: eigvals D (sorted) and eigvecs Q of A

scale A (i.e., D and E) by 1/ ∥A∥, so it has unit norm
allocate workspaces W , U
// Computing in workspace W avoids copy in sort, compared to ScaLAPACK.
stedc_solve(D, E, W ; workspace Q, U) computes eigvals D and eigvecs W
stedc_sort(D, W , Q) sorts eigvals D and permutes eigvecs W into Q
scale eigvals D back by original ∥A∥

end function

46

3.2. ROUTINES CHAPTER 3. DIVIDE AND CONQUER

3.2.2 stedc solve

Main divide & conquer driver.
Corresponds to ScaLAPACK laed0.

Algorithm 9 Main divide & conquer driver

function stedc solve(D, E, Q; workspace W , U)
input: A represented by diagonal D and sub-diagonal E vectors.
output: D is (unsorted) eigvals and Q is eigvecs of A.

// Tear into subproblems
for i = b, 2b, . . . , n− 1 with blocksize b

subtract ρ = |Ei−1| from Di−1 and Di

end
// Solve subproblems
parallel for each block-col i = 0, b, . . . , n; split over MPI ranks and OpenMP threads

// todo: In 2DBC, seems highly load imbalanced
// —only nodes assigned diagonal tiles do work.
if Qi,i is local then

i2 = i+ nb− 1
lapack::steqr(Di:i2 , Ei:i2−1, Qi,i) or stedc

to solve subproblem using serial algorithm
end

end
gather and bcast D to all nodes
// Merge subproblems
for each level in divide & conquer tree, from leaf to root

for each pair of subproblems, indexed i, . . . , i1 and i1 + 1, . . . , i2
ρ = Ei1 // abs dealt with in merge routine
stedc_merge(ρ, Di:i2 , Qi:i2, i:i2 , Wi:i2, i:i2 , Ui:i2, i:i2)

end
end

end function

47

3.2. ROUTINES CHAPTER 3. DIVIDE AND CONQUER

3.2.3 stedc merge

Merges two subproblems.
Corresponds to ScaLAPACK laed1.

function stedc merge(D, Q; workspace Qt, U)
input: eigvals D1 and D2 in D, eigvecs Q1 and Q2 in Q of subproblems
output: eigvals D and eigvecs Q of merged problem

stedc_z_vector(Q, z) gets z
stedc_deflate(D, z, Ds, zs, Q, Qt, Pt) deflates nd eigvals, leaving ns secular eqn

eigvals
stedc_secular(Ds, zs, U , Pt) solves secular equation for eigvals Ds and eigvecs U
// todo: merge D and Ds

Q1,1:2 = {Qt}1,1:2U1:2

Q2,2:3 = {Qt}2,2:3U2:3

Copy with permutation deflated eigvecs {Qt}1:2,4 to Q
end function

48

3.2. ROUTINES CHAPTER 3. DIVIDE AND CONQUER

3.2.4 stedc z vector

Gathers onto all nodes vector z that is last row of Q1 and first row of Q2,

z = QT

[
en1

e1

]
=

[
QT

1 en1

QT
2 e1

]
.

Corresponds to ScaLAPACK laedz.

This is conceptually like MPI Allgatherv, but due to 2DBC distribution, it doesn’t seem a single
Allgatherv could do this. Alternatively, each rank could pack its local pieces, then do MPI
Gatherv, root unpacks to correct locations, and MPI Bcast; or MPI Allgatherv and everyone
unpacks (without bcast).

function stedc z vector(Q, z)
input: eigvecs Q1 and Q2 of subproblems in Q
output: vector z is last row of Q1 and first row of Q2

for each block-col j = 0, . . . , nt − 1
if j < nt1 then

i = nt1 − 1 // last block-row of Q1

else
i = nt1 // first block-row of Q2

end
if Qi,j is local then

copy last or first row of Qi,j to zi:i+b

MPI_send zi:i+b to root, if rank ̸= root
else if rank == root then

MPI_recv zi:i+b from source
end

end
MPI_Bcast z to all ranks

end function

49

3.2. ROUTINES CHAPTER 3. DIVIDE AND CONQUER

3.2.5 stedc deflate

Deflates eigenvalues where zi is (close to) zero (type 1), or where two eigenvalues are (nearly)
the same (type 2), identified by applying a rotation to zero out zi. Forms permutation to group
columns of Q according to the column type:

• column type 1: non-deflated eigvecs from Q1

• column type 2: non-deflated eigvecs updated by deflation

• column type 3: non-deflated eigvecs from Q2

• column type 4: deflated eigvecs

Locally within each rank,

Qlocal =

[
Q1,1 Q1,2 0 Q1,4

0 Q2,2 Q2,3 Q2,4

]
.

Corresponds to ScaLAPACK laed2.

Algorithm 10 Deflation, part 1

function stedc deflate(ρ, D, Ds, z, zs, Q, Qt)
input: ρ that tore subproblems,

eigvals D1 and D2 in vector D,
z1 and z2 in z,
eigvecs Q1 and Q2 of subproblems in Q.

output: D has nd deflated eigvals,
Ds has ns non-deflated eigvals for secular equation,
zs of length ns is updated z vector for secular equation,
Qt is ns updated eigvecs permuted into Q1,1:2, Q2,2:3, Q1:2,4,
another permutation?

// LAPACK secular equation solver (laed4) requires ρ > 0
if ρ < 0 then

ρ = −ρ
z2 = −z2

end
// z1 and z2 are normalized; re-normalize so ∥z∥2 = 1
ρ = 2ρ
z = z/

√
2

compute permutation Ps to sort D
// note lamch("e") is unit roundoff u = ϵ/2
tol = 4ϵmax(∥D∥max , ∥z∥max)
if ρ ∥z∥max < tol then

ns = 0 return
end

50

3.2. ROUTINES CHAPTER 3. DIVIDE AND CONQUER

Algorithm 11 Deflation, part 2

// Deflate eigvals
// A candidate eigval is non-negligible (not type 1), but may have type 2 deflation.
// js1 is candidate eigval; initially none (−1). s indicates sorted permutation.
// js2 is current eigval under consideration.
js1 = −1
for j = 0, . . . , n− 1

js2 = Ps[j]
if |ρzjs2 | < tol then

store js2 as deflated eigval (type 1)
else if not first candidate eigval (i.e., js1 ≥ 0) then

generate Givens rotation G to zero first entry of

[
zjs1
zjs2

]
compute Djs1, js2 off-diagonal from applying G

[
Djs1 0
0 Djs2

]
GT

if Djs1, js2 < tol then

update

[
zjs1
zjs2

]
= G

[
zjs1
zjs2

]
=

[
0
τ

]
update columns Qjs1, js2 = Qjs1, js2G // involves MPI for remote columns

update

[
Djs1

Djs2

]
= G

[
Djs1

Djs2

]
GT // off-diag Djs1, js2 is negligible

store js1 as deflated eigval (type 2)
else

store js1 as non-deflated eigval
end
js1 = js2 // js2 becomes next candidate eigval

else
js1 = js2 // js2 becomes first candidate eigval

end
end
store js1 as non-deflated eigval

Algorithm 12 Deflation, part 3 (todo)

// find permutation to order types 1, 2, 3 together locally.
// find global permutation.
// find indices of Q1,1:2, Q2,2:3, and U1:3.

end function stedc deflate

51

3.2. ROUTINES CHAPTER 3. DIVIDE AND CONQUER

3.2.6 stedc secular

Solves secular equation and computes eigenvectors via Löwner theorem.
Corresponds to ScaLAPACK laed3.

function stedc secular(D, z, Pu, Λ, U)
input: deflation-adjusted D, z, global permutation Pu

output: eigvals Λ of merged problem, eigvecs U of merged problem (before multiplying by
Q)

// Compute Λ and modified z̃.
z̃ = 1
parallel for j = 0, . . . , ns − 1; split over MPI ranks

lapack::laed4(D, z, λj , δj) solves secular equation for λj and δj vector
for i = 0, . . . , ns − 1 (todo: OpenMP parallel?)

if i == j then
z̃i ∗= δij

else
z̃i ∗= δij

Di−Dj

end
end

end
MPI_Allreduce z̃
fix sign z̃j to match sign zj , for j = 0, . . . , n− 1
MPI_Allgather Λ
permute Λ = PuΛ
// Compute U via Löwner theorem.
// All processes within a process column do this computation redundantly.
// We could avoid that by communicating uj .
parallel for j = 0, . . . , ns − 1; split over MPI 2DBC process columns

Re-compute secular equation (laed4) to get δj vector
uj = z̃ ⊘ δj element-wise
uj =

uj

∥uj∥
Store local part of uj

end
end function

52

3.2. ROUTINES CHAPTER 3. DIVIDE AND CONQUER

3.2.7 stedc sort

Sorts eigenvalues D and applies same permutation to eigenvectors Q.
Corresponds to ScaLAPACK lasrt.

53

3.2. ROUTINES CHAPTER 3. DIVIDE AND CONQUER

function stedc sort(D, Q, Qout)
input: eigvals D, eigvecs Q
output: sorted eigvals D, permuted eigvecs Qout

compute permutation Ps to sort eigvals.
compute inverse permutation P−1

s

for each block-col j = 0, . . . , nt − 1
// todo: these are bad descriptions
fill pcols[jj] with destination process of column P−1

s (j + jj) for jj = 0, . . . , jb− 1
fill mine[jj] with P−1

s (jj) where pcols[jj] == mycol
fill pcnts[p] = length(where(pcnts[jj] == p)) for p = 0, . . . , npcol
fill poffset = prefix sum(pcnt)
if block-col j is local then

for jj = 0, . . . , jb − 1
jg = j + jj
kg = P−1

s (j + jj)
if local then

local copy Q(:, jg) → Qout(:, kg)
else

// Pack into workspace
copy Q(:, jg) → work(:, poffset(pk))
poffset(pk) += 1

end
end
for p = 0, . . . , npcol−1

if p ̸= me and pcnt[p] > 0 then
MPI_Send pcnt[p] columns at work(:, poffset(p)) to rank(myrow, p)

end
end

else
MPI_Recv pcnt[mycol] columns at work from rank(myrow, pj)
for jj = 0, . . . , length(mine)

kg = mine(jj)
copy work(:, jj) to Qout(:, kg)

end
end

end
end function

54

CHAPTER 4

Optimization

4.1 Hermitian to Hermitian band reduction (he2hb)

4.2 Hermitian to Hermitian band reduction (he2hb)

In this section, we present the performance optimization of the Hermitian to Hermitian
band reduction he2hb. In [20] we show the optimization technique to extend the paral-
lelization of the different steps in he2hb on CPU only. Where we introduce a new inter-
nal functions of the various operations of he2hb, such as internal::he2hb_hemm<HostTask>,
internal::he2hb_trmm<Target::HostTask>, etc. As most of the operations in he2hb are ex-
pressed through Level 3 BLAS, there is obviously still room for improvement by doing GPU
computations and further hiding the communication overhead by computations. Therefore, we
provide a GPU implementation of the new internal functions introduced in he2hb. Figure 4.1
shows the performance of he2hb using CPU and 1 GPU, 2 GPUs on 1 node and 2 nodes. Using
single GPU achieves up to 3.2× and 1.6× speedup compared to the host test on a 1 node and 2
nodes, respectively.

We generate traces using the Nvidia Nsight Systems viewer nsys to highlight the performance
bottlenecks. The traces shows that the panel factorization is the most time consuming and it
does not overlap with any of the subsequent computations and data transfer. Therefore, we
add new omp tasks to overlap the panel factorization with data movements, as long as the
data dependencies satisfied. Figure 4.2 shows the panel factorization overlap with allocating
batch arrays and create CUDA streams, and sending the data to the GPU. Figure 4.3 studies
the impact of this change on the he2hb performance using different number of GPUs, the new
implementaion with enabling the data transfer during the panel factorization achieves up to 20%

55

4.3. BACK-TRANSFORMATION (UNMTR HB2ST) CHAPTER 4. OPTIMIZATION

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000

T
im

e
 (

s
e
c
)

Matrix Size

Band reduction, performance comparison on Summit

1 Node, 1x1, CPU

1 Node, 1x1, 1 GPU

1 Node, 1x1, 2 GPU

2 Node, 2x2, CPU

2 Node, 2x2, 1 GPU/node

2 Node, 2x2, 2 GPU/node

Figure 4.1: Performance of he2hb Using 1 and 2 nodes on Summit, 1× 1 and 2× 2 process grids.

improvement compared to the initial implementation.

Figure 4.4 shows the performance of he2hb in time and Gflops using 1 node on Summit.

4.3 Back-transformation (unmtr hb2st)

The initial implementation of the second stage back-transformation (unmtr hb2st) was sequential.
For optimization of the unmtr hb2st routine presented in Algorithm 6, CPU-only OpenMP
parallelism is introduced. Then for further optimization, the gemm operations are moved to GPU.
The performance comparison of these two implementations is presented in Figure 4.5. The device
implementation of unmtr hb2st achieves up to 6x speedup over the CPU-only implementation.

56

4.3. BACK-TRANSFORMATION (UNMTR HB2ST) CHAPTER 4. OPTIMIZATION

Figure 4.2: Overlap the panel factorization with subsequent data movements.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000

T
im

e
 (

s
e

c
)

Matrix Size

Band reduction, performance comparison on Summit

1 Node, 1x1, 6 GPU

1 Node, 1x1, 6 GPU, new

1 Node, 1x1, 4 GPU

1 Node, 1x1, 4 GPU, new

1 Node, 1x1, 1 GPU

1 Node, 1x1, 1 GPU, new

1 Node, 1x1, 2 GPU

1 Node, 1x1, 2 GPU, new

Figure 4.3: The performance impact by overlapping the panel factorization with subsequent data
movements.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000

T
im

e
 (

s
e
c
)

Matrix Size

Band reduction, performance comparison on Summit

1 Node, 1x1, CPU

1 Node, 1x1, 2 GPU

1 Node, 1x1, 1 GPU

(a) in Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000

G
fl
o
p
/s

Matrix Size

Band reduction, performance comparison on Summit

1 Node, 1x1, 1 GPU

1 Node, 1x1, 2 GPU

1 Node, 1x1, CPU

(b) in Gflops

Figure 4.4: Performance results of Hermitian to Hermitian band reduction, using 1 node , 1× 1
process grid. nb = 128,320, ib= 16, 48 for CPU, GPU tests, panel-threads=10

57

4.3. BACK-TRANSFORMATION (UNMTR HB2ST) CHAPTER 4. OPTIMIZATION

0 100 200 300 400 500 600 700 800 900 1000
Block size

01002003004005006007008009001000110012001300140015001600170018001900

Gf
lo

p/
s

CPU and one V100
CPU only

Figure 4.5: Performance of unmtr hb2st on a host with two 20-core Intel Broadwell Xeon E5-2698
v4 CPUs and one NVIDIA V100 activated. N=16384. As seen in the figure, the device
implementation provides up to 6x speedup.

58

CHAPTER 5

Performance

5.1 Environment

5.1.1 Hardware

Performance numbers were collected using the Summit system 12 at the Oak Ridge Leadership
Computing Facility (OLCF). Summit is equipped with IBM POWER9 processors and NVIDIA
V100 (Volta) GPUs. Each of Summit’s nodes contains two POWER9 CPUs (with 22 cores each)
and six V100 GPUs. Each node has 512 GB of DDR4 memory, and each GPU has 16 GB of
HBM2 memory. NVLink 2.0 provides all-to-all 50 GB/s connections for one CPU and three
GPUs (i.e., one CPU is connected to three GPUs with 50 GB/s bandwidth each, and each GPU
is connected to the other two with 50 GB/s bandwidth each). The two CPUs are connected with
a 64 GB/s X Bus. Each node has a Mellanox enhanced-data rate (EDR) InfiniBand network
interface controller (NIC) that supports 25 GB/s of bi-directional traffic. Figure 5.1 shows the
hardware architecture of a Summit node.

5.1.2 Software

The software environment used for the SVD experiments included:

• GNU Compiler Collection (GCC) 6.4.0,
• NVIDIA CUDA 10.1.105,
• IBM Engineering Scientific Subroutine Library (ESSL) 6.1.0,

1https://www.olcf.ornl.gov/summit/
2https://en.wikichip.org/wiki/supercomputers/olcf-4

59

https://www.olcf.ornl.gov/summit/
https://en.wikichip.org/wiki/supercomputers/olcf-4

5.2. RESULTS CHAPTER 5. PERFORMANCE

Figure 5.1: Summit node architecture.

• IBM Spectrum MPI 10.3.0.0,
• Netlib LAPACK 3.8.0, and
• Netlib ScaLAPACK 2.0.2.

For the generalized Hermitian eigenvalues, these were updated to:

• GNU Compiler Collection (GCC) 8.1.1,
• NVIDIA CUDA 10.1.243,
• IBM Engineering Scientific Subroutine Library (ESSL) 6.1.0,
• IBM Spectrum MPI 10.3.1.2,
• Netlib LAPACK 3.8.0, and
• Netlib ScaLAPACK 2.0.2.

5.2 Results

Here, we present the results of our preliminary performance experiment with the singular value
solve. Figure 5.2 shows the execution time of ScaLAPACK compared to SLATE with and without
GPU acceleration. Two MPI ranks are mapped to one node of Summit, i.e., one rank is mapped
to one CPU socket (22 cores) and three GPU devices. Only singular values are computed in all
cases (no vectors).

For a matrix of size 32,768 × 32,768, ScaLAPACK took 925 seconds, while SLATE took 324
seconds using CPUs only and 233 seconds with GPU acceleration. That is, SLATE was almost

60

5.2. RESULTS CHAPTER 5. PERFORMANCE

Figure 5.2: SVD performance comparison.

3 times faster without acceleration and almost 4 times faster with acceleration. Since the
performance gap increases with the problem size, we expect SLATE to be an order of magnitude
faster for matrices in the O(100K) range without acceleration, and further benefit 3× to 4×
from acceleration.

For the generalized Hermitian definite eigenvalue problem, Figure 5.3 shows the performance
for conversion from the generalized form to standard form (hegst). On the CPU host, SLATE
closely matches ScaLAPACK’s performance, while when using GPUs, SLATE gets a modest
acceleration. We will continue to investigate ways to optimize the performance.

Figure 5.4 presents the performance breakdown of eigensolver routines in ScaLAPACK and
SLATE. Double precision is used for all routines. ScaLAPACK’s pdsyev routine with QR
iteration and pdsyevd routine with the D&C algorithm are used. Both pdsyev and pdsyevd
implement 1-stage reduction. SLATE’s eigensolver is based on 2-stage reduction and it has the
recently-implemented tridiagonal eigensolver with the D&C algorithm. The results belong to
only one node of Summit. For ScaLAPACK, 6-by-6 process grid consisting of 36 MPI ranks
is used, whereas for SLATE, 2-by-2 process grid having 9 cores and 1 GPU per rank is used.
Consequently, both libraries are run on 36 cores for the sake of fair comparison. Both libraries
are tuned for various block sizes. The best block sizes are found to be 96 for ScaLAPACK and
224 for SLATE. The default inner blocking size, which is 16, and 6 panel threads for the QR
algorithm are used for SLATE.

As seen in Figure 5.4, the solve part with D&C algorithm in ScaLAPACK is significantly faster
than the solve part with the QR iteration. The red bars in the figure represent times spent
for the eigensolver. The most time consuming eigensolver is the one based on QR iteration in
ScaLAPACK. When ScaLAPACK and SLATE with the D&C algorithm are compared, the first
stage hermitian to band and the back transformation times are shorter in SLATE since SLATE
utilizes GPUs for these computations. In the overall comparison, SLATE is slightly faster than
ScaLAPACK. The second stage band to tridiagonal reduction and the recently-implemented
D&C tridiagonal eigenvalue solver in SLATE need further optimization to better utilize the
available system resources including GPUs.

61

5.2. RESULTS CHAPTER 5. PERFORMANCE

Matrix Size (N)

Se
co

nd
s

0

100

200

300

400

500

20000 40000 60000 80000 100000

SLATE Host SLATE Devices ScaLAPACK

18 nodes x (42 POWER9 + 6 V100 per node) (summit@ORNL)

DHEGST: Time taken on 18 nodes

Figure 5.3: Generalized to standard eigenvalue performance comparison.

ScaLAPACK
1-stage QR iteration

0

20

40

60

80

100

120

140

Ti
m

e
(s

)

ScaLAPACK
1-stage D&C

SLATE
2-stage D&C

1st stage: hermitian to band
2nd stage: band to tridiag
one stage: hermitian to tridiag
Solve
2nd stage back transform
1st stage back transform
back transform

Figure 5.4: Profile of eigenvalue solver implementations showing each phase for N=12288. One
node of Summit is used.

62

Bibliography

[1] Paul Sweazey and Alan Jay Smith. A class of compatible cache consistency protocols and
their support by the IEEE futurebus. ACM SIGARCH Computer Architecture News, 14(2):
414–423, 1986.

[2] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A primer on memory consistency and
cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212, 2011.

[3] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[4] Magnus R Hestenes. Inversion of matrices by biorthogonalization and related results. Journal
of the Society for Industrial and Applied Mathematics, 6(1):51–90, 1958.

[5] Gene Golub and William Kahan. Calculating the singular values and pseudo-inverse of a
matrix. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical
Analysis, 2(2):205–224, 1965.

[6] Gene H Golub and Christian Reinsch. Singular value decomposition and least squares
solutions. In Linear Algebra, pages 134–151. Springer, 1971.

[7] John GF Francis. The QR transformation: a unitary analogue to the LR transforma-
tion—part 1. The Computer Journal, 4(3):265–271, 1961.

[8] Vera N Kublanovskaya. On some algorithms for the solution of the complete eigenvalue
problem. USSR Computational Mathematics and Mathematical Physics, 1(3):637–657, 1962.

[9] Gary W Howell, James W Demmel, Charles T Fulton, Sven Hammarling, and Karen
Marmol. Cache efficient bidiagonalization using BLAS 2.5 operators. ACM Transactions on
Mathematical Software (TOMS), 34(3):14, 2008. doi: 10.1145/1356052.1356055.

[10] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. An improved parallel singular value
algorithm and its implementation for multicore hardware. In Proceedings of the International

63

BIBLIOGRAPHY BIBLIOGRAPHY

Conference on High Performance Computing, Networking, Storage and Analysis (SC’13),
page 90. ACM, 2013. doi: 10.1145/2503210.2503292.

[11] Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for
symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In
Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’11), pages 8:1–8:11. ACM, 2011. doi: 10.1145/2063384.2063394.

[12] Azzam Haidar, Stanimire Tomov, Jack Dongarra, Raffaele Solca, and Thomas Schulthess.
A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based
on fine-grained memory aware tasks. International Journal of High Performance Computing
Applications, 28(2):196–209, 2014. doi: 10.1177/1094342013502097.

[13] Robert Schreiber and Charles Van Loan. A storage-efficient WY representation for products
of Householder transformations. SIAM Journal on Scientific and Statistical Computing, 10
(1):53–57, 1989. doi: 10.1137/0910005.

[14] Jan JM Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numerische Mathematik, 36(2):177–195, 1980.

[15] Françoise Tisseur and Jack Dongarra. A parallel divide and conquer algorithm for the
symmetric eigenvalue problem on distributed memory architectures. SIAM Journal on
Scientific Computing, 20(6):2223–2236, 1999.

[16] Jack J Dongarra and Danny C Sorensen. A fully parallel algorithm for the symmetric
eigenvalue problem. SIAM Journal on Scientific and Statistical Computing, 8(2):s139–s154,
1987.

[17] Ren-Cang Li. Solving secular equations stably and efficiently. Technical Report LAPACK
working note (LAWN) 89, University of California, Berkeley, April 1993.

[18] Jeffery D Rutter. A serial implementation of Cuppen’s divide and conquer algorithm for the
symmetric eigenvalue problem. Technical Report UCB/CSD 94/799, University of California,
Berkeley, February 1994.

[19] Ming Gu and Stanley C Eisenstat. A divide-and-conquer algorithm for the symmetric
tridiagonal eigenproblem. SIAM Journal on Matrix Analysis and Applications, 16(1):
172–191, 1995.

[20] Kadir Akbudak, Paul Bagwell, Sebastien Cayrols, Mark Gates, Dalal Sukkari, Asim YarKhan,
and Jack Dongarra. SLATE performance improvements: QR and eigenvalues, SWAN no. 17.
Technical Report ICL-UT-21-02, Innovative Computing Laboratory, University of Tennessee,
4 2021. URL https://www.icl.utk.edu/publications/swan-017. revision 04-2021.

64

https://www.icl.utk.edu/publications/swan-017

	Contents
	List of Figures
	Introduction
	Significance of SLATE
	Design of SLATE

	Implementation
	Singular Value Decomposition
	Hermitian Eigenvalue Problem
	Generalized Hermitian Definite Eigenvalue Problem
	Three Stage Algorithms
	Hermitian to Hermitian band reduction (he2hb)
	Single node
	Multi-node

	Eigenvector Computation
	Eigenvectors of tridiagonal matrix
	Second stage back-transformation
	First stage back-transformation

	Divide and conquer
	Cuppen's method
	Historical note on choice of
	Secular equation
	Deflation
	Back-transformation
	Summary
	Examples
	Example 0: no deflation
	Example 1: type 1 deflation — serial
	Example 2: type 2 deflation — serial
	Example 3: type 1 and 2 deflation — serial
	Eigenvectors via Löwner Theorem
	Cost

	Routines
	stedc
	stedc_solve
	stedc_merge
	stedc_z_vector
	stedc_deflate
	stedc_secular
	stedc_sort

	Optimization
	Hermitian to Hermitian band reduction (he2hb)
	Hermitian to Hermitian band reduction (he2hb)
	Back-transformation (unmtr_hb2st)

	Performance
	Environment
	Hardware
	Software

	Results

	Bibliography

