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Abstract—This paper highlights the necessary development
of new instrumentation tools within the PaRSEC task-based
runtime system to leverage the performance of low-rank matrix
computations. In particular, the tile low-rank (TLR) Cholesky
factorization represents one of the most critical matrix operations
toward solving challenging large-scale scientific applications. The
challenge resides in the heterogeneous arithmetic intensity of
the various computational kernels, which stresses PaRSEC’s
dynamic engine when orchestrating the task executions at
runtime. Such irregular workload imposes the deployment of
new scheduling heuristics to privilege the critical path, while
exposing task parallelism to maximize hardware occupancy. To
measure the effectiveness of PaRSEC’s engine and its various
scheduling strategies for tackling such workloads, it becomes
paramount to implement adequate performance analysis and
profiling tools tailored to fine-grained and heterogeneous task
execution. This permits us not only to provide insights from
PaRSEC, but also to identify potential applications’ performance
bottlenecks. These instrumentation tools may actually foster
synergism between applications and PaRSEC developers for
productivity as well as high-performance computing purposes.
We demonstrate the benefits of these amenable tools, while
assessing the performance of TLR Cholesky factorization from
data distribution, communication-reducing and synchronization-
reducing perspectives. This tool-assisted performance analysis
results in three major contributions: a new hybrid data dis-
tribution, a new hierarchical TLR Cholesky algorithm, and a
new performance model for tuning the tile size. The new TLR
Cholesky factorization achieves an 8× performance speedup over
existing implementations on massively parallel supercomputers,
toward solving large-scale 3D climate and weather prediction
applications.

Index Terms—Performance analysis, Profiling tools, Task-
based programming model, Dynamic runtime system.

I. INTRODUCTION

Large-scale parallelism is the dominant force behind the

improvement of scientific computing. High-performance com-

puting (HPC) architecture development, designed to meet

application requirements and achieve new performance levels,

must address unprecedented increases in concurrency, hetero-

geneous hardware design and performance changes. However,

as the number of nodes increases, so does the architectural

complexity of each node, which makes programming effi-

ciently for the target architecture challenging. Faced with such

a daunting challenge, it is becoming increasingly clear that in

order to execute at extreme scales, changes to programming

model paradigms are needed to help applications to cope with

these challenges.

It has been proven that a task-based approach is extremely

efficient for load balancing and intelligently using all the

resources’ computational power in heterogeneous platforms

for many scientific computing fields—including application

libraries built on top of the usual dense [1], [2] and sparse [3]

linear algebra solvers with regular, arithmetic/memory-intense

computational tasks. In a task-based programming environ-

ment, a large amount of parallelism is exposed by representing

the algorithm as a continuous set of fine-grained tasks. Then,

the runtime system is responsible for scheduling these tasks

while satisfying the data dependencies between them. Such a

runtime must adapt to the changes in the amount of parallelism

available in applications and map tasks to underlying hardware

resources under dynamic and unpredictable system conditions.

PaRSEC [4] is one of the leading runtime systems that are

being actively developed.

Although a task-based runtime system is convenient and

efficient, from users’ perspective a well-designed profiling

system is needed to inspect the execution—especially when

it suffers from subtle performance problems. The profiling

system needs to integrate well with the runtime and be able

to extract information that allows reasoning about task costs,

scheduling quality, memory usage, and information regarding

messages and data transferred in the network. In this paper,

we introduce the profiling system of PaRSEC: the mechanisms

embedded in the runtime system to extract critical information
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and produce a trace of the execution, and the tools allowing

users to manage this collection of events. Based on this

profiling system, we demonstrate the optimization footprints

towards Tile Low-Rank (TLR) Cholesky in Section 5 of [5]

from a profiling and performance analysis perspective.

The remainder of this paper is as follows. Section II

presents related work. Section III describes the necessary

background for PaRSEC’s dynamic runtime system as well

as the TLR Cholesky factorization and the four optimizations

where the performace analysis applied. Section IV introduces

the design and the novel implementations of the profiling

system in PaRSEC. Performance analysis of the incremental

optimizations based on this profiling system are reported in

Section V. We conclude our work in Section VI.

II. RELATED WORK

In this section, we focus on the profiling and performance

instrumentation systems available on the most actively devel-

oped task runtime systems.

Legion includes a performance profiling tool, Legion
Prof, that generates an in-house format log of the task system

execution at runtime [6], [7]. This log can be converted to

a set of dynamic HTML pages using a tool provided with

the Legion distribution that shows utilization graphs of the

memories and processors during the run. These webpages

are dynamic, and more detailed information can be obtained,

showing what tasks executed on what resource at what time,

and showing part of the directed acyclic graph (DAG) con-

necting these tasks.

StarPU provides multiple approaches for performance

analysis: on one hand, the analysis can happen online [8]:

dynamic hooks are available for the application developer to

connect to task- and communication-related events and write

their own tracing or analysis mechanisms, or general statistics

on the process status can be read at runtime (e.g.,, amount

of computing time per core, time spent in the runtime system

per core, etc.); or the performance analysis can be conducted

offline after creating a trace of the execution [9]. StarPU uses

the Fast User/Kernel Tracing (FxT [10]) library to create traces

that can then be converted in DOT graph representations or

the PAJE trace format [11]. The latter can then be visualized

with the VITE tool [12] as a Gantt chart. StarPU provides

additional tools to create text files describing the execution of

each task in a key/value format for integration with external

tools, and allows the user to build application-specific analysis.

In [13], the author use a combination of the trace formats

(PAJE, DOT, enriched text files), and ad hoc conversion scripts

to build a CSV database of the execution and analyze it in R

or other statistical tools, using application-specific methods.

Last, a set of internal tools are also available in StarPU to

measure the efficiency of the performance models built by the

runtime system for its scheduling, and to check the accuracy of

the simulations, if simulations are conducted with the runtime

system.

To the best of our knowledge, QUARK does not provide any

profiling or tracing tools within the runtime system to help

the performance analysis. In [14], the authors instrumented

manually each task in order to collect timing information and

build Gantt diagrams and other performance analysis.

OmpSs includes a set of instrumentation plug-ins [15], that

can be selected at run time, in order to dynamically call

functions defined in these plugins when specific events occur.

The set of events that trigger a call is controlled at compile

time by a variety of options. Available plugins include an

Ayudame plugin for the Temanejo graphical debugger [16],

a module to compute and output the DAG of tasks, another

one (experimental) to provide a trace for execution for a task

system simulator, and a module to provide a trace for Par-

aver [17] that can potentially embed Performance Application

Programming Interface (PAPI) counters information. In [18],

the authors describe how the parallel trace can visualized as

Gantt charts using Paraver, from a variety of perspectives

(e.g.,, from a task view or a thread perspective, showing the

Instruction per cycle achieved by different threads, or the TLB

miss ratio).

The HPX Performance Counter Framework [19] defines an

API to access internal counters exposed by the HPX runtime.

These counters include information about the hardware, but

also about the runtime status. Counters are addressed by

their names, following a fixed naming scheme. The runtime

provides rudimentary tools to regularly read a set of counters

and display them on the standard output or send them to an

output file, but this approach is only time-driven and does

not allow for creating a trace of the execution. The preferred

approach is to embed the user analysis directly within the HPX
program, or to write our own tracing within the application for

offline analysis.

As we describe below, the approach in PaRSEC differs from

the other approaches in that a detailed trace of the execution is

created and converted into an open format, which encourages

the development of small and application-specific analysis

tools in simple scripting languages. We illustrate below how

this approach allows for taking an application written over

PaRSEC and collect a trace of execution with enough fine

details to allow a programmer with a good understanding

of the application itself to identify the bottlenecks and solve

them.

III. BACKGROUND

This section briefly provides background information on

the PaRSEC dynamic runtime system, the TLR Cholesky fac-

torization and the optimizations upon which the performance

analysis is based. More information are detailed in Sections 4

and 5 of [5].

A. The PaRSEC Runtime System

PaRSEC [4] is a task-based runtime for distributed hetero-

geneous architectures and is capable of dynamically unfolding

a description of a graph of tasks on a set of resources and

satisfying all data dependencies by efficiently shepherding data

between memory spaces (between nodes but also between

different memories on different devices) and scheduling tasks
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across heterogeneous resources. Domain-specific languages

(DSLs) [20] in PaRSEC help domain experts to focus only

on their domain science by masking required computer science

knowledge. The Parameterized Task Graph (PTG) [21] DSL

uses a concise, parameterized, task-graph description known

as Job Data Flow (JDF) to represent the dependencies be-

tween tasks. Other DSLs, such as Dynamic Task Discovery

(DTD) [22], are less science-domain oriented and provide

alternative programming models to satisfy more generic needs

by delivering an API that allows for sequential task insertion

into the runtime.

B. TLR Cholesky Factorization

In the standard dense Cholesky factorization, data stored in

the underlying tile layout is usually executed by four compu-

tational kernels: POTRF (Cholesky factorization), TRSM
(triangular solve), SY RK (symmetric rank k update), and

GEMM (general matrix multiply) on the lower or upper part

of the symmetric matrix. The whole factorization translates

into a DAG with nodes corresponding to tasks and edges rep-

resenting data dependencies, with a serial and incompressible

critical path of (NT −1)× (POTRF +TRSM +SY RK)+
POTRF , where NT is the number of row/column tiles.

The DAG of tasks (and thus the critical path) is the same

in both TLR and dense Cholesky factorization, but there are

two differences:

1) data format: all tiles are dense with size of nb × nb
in dense Cholesky factorization, where nb is the tile

size; while in TLR Cholesky factorization, only tiles on-

diagonal are dense, and tiles off-diagonal are approxi-

mated up to the application-dependent accuracy threshold

by using a variant of the singular value decomposition

(SVD) with size of nb × rank (rank << nb for tiles

further away from the diagonal tiles);

2) computational kernels, as well as arithmetic complexity,
of SY RK and GEMM : to work on the compressed

data layout of the off-diagonal tiles, the HiCMA library

of TLR Cholesky mainly necessitates the developments

of new low-rank LR SY RK and LR GEMM kernels,

which requires decompression and recompression phases,

respectively, as initially introduced in [23]; the arithmetic

complexity is 2 × nb2 × rank + 4 × nb × rank2 for

LR SY RK and 36 × nb × rank2 for LR GEMM ,

instead of nb3 for SY RK and 2× nb2 for GEMM .

C. Evaluated Optimizations

To be self-contained, we briefly describe the four opti-

mizations made in [5] that relate to the performance analysis

applied using the profiling system of PaRSEC in Sections V-A

to V-D below:

1) Hybrid Data Distributions, two intertwined 2D block

cyclic data distribution using different process grids are

superposed together, as shown in Fig. 2 of [5];

2) Reduce Communication Volume, communication is dy-

namically based on actual rank instead of pre-defined

maxrank (rank ∗ nb instead of maxrank ∗ nb per

communication);

3) Lookahead to Emphasize the Critical Path, a control

dependency between tasks LR SY RK and TRSM of

the same panel factorization delays the discovery of

parallelism outside the critical path (corresponding to

the update operation) to ensure the prioritization of the

critical path; and

4) Hierarchical POTRF , hierarchically creating a node-

local task pool that decomposes the POTRF kernel

on diagonal dense tiles into smaller subtiles to expose

nested parallelism, and ensure work is available for all

computational resources to speed up the critical path.

IV. PERFORMANCE TOOLS

PaRSEC features a rich development environment including

tools to debug programs written in the different DSLs, and to

profile the performance of task systems execution. We present

in further detail the performance profiling and instrumentation

capabilities of PaRSEC in this section.

A. Trace Collection Framework

The Trace Collection Framework sits at the root of the

performance profiling system. It is part of the PaRSEC runtime

system and can be enabled through a compile-time option. The

framework consists of a runtime support thread and library

that provides a generic API to define and store events that

occur during the execution. The user program (typically the

PaRSEC runtime and the different PaRSEC DSLs) defines

events as identified entities that executed on a given thread

at a given time, and is bound with a contiguous structure of

arbitrary size that holds information pertaining to the event.

For example, for each task of the PTG DSL, the DSL defines

task-start and task-end events that store the task class, task

identifier, and parameters of the task.

Events are stored in a set of binary files, one per process

of the application. In each file, events are grouped in buffers

of fixed size, each buffer belonging to a given thread of the

process. Buffers are linked one to another, creating as many

linked lists of buffers as there were threads in the process

during the execution.

The library is designed to be highly scalable for many-

thread environments and to incur a minimal overhead when

logging events. Logging an event consists of reading a timer,

and copying the information related to the event (from a dozen

bytes to a few hundreds, depending on the event type) in a

buffer of memory that is memory-mapped onto the backend

file that stores the binary trace. At runtime, each PaRSEC
thread owns an independent buffer to log its events, in order

to avoid sharing and atomicity issues. When a buffer is filled,

the PaRSEC thread that is logging an event atomically swaps

its current logging buffer with a fresh one. The helping thread

that is part of the Trace Collection Framework continuously

expands the backend file on which these buffers are mapped,

and prepares in advance new buffers for the PaRSEC threads
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to acquire when needed. The only thread-synchronizing oper-

ations occur when requesting a new buffer and releasing the

current one, and different PaRSEC threads never interact on

their tracing structures during the computation.

This approach relies on the availability of a few buffers of

memory: one buffer per PaRSEC thread for the current buffer,

and a few more that are allocated in advance to overlap I/O

operations with logging operations. If the PaRSEC threads

generate events faster than the operating system can truncate

the backend file, map new area and unmap completed areas,

the system will throttle, slowing down the logging operations

in order to complete the preceding ones. This is usually

entirely avoided when the backend file is stored on scalable

or local I/O systems. The Tracing Framework helping thread

is usually left unbounded, to steal idle cycles from computing

threads, as all its time is spent waiting or blocking on I/O

operations.

In an effort to improve portability with existing performance

analysis tools for parallel applications, the tracing interface

can also be configured at compile time to produce an OTF2

trace [24] of the execution. In this work, we focus on the

binary trace collection and the conversion method described

below to build our own ad hoc analysis tools.

B. PINS: PaRSEC INStrumentation

The Trace Collection Framework is used within the

PaRSEC runtime through the PaRSEC INStrumentation

(PINS) interface: different modules can register callbacks that

typically log events in the trace, and are called when the

execution reaches critical points in the code. PINS modules

are exposed to the final user through the Modular Component

Architecture (MCA [25]), and can be selected at run time to

decide the type of information logged in the binary profile

files.

Typically, PINS registers callbacks for all the important

steps of a task life cycle: when it is created, when it becomes

ready, when it is selected, potentially when it is assigned to an

accelerator, when it starts and ends to execution, and when it

enables successor tasks. There are also callbacks pertaining to

the state of the runtime: when it allocates or frees resources,

when network events are triggered, etc.

The MCA exposes different logging policies, available for

the user: for example, the pins_papi module allows logging

PAPI counters of the user’s choice, in addition to basic tracing

that records the time and thread that generated each event. This

enables augmenting the trace with information on the state of

the hardware at the time of the event.

C. Dependency Analysis

The events instrumentation allows us to measure the status

of the system at critical times. In order to accomplish a full

analysis of the behavior, it is often necessary to connect this

information with the actual DAG of tasks that was executed. In

order to achieve this, the events trace is completed with another

file representing the dependencies as they are expressed to

the runtime system in another set of files following the DOT

syntax defined by the Graphviz software collection [26] for

portability.

For all deterministic problems (typically when the DAG

of tasks is not data-dependent, but is entirely defined by the

parameters that instantiate it as is the case with the PTG DSL),

the collection of the DAG can be done offline—not during the

timing of the operation itself, thus completely avoiding the

risk of impacting the execution. One DOT file per process is

produced, as for the tracing mechanism, and all PaRSEC DSLs

provide a unique naming of tasks that enables an internal tool

to stitch the different DOT files to produce a single one that

represents the entire distributed DAG of tasks.

D. Trace Conversion Tools

This is not the case for the binary trace: once a trace

is generated, the user has access to a set of binary files,

one per process in the application. The format of these files

is not exposed to the user, as information in them is kept

as close as possible to the architecture, in order to avoid

conversion costs to produce a portable trace format during the

execution. Timing information, for example, is architecture-

and operating system–dependent; each architecture defines its

own time reading routine. All information logged by the user

(typically integers of various size to store the parameters, PAPI

counters, etc.) is also kept in the architecture-specific storage.

As is often the case with tracing systems, a conversion

step is necessary to obtain a portable and exploitable file

format of the trace. During this step, the different binary

files are also merged in a single file, appending the rank

that produced the source binary file as an identifier for each

record. For portability and ease of use reasons, PaRSEC
has chosen to export the portable file format in Hierarchical

Data Format (HDF5), following the structure required by the

popular Pandas Library to describe Data Frames in HDF5.

HDF5 [27] is an open format, self-describing, and efficient

to represent large data sets. The self-describing property of

HDF5 enables exposing a large variety of data with minimal

external documentation. Pandas [28] is a popular Python li-

brary providing high-performance, easy-to-use data structures

and data analysis tools for the Python programming language.

The goal behind these choices is to simplify writing ad hoc

analysis tools tailored to their application, as is done in

the following. The PaRSEC programming environment also

provides tools to take the generated trace and convert it into

a Gantt chart, or compute basic statistics.

The HDF5 file contains a few Pandas DataFrames or Series:

a Series describes what event types have been registered with

the application, and associates an identifier to them; another

one collects all the architectural information, at the application

level, per process and per thread. The largest DataFrame is a

relational array that stores all the events logged during the

execution (one per row), and provides a tabular view of each

record, where the columns define the fields of the events. Some

fields are common to all events (e.g., timing of start and end,

resource identifier that produced that event, etc.), and other
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fields that correspond to the information logged by the PINS

module on top of the event are event type–specific.

In order to simplify the development of ad hoc analysis

tools in Python with Pandas, the PaRSEC environment also

provides a library to read the DOT files that are generated into

a NetworkX [29] representation that understands the naming

scheme of the DSL used, and connects the tasks in the graph

object with the records in the Pandas DataFrame. A user can

then easily select an event, find the task that relates to it,

explore its successors or predecessors and find events relating

to those in the DataFrame. The case study in the rest of this

paper makes use of this feature.

V. PERFORMANCE RESULTS AND ANALYSIS

The experiments are run on Shaheen II, a Cray XC40

system, which has 6,174 compute nodes, each with two 16-

core Intel Haswell CPUs running at 2.30 GHz and 128 GB

of DDR4 main memory. Intel compiler suite 18.0.1 along

with sequential Math Kernel Library (MKL) version 2018.1

for optimized basic linear algebra subprograms (BLAS) and

LAPACK kernels are used in the environment settings. All

calculations are performed in double-precision floating-point

arithmetic. In all experiments, numerical backward errors have

been consistently validated against the application accuracy

threshold to ensure correctness. In particular, we compress

off-diagonal tiles and retain their most significant singular

values (and associated vectors) above the accuracy threshold

of 10−8, which ultimately yields absolute numerical error of

order 10−9 in the solution of linear system in Equation (2)

in [5]. This 10−9 tolerance is sufficient to satisfy the pre-

diction accuracy requirements of the 3D climate and weather

prediction applications, as described in [30]. We employ a

process grid P × Q across computational nodes and make it

as square as possible, with P < Q when this square is not

possible. Performance analysis utilizing PaRSEC’s profiling

system for the four optimizations in Section 5 of [5] as well

as Section III-C are presented in the following Sections V-A,

to Section V-D. To maintain a fair comparison and analysis

between the experiments, the tile size for these four sections

is chosen to be 2,700, and the three applications mentioned in

Section 6.1 of [5], syn-2D, st-2D-sqexp and st-3D-sqexp are

measured.

A. Evaluation of Hybrid Data Distributions

Hybrid Data Distributions, as described in Section III-C,

is the mixture of two 2D Block Cyclic Data Distribution

(2DBCDD). The purpose of Hybrid Data Distributions is to

reduce imbalance in terms of computation and memory, caused

by the rank disparities between tiles on and off diagonal, as

tiles on diagonal are always dense of size nb×nb while the size

of tile off diagonal is nb× rank (with rank << nb for tiles

further away from the diagonal tiles). With this hybrid data

distribution, diagonal tiles will be spread into all processes

P ×Q instead of just a portion max(P,Q). From a memory

perspective, the memory storing diagonal tiles of a certain

process will be decreased from n×nb
max(P,Q) to n×nb

P×Q , and this

TABLE I: Memory reduction for certain process by Hybrid

Data Distributions for st-2D-sqexp, st-2D-sqexp and st-3D-
sqexp of tile size 2700.

No. of Nodes Matrix Size Memory Reduced (GB)
16 1080000 4.374
16 2160000 8.748
16 4320000 17.496
64 2160000 5.103
64 4320000 10.206
64 6480000 20.412

reduction does not relate to the kind of applications. That

means the saved memory (in doubles) to store diagonal tiles

for certain process will be:

n× nb

max(P,Q)
− n× nb

P ×Q
(1)

We use the event memory in the profiling system to detail

memory usage of both static matrix allocation and dynamic

tempory buffers. Table I demonstrates the memory reduction

for the three applications syn-2D, st-2D-sqexp and st-3D-
sqexp with different numbers of nodes and matrix size. From

the table, it is clear that the memory reduction has a linear

dependence with matrix size n and negative correlation with

the number of nodes. PaRSEC’s profiling system also provides

the execution time for each process, as well as each thread,

from which we extract the workload for each process to show

load balancing. Fig. 1 depicts workloads for each process with

and without the hybrid data distributions for st-2D-sqexp. If

the distribution is the normal 2DBCDD with process grid 4×4,

there are only 4 processes of process ID 0, 5, 10, and 15

hosting tiles on diagonal, which causes the imbalance observed

in Fig. 1a with the rank hosting only tiles off diagonal.

B. Evaluation of Reducing Communication Volume

This section describes our analysis of the effect of reducing

communication volume in Section 5.2 of [5], which sends

the actual rank instead of the pre-defined maxrank of all

off-diagonal tiles, by showing the rank distributions of off-

diagonal tiles for matrices obtained from the profiling system

in PaRSEC. We used the PaRSEC tracing framework API to

register a new, application-specific type of event, and at the

execution of each task, we logged the rank of the tile on which

the task was working. Once the trace was converted, we then

wrote application-specific scripts to analyze the HDF5 file, and

produce the figures.

(a) Without the hybrid data dis-
tributions.

(b) With the hybrid data distri-
butions.

Fig. 1: Process workload balancing for st-2D-sqexp on 16

nodes with process grid 4 × 4, matrix size 1080K × 1080K
and tile size 2700.
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(a) syn-2D (b) st-2D-sqexp (c) st-3D-sqexp

Fig. 2: Initial rank distributions (i.e., before factorization) on the left and the difference between initial and final ranks (i.e.,

after factorization) on the right; the matrix size is 1080K × 1080K, and the tile size is 2,700.

In Fig. 2, for each application, we show, as heatmaps, the

initial rank distribution (i.e., before factorization) on the left,

and the extent to which that rank changed by the end of the

factorization on the right. Higher rank values are shown in red,

and smaller rank values are shown in blue according to the

colormap. The figures also display a zoomed area of diagonal

tiles to better show the non-uniformity of ranks of tiles close

to the diagonal, as well as the average and maximum rank for

each configuration. In addition, the difference heatmap shows

the average and maximum of the final rank distribution. As

opposed to syn-2D, the two statistics applications show more

discrepancy (more than 2.8× in final average and maximum

ranks) in rank distribution. In other words, the ranks in syn-
2D are observed to be more homogeneous with respect to

the statistics applications. Among the statistics problems, the

difference between average and maximum ranks is the smallest

for st-2D-sqexp and the largest for st-3D-sqexp, as seen in

Fig. 2b and 2c. Higher discrepancy in ranks results in higher
imbalance in computation and communication. Hence, sophis-
ticated task and data distribution heuristics and a dynamic
runtime become important to efficiently solve such problems.

C. Evaluation of Lookahead to Emphasize the Critical Path

This section provides details of performance analysis of the

‘lookahead’ technique to understand, using profiling tools, how

PaRSEC executes tasks and how it emphasizes the critical

path. By default, as mentioned before, PaRSEC eagerly tries

to enable tasks to expose the maximum amount of parallel

workloads. Although there is a ready queue scheme and pri-

ority policy, it can backfire when we overwhelm the scheduler

with too many parallel tasks, resulting in delays of tasks in

the critical path.

We profiled the execution to ensure that as soon as the data

is ready, PaRSEC enables the critical tasks first. To be able

to compute the average time it takes for data to be produced

on one node and consumed on another, we need to connect

the task termination, network activation, payload emission,

and remote task execution events. This is provided by the

PaRSEC profiling system through a combination of the trace

information and the DOT file. Combining this information,

we can identify the time at which diagonal tasks finished

and the time when the following triangular updates start

executing. Fig. 3 shows the time interval between receiving

the diagonal data for POTRF and the start of TRSM tasks

in the panels. This representation is application-specific, and

is made possible by extracting the appropriate information

from the profile combined with the DAG information, using

an application-specific Python script. In the default case, the

tasks closest to the diagonal have the largest delay, but with

our customized lookahead, we ensure that the critical tasks get

executed as soon as the data dependency is fulfilled.

D. Evaluation of Hierarchical POTRF

To understand the impact of the hierarchical approach

on the critical path, we compare in Fig. 4a the execution

time of a POTRF on a single tile with the corresponding

hierarchical version. The hierarchical version using multiple

cores is expected to be faster, but its performance is highly

dependent on the number of available cores. The gray area

encompasses the lower and upper bounds on the time for the

hierarchical version according to the number of cores available

during its execution.

To quantify these benefits in the context of a real execution,

we exploited the basic timing information produced by the

tracing system, and used the statistical packages provided

by pandas and NumPy to compute our metrics: we compute

the occupancy of the computational resources during the

original run and then during the hierarchical POTRF run.

As described in Section 5.4 of [5], our assumption is that by

increasing the parallelism during the dense diagonal POTRF ,

we make more efficient use of the available computational

resources. Indeed, instead of waiting for the completion of

a single, large granularity task, the computing resource can

directly contribute to the diagonal POTRF . We compute the
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occupancy by removing the waste (i.e., the time where com-

putational resources are not actively involved in the execution

of kernels) from the execution time.

The number of ready tasks (i.e., tasks with all data depen-

dencies satisfied) decreases as we progress on the Cholesky

factorization [31], so it is meaningful to look at different stages

independently. Fig. 4b shows the resource occupancy during

four different stages of the Cholesky factorization, comparing

the hierarchical to the original version. The hierarchical ver-

sion consistently provides better occupancy. However, as we

get closer to the end of the factorization, where there is less

potential parallelism in the original version, the hierarchical

approach provides a significant boost to the occupancy and

proves to be, as expected, an extremely beneficial optimization.

E. Modeling the Most Suitable Tile Size

In addition to the four optimizations mentioned before,

we find that the tile size plays a significant role in TLR
Cholesky in terms of operation balance between tiles on and

off critical path, which could be a result of the profiling tools

in PaRSEC using kernel execution time. For tile algorithms,

finding the right tile size—the one that trades off performance

and level of concurrency—is a critical step, as the tile size is a

major factor in the algorithm performance [32]. Unfortunately,

this “optimal” tile size depends on many factors other than

the algorithm itself (e.g., the computing resources, computer

and network performance and capabilities, available memory,

matrix size). In addition, few observations are paramount

to understand the correlation between tile granularity and

performance. Smaller tiles further decrease the computational

intensity of the mathematical kernels, while increasing the

memory burden and the management overhead imposed on the

supporting programming model and execution environment.

Oppositely, while providing more computationally intensive

operations, larger tiles decrease the degree of parallelism

available, limiting the number of tasks that can run in par-

allel and therefore the resulting occupancy. Assuming square

dense tiles, as long as the critical path of the algorithm and

the computational costs of the involved tasks are known,

the blocking and the distribution of the tiles can be found

theoretically [31]. But TLR is not in a regular dense case, and

the algorithm exacerbates the challenge of finding the right

tile size, because the rank variability across tiles alters the

balance of computations around the critical path, weakening

the underlying assumptions of the existing optimality proof.
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Fig. 4: Impact of Hierarchical POTRF: (a), execution time on a

single node; (b), resource occupancy of 540K × 540K matrix

on a 3 × 3 process grid with a tile size of 2,700.

However, we can simplify the problem by reducing the

impact of the imbalance introduced by low-rank by restrict-

ing the analysis of the critical path to a single tile outside

the diagonal—basically providing a 1st-order approximation

capable of predicting the most suitable tile size for TLR
Cholesky, according to the problem size, the number of

compute resources, and the average rank of the off-diagonal

tiles. To the best of our knowledge, this is the first time such

a theoretical approach has been proposed.

For a general parallel algorithm at a given problem size,

we can guarantee an optimal time to solution if the serial

part (the critical path in the algorithm) can perfectly overlap

with the parallel part (everything outside the critical path).

This is also true for TLR Cholesky, where there exists a

well-known critical path that can easily be approximated.

Thus—putting aside the overhead, hardware limitation, and

dependency between the serial path (critical path) and parallel

part—to get the best performance, the critical path (L) should

be equal to the perfect scaling of the parallel part (D) to the

number of available computing resources (C): L = D/C.

Assume N is the matrix size, node is the number of nodes, k
is the average rank of tiles off diagonal; the approximation

and proportionality of the best tile size nb can then be

approximated as follows:

nb ≈
√

3×N × k × (3 +
√
9 + 32× node)

4× node
(2)

nb ∝
√

N × k√
node

(3)

This formula may not be exactly accurate, as it is an
approximation, but it gives us insights into how to prune the

range of tile sizes containing the optimal value, while enabling

us to start with a more pragmatic approach for finding the best

tile size by auto-tuning.

To validate our theoretical finding, we collected the tile size

from a real execution, by extracting that information from the

trace, and used brute force search to find the best tile size

for a well-defined setup, N , k, and nodes, and compared this

result with our approximation. Fig. 5a depicts the execution

time for a fixed-size problem depending on the tile size. The

proposed model, depicted by the red dashed line, is close to

the minima of the black curve. Fig. 5b extends this to a larger
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set of matrices, and highlights the fact that for all cases the

approximated value is close to that found experimentally.

VI. CONCLUSION

In this paper, we present the profiling system of PaRSEC:

the mechanisms embedded in the runtime system to extract

critical information and produce a trace of the execution, and

the tools allowing users to manage this collection of events.

Using the information provided by this profiling system, we

demonstrate the performance analysis to show optimization

footprints of TLR Cholesky factorization from data distribu-

tion, communication-reducing and synchronization-reducing

perspectives—which accordingly highlights the benefits of

PaRSEC’s instrumentation tools, providing insights into PaR-

SEC, details during execution and a good understanding of

the application itself, and identifying potential performance

bottlenecks. In fact, these contributions may impact the devel-

opment of a broader class of algorithms in low-rank matrix

computations, beyond the herein studied TLR Cholesky fac-

torization.
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