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Abstract—To minimize data movement, many parallel ap-
plications statically distribute computational tasks among the
processes. However, modern simulations often encounters ir-
regular computational tasks whose computational loads change
dynamically at runtime or are data dependent. As a result, load
imbalance among the processes at each step of simulation is a
natural situation that must be dealt with at the programming
level. The de facto parallel programming approach, flat MPI
(one process per core), is hardly suitable to manage the lack
of balance, imposing significant idle time on the simulation as
processes have to wait for the slowest process at each step of
simulation.

One critical application for many domains is the LU factor-
ization of a large dense matrix stored in the Block Low-Rank
(BLR) format. Using the low-rank format can significantly reduce
the cost of factorization in many scientific applications, including
the boundary element analysis of electrostatic field. However, the
partitioning of the matrix based on underlying geometry leads to
different sizes of the matrix blocks whose numerical ranks change
at each step of factorization, leading to the load imbalance among
the processes at each step of factorization.

We use BLR LU factorization as a test case to study the
programmability and performance of five different programming
approaches: (1) flat MPI, (2) Adaptive MPI (Charm++), (3) MPI
+ OpenMP, (4) parameterized task graph (PTG), and (5) dynamic
task discovery (DTD). The last two versions use a task-based
paradigm to express the algorithm; we rely on the PaRSEC run-
time system to execute the tasks. We first point out programming
features needed to efficiently solve this category of problems,
hinting at possible alternatives to the MPI+X programming
paradigm. We then evaluate the programmability of the different
approaches, detailing our experience implementing the algorithm
using each of the models. Finally, we show the performance result
on the Intel Haswell–based Bridges system at the Pittsburgh
Supercomputing Center (PSC) and analyze the effectiveness of
the implementations to address the load imbalance.

I. INTRODUCTION

Scientific simulations from many domains are utilizing
high-performance computers to parallelize the workload and
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speed up knowledge discovery. Traditionally, these applica-
tions are implemented with a Flat MPI model coupled in
the vast majority of cases with a static data distribution. A
static mesh partition or domain decomposition could lead
to imbalanced workloads, especially when the workload can
change dynamically. Moreover, the explicit synchronization
introduced in the Message Passing Interface (MPI) program-
ming model invariably results in significant idle time under
dynamically imbalanced workload.

The computational and storage costs of the dense matrix
operation can be reduced significantly using a low-rank format.
More precisely, Block Low-Rank (BLR) partitions the matrix
in 2-D blocks and compresses the off-diagonal blocks using
their low-rank representations, leading to a smaller need for
storage space and a lower computational intensity. Thus, the
use of a low-rank format can drastically shorten the factoriza-
tion time, a highly desirable property for critical algorithms
for as long as the error can be bound. Solution of a large-scale,
diagonal, dominant dense linear system of equations is needed
for a number of scientific and engineering simulations, and
BLR format enables simulation of larger scale, which would
not have been practical using the dense format, either due to
the storage or to the computational costs.

One such application is the LU factorization of a dense
matrix stored in the BLR format [1]. We have observed
that geometry-based matrix partitioning compresses the ma-
trix well, leading to many off-diagonal blocks with small
numerical ranks, and therefore a lower computational cost.
In a 2-D block-cyclic dense distribution, data is mostly
evenly distributed across participating processes, leading to
well balanced—both in terms of memory and computation—
factorizations [2]. However, the compressed format does not
inherit the even balance of the dense algorithm, leading to
an algorithm that, while similar to the dense counterpart, is
unbalanced and dynamic in memory needs, communications,
and computation. An implementation of this algorithm using
MPI exacerbated this imbalance due to its tightly coupled
nature, where an explicit synchronization is necessary at each
factorization step. It also highlighted that the accumulated
idle time due to the explicit synchronization at each step
of factorization can be significantly greater than the load
imbalance in the total local computation time among the
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processes. Moreover, the dynamic nature of each block rank
during execution makes it difficult to statically distribute the
blocks among the processes to reduce the load imbalance.
Alternative, more dynamic, approaches are necessary to cope
with the imbalance, and deliver efficient executions in dis-
tributed environments.

In this paper, we explore the computer science aspect of
this highly dynamic problem, and try to understand how
different programming approaches compare while supporting
such an imbalanced application. We look simultaneously at the
metric of programmability and the more objective metric of
performance. More precisely, we evaluate five different pro-
gramming models for implementing the BLR LU factorization
of a dense matrix, arising from the boundary element analysis
of electrostatic field:

1) The Flat MPI model with blocking collective operation,
which leads to synchronization at each step of factoriza-
tion,

2) The Adaptive MPI (AMPI) model, an implementation
of the MPI standard on top of Charm++ that supports
over-decomposition and dynamic load balancing [3],

3) The MPI+OpenMP tasking model, where both the
computational and communication tasks are dynamically
scheduled in order to remove the synchronization points
of our flat MPI implementation,

4) The Dynamic Task Discovery (DTD) model [4] where
the algorithm is described sequentially as a series of
tasks and the runtime build the data dependency graph
dynamically, and

5) The Parametrized Task Graph (PTG) model where the
algorithm has a dataflow description as a parameterized
graph of tasks.

For DTD and PTG, we use the distributed-memory runtime
system PaRSEC [5], a runtime that can dynamically move
data among processes to satisfy dependencies and schedule
the available tasks.

We evaluate the programmability of each model, comment-
ing on the experience of transitioning from the original flat
MPI BLR LU implementation to task-based programming
models. We then analyze in detail the performance, focusing
on the effectiveness of each programming model to address the
load imbalance, overlap communications and computations,
and, more globally, reduce the factorization time. We intend
this work to be a guide for parallel application developers
to provide a path to avoid performance pitfalls with the
MPI+X programming model, while describing a possible path
to alternate programming models. Simultaneously, the data
movement patterns and dependencies we expose represent the
backbone of a large class of algorithms, and can be used
by parallel programming researchers when developing new
features on their next-generation programming models.

II. RELATED WORKS

Besides the BLR format, several other low-rank formats
have been proposed, including H-matrix [6] and Hierarchical
Off-Diagonal Low-Rank (HODLR) [7] formats, and their

nested variants H2-matrix [8] and HSS [9] formats. There
are also multi-level low-rank formats with the lattice struc-
tures [10], [11]. Among those formats, the H-matrix has
the most general low-rank format, leading to the near-linear
complexity of the factorization. However, its irregular hierar-
chical block structure poses a challenge when parallelizing the
factorization on a distributed-memory computer. To simplify
the parallelization and improve the scalability, BLR abandons
the hierarchy, but comes with the price of higher storage and
computational complexities (e.g., O(n1.5) storage and O(n2)
computational complexities for the BLR factorization of a
dense matrix of dimension n [12], compared with O(n logn)
and O(n log2 n) complexities with the H-matrix format [6]).
Nevertheless, for factorizing a small-scaled matrix in practice
(e.g., n = O(105)), the BLR and H-matrix formats often have
similar costs of factorization.

The BLR’s simpler flat low-rank format brings the potential
for higher computational performance. However, for solving a
practical problem with an irregular partitioning of the matrix,
the parallel scalability of the BLR factorization can be greatly
limited by the load imbalance among the processes, even
on a small number of processes (e.g., tens or hundreds of
processes). It is then the responsibility of the programming
paradigm to provide developers with the means to efficiently
handle such imbalance, either by shifting it around the partici-
pating processes or by overlapping multiple, possibly partially
dependent, iterations.

The BLR format has been used for distributed multi-frontal
sparse factorization [13]. In the Hierarchical Computations
on Manycore Architectures (HiCMA) library, the StarPU
runtime [14] was used to improve the performance of the
distributed BLR Cholesky factorization [15]. However, the
load balance issues of the low-rank factorization have not
been explicitly studied. Previously, load balancing issues in
generating and performing the matrix vector multiply with the
H-matrix have been studied [16]. Compared to matrix gener-
ation and multiplication, the factorization has more complex
dataflow, and for matrix multiplication, the numerical ranks of
the blocks do not change.

In terms of comparing programming models, [17] compared
UPC++ with a Partitioned Global Address Space (PGAS)
implementation of direct linear solvers for sparse symmetric
matrices with two state-of-the-art ones and showed favorable
results. [18] directly compares several task-based runtime sys-
tem using a set of benchmarks to help application developers
make informed decisions on the transition from MPI+X mod-
els. However, all these efforts dealt with regular and certainly
less dynamic applications, and this study will complement
their findings using a BLR factorization. More recently, a
more comprehensive benchmarking suite comparing multiple
parallel programming approaches has been proposed [19].

III. BLOCK LOW-RANK FACTORIZATION ALGORITHM

To store the matrix in BLR format, our implementation
uses a geometric-based partitioning algorithm [20] (to obtain
high compression rate of the matrix) and tolerance-based
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for k = 1, 2, . . . , nt do
//Factorize diagonal block

[Pk, Lk,k, Uk,k] := LU(Bk,k)
for i = k + 1, . . . , nt do

//Compute blocks in panel column

Li,k := Bi,kU
�1
k,k

end for
for j = k + 1, . . . , nt do

//Compute blocks in panel row

Uk,j := L�1
k,kPkBk,j

end for
for i = k + 1, . . . , nt do

for j = k + 1, . . . , nt do
//Update trailing block

Bi,j := Bi,j � Li,kUk,j

end for
end for

end for
(a) LU factorization, where nt is the
numbers of the blocks in the matrix row
or column.

⇧row = ;, ⇧col := ;, r := 0, ⇡1 := 1
while not converged do

// increment numerical rank

r := r + 1
// generate pivot row

y:,r := bT
⇡r,: � y:,1:r�1v

T
⇡r,1:r�1

// pick pivot column

⇡r := argmaxj(|yj,r| : j 62 ⇧col)
⇧col :=⇧ col [ {⇡r}
// generate pivot column

v:,r := b:,⇡r � v:,1:r�1y
T
⇡r,1:r�1

// pick pivot row

⇡r := argmaxi(|vi,r| : i 62 ⇧row)
⇧row :=⇧ row [ {⇡r}
// convergence check

kEk := kV:,1:rkkY:,1:rk
if r == 1 then kAk := kEk
if kEk  ⌧kAk then break;

end while
(b) ACA compression to compute a low-
rank V Y T form of a block B.

Fig. 1. Low-rank matrix factorization and compression algorithms.

recompression [21], [22] during the factorization, for all the
low-rank off-diagonal blocks. For the applications of interest,
with LU, when the matrix is properly ordered and partitioned,
many of the off-diagonal blocks can be well approximated
using small ranks. As a result, when n is the dimension of
the coefficient matrix, BLR has the potential to reduce the
storage and computational complexities of factorization to
O(n1.5) and O(n2) from O(n2) and O(n3) when using the
dense matrix format, respectively [12]. All diagonal blocks are
stored in the dense format and treated as dense with regard to
computations.

At each step of factorization, we first compute the LU
factorization of the leading dense diagonal block using the
LAPACK subroutine dgetrf. Then, the off-diagonal blocks
of the leading block row and column, commonly known as
panels, are factorized using the BLAS triangular solve dtrsm
with the lower- and the upper-triangular factors of the diagonal
block, respectively. These panel blocks are then used to update
the trailing submatrix block by block. Figure 1(a) shows the
resulting factorization algorithm.

In BLR format, the off-diagonal blocks can be either low-
rank or dense. Thus, when updating the trailing blocks Bi,j

on Figure 1(a), each of the three blocks involved, Bi,j ,
Li,k, and Uk,j can be either dense or low-rank, giving eight
potential configurations for the updating kernel. We update
these blocks according to the approach that would minimize
the floating-point operation (FLOP) count (see Figure 2 for
an illustration). Compared with the dense-block update that
requires O(ninjnk) FLOPs, the low-rank update only requires
O(ninj min(ri,k, rk,j)) FLOPs, where ri,k and rk,j are the
respective numerical ranks of the blocks Li,k and Uk,j , and
nk is the dimension of the k-th diagonal block. As a result,
when the blocks have small ranks (i.e., ri,k, rk,j ⌧ nk), low-
rank compression can significantly reduce the FLOP count.

To avoid the increase in the numerical rank while main-
taining the user-specified accuracy, we use Adaptive Cross
Approximation (ACA) [21], [22] to recompress the low-rank

block after each update. As shown in Figure 1(b), at each step
of ACA, we compute the pivot row (and column) by multi-
plying the corresponding row of bYi,j (and bVi,j) with bVi,j (or
bY T
i,j). Thus, we do not explicitly form the dense representation

of the whole low-rank block. The algorithm terminates when
the user-specified accuracy of the approximation is obtained.
As a result, the numerical rank of each block may change at
each step of the factorization.

Our LU implementation seeks pivots only within the diago-
nal block, ignoring the potential pivots outside the diagonal
blocks. This pivoting scheme (combined with the matrix
balancing) was sufficient to maintain the numerical stability
of the factorization for matrices arising from the applications
we are interested in.

IV. REQUIRED FEATURES

We highlight some of the most critical features needed in
order to implement an efficient BLR factorization algorithm.
Most of these requirements are generic enough to be applied
disregarding the programming model, but some are particular
for task-based models.

1) Address load imbalance at each step due to variable task
granularities (different sizes of blocks whose numerical
ranks change dynamically).

2) Allow dynamic reallocation of the data that define the
data dependencies among the tasks (to store the low-rank
block whose numerical rank changes, e.g., the numerical
rank could increase).

3) Handle the dynamically changing size of the data to
be sent or received (to send the low-rank block whose
numerical rank is known only at run time).

Fig. 2. Illustration of algorithm updating a low-rank block. When a dense
block Bi,j is updated using two low-rank blocks, Li,k = Vi,kY T

i,k and
Uk,j = Vk,jY T

k,j , we first compute the small matrix T := Y T
i,kVk,j . We

then multiply T with either Vi,k or Y T
k,j , depending on the required FLOP

counts. Finally, Bi,j is updated with the low-rank matrix, e.g., Bi,j := Bi,j�

Vi,k(TY T
k,j). Similarly, to update a dense block using a low-rank block and

a dense block, we first merge the dense block into the low-rank block, e.g.,
Bi,j := Bi,j � Vi,k(Y T

i,kBk,j). On the other hand, if Bi,j is a low-rank
block, we can then directly merge the low-rank representation of the update
with the original low-rank representation of Bi,j , i.e., Bi,j := bVi,j

bY T
i,j ,

where bVi,j = [Vi,j ,�V̄i,j ] and bYi,j = [Yi,j , Ȳi,j ], and Vi,jY T
i,j is the

original low-rank representation of Bi,j before the update, while �V̄i,j Ȳ T
i,j

is its low-rank update to be applied.
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4) Provide the means to overlap communication with com-
putation (e.g., using a communication thread). A fork–
join programming model (e.g., with MPI + OpenMP)
without dedicated communication tasks or threads may
not be sufficient.

5) The ability to specifically highlight the critical path of
the algorithm, and prioritize its execution.

6) Define task or data dependencies at runtime (e.g., de-
pends on the input matrix due to empty blocks, though
the dependencies are not changed during the factoriza-
tion).

7) Support heterogeneous systems (e.g., the ability to of-
fload work to GPUs) and can manage devices tasks
automatically

Most of the target programming models have some level
of support for these features, even if in some instances the
burden of handling concurrency (or potential parallelism)
is on the developer. All MPI-based approaches (flat-MPI,
MPI+OpenMP, and AMPI) claim support for asynchronous, or
non-blocking, communications and for collective communica-
tions. In addition, AMPI supports load balancing via migration
of computations to a less busy peer and communication
computation overlap by a highly oversubscribed approach, but
behaves the same as MPI for other features.

At the current stage, PaRSEC supports all but (3), where
on the receiver a fixed size temporary buffer is used. In
addition, we did not use feature (2) in our current PaRSEC
implementations of BLR factorization (we only send the
required data, but need a larger buffer). Thus, our current
PaRSEC implementation requires two additional parameters
for specifying the maximum numerical rank of each block,
and specifying the size of the buffer (i.e., the minimum rank
rmin and the ratio rrate with respect to the block sizes such
that the maximum rank for the (i, j)-th block is given by
max(rmin, rrate ·min(ni, nj))). While these parameters could
have been the target of an autotuning campaign, we use in this
study default values that are selected by the developers; they
might not be optimal but they should be relatively close. In
our experiments, the maximum rank is set such that it is larger
than the ranks chosen during the factorization, leading to a
larger memory requirement for the PaRSEC implementation
compared with the other implementations.

V. MPI-BASED IMPLEMENTATIONS

In the following sections we describe the design and
distributed-memory implementation of an optimized version of
the BLR LU algorithm using different programming models.
First, we explore an MPI-based version (Flat MPI), and then
extend it with the integration of OpenMP (MPI+OpenMP).
To facilitate the handling of the imbalance and minimize the
waiting time, we also explored an oversubscribed model for
the Flat MPI approach using Charm++ AMPI layer.

A. Flat MPI Programming Model

To parallelize the BLR factorization on distributed-memory
computers, our first implementation follows the ScaLAPACK

LU implementation and is based on the Flat MPI programming
model. We arrange the MPI processes on a p-by-q 2-D grid
and distribute the blocks in a Two-Dimensional Block-Cyclic
(2DBC) fashion among the processes (each block is stored in
a contiguous memory region). Then, to factorize the matrix,
each process updates and factorizes only its local blocks.

To gather the nonlocal blocks that are needed to update the
local blocks from another process, each process creates two
MPI sub-communicators: one for the processes in the same
column of the process grid and the other for the processes
in the same row. Then, at each factorization step, the blocks
in the current panel are broadcasted using these two sub-
communicators. Since the numerical rank of a low-rank block
can change after each update, the processes involved in the
broadcast must be informed of the size of the data prior to
the broadcast, so the communication of the low-rank block is
divided into two messages: the first message propagates the
current numerical rank, and the second message the low-rank
block data.

The LU with local pivoting is relatively simple to implement
in the Flat MPI programming model especially with the 2DBC
distribution. However, the collective communications required
for the panel update that executes within the panel sub-
communicators introduce a synchronization at each factoriza-
tion step. When load imbalance exists among the processes at
each factorization step (e.g., for the trailing submatrix update
due to the different sizes and types of the blocks), many
processes will idle waiting for the slowest process at these
synchronization points, leading to a significant performance
lost. We evaluated the effects of standard techniques (e.g.,
lookahead, accumulated update with multiple panels, balanced
block sizes) without significant benefits.

B. Flat MPI with Charm++/AMPI

Charm++ is a runtime system that builds on three main
concepts: 1) over-decomposition, where the work and data are
decomposed to more than the number of available processing
elements; 2) asynchronous message-driven execution, where
a ”process” (chare in the Charm++ lingo) never wastes the
physical resources while waiting on communication comple-
tions, by allowing other ”processes” to take over the physical
cores and progress their own work; and 3) migratability, where
the data and work can move among the processing elements.
Combining these three features provides the potential to dy-
namically balance the load and hide the communication.

AMPI provides an MPI implementation that is built on
top of the Charm++ framework. It uses user-level threads
instead of OS processes to allow several MPI processes on a
single physical core, providing the benefits mentioned above
to the MPI code. It has been shown that AMPI can improve
the performance of the Flat MPI implementation for many
imbalanced applications and benchmarks [3] [23].

Porting the Flat MPI implementation to use AMPI requires
minimal effort. We only need to change the name of the main
routine to mpi_main, and to switch the compiler and linker
to the ones required by AMPI. Setting the oversubscription
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factor could be challenging, but in our case the imbalance
was reproducible and relatively enough to allow us to tune
the oversubscription parameter manually. Our expectation was
that the oversubscription would be highly beneficial, as the
MPI processes are spending a significant amount of their
execution time blocked on MPI_Bcast, and thus another
process on the same node could then utilize the physical core
for computations—thus reducing the idle time of the core.

C. OpenMP Task Programming Model

To manually remove the synchronization points, our sec-
ond implementation relies on the OpenMP task programming
model. Then, at run time, the OpenMP scheduler executes both
computational and communication tasks of the factorization
as their dependencies are resolved. In our implementation, we
cannot use the memory pointers to the required data to track
the data dependencies among tasks because the compressed
blocks are dynamically freed and reallocated as their numerical
ranks change after each update. Instead, we used a separate
nt-by-nt integer array to keep track of the task dependencies.

With our implementation, the OpenMP runtime manages
the dependency graph of only the local tasks, and does not
form the global dependency graph of the factorization. Hence,
the tasks are scheduled for the execution once all the local
dependencies are resolved. However, when the task needs
to communicate blocks with other processes, the thread will
call MPI_Bcast either to send the local block (its current
numerical rank and then the data) or to receive the non-local
block. Thus, these tasks may block until the corresponding
communication task is scheduled on other processes, contribut-
ing to the idling time of the core.

In order to reduce the number of tasks that are blocked
due to the call to MPI_Bcast and are keeping the core idle,
we implement nested parallelization. In this implementation,
a single task updates all the blocks in one block column, but
once it is scheduled to execute the update, it launches the
child tasks, each of which updates one of the blocks in the
column. To integrate nicely and maximize the performance
of MPI in a multi-threaded environment, we applied some
of the techniques described in [24]. We create a separate
communicator for each thread (to minimize the cost of MPI
matching and the potential for message overtaking) and use the
communicators in a round-robin fashion on the block columns
at each step of factorization. We place a higher priority on
factorizing the panel column and updating the next panel
column since all the tasks updating the blocks depend on the
panel (see Figure 3).

In order to factorize a large matrix, the MPI buffers used to
store the non-local blocks need to be deallocated once all the
tasks that require the blocks have completed. Thus, we insert
the tasks that set and decrement the counter for each non-local
block, and once the counter becomes zero, the task deallocates
the block.

The BLR factorization has a relatively simple dependency
graph, and the computational kernel, which each task executes,
has been already separated into its own subroutine for our

#pragma omp parallel

#pragma omp master

{

// start pipeline (factor 1st panels)
factorPanel(0, A);

for (int k = 1; k < A.getNt(); k++) {

lookaheadUpdateA(k-1, A);

// factor next panel
factorPanel(k, A);

// update remaining submatrix
// using current (k-1)th panel
remainingUpdateA(k-1, A);

}

}

(a) BLR factorization.

int *tileA = A.getTile(k, k);

int *tileB = k == 0 ? A.getTile(k, k) : \

A.getTile(k-1, k);

#pragma omp task priority(1) \

depend(in:tileB[0:1]) \

depend(inout:tileA[0:1])

{

// factor diagonal
if (A.isLocalRow(k) || A.isLocalCol(k)) {

A.factorDiagBlock( k );

}

// compute off-diagonal L
if (A.isLocalCol( k )) {

for (int i = k+1; i < A.getMt(); i++) {

if (A.isLocalRow( i )) {

#pragma omp task priority(1)

{

A.computeL(i, k);

}

}

}

#pragma omp taskwait

if (!A.isLocal(k, k)) {

A.freeBuffer(k, k);

}

}

// broad cast tiles in panel along the rows
A.iBcastL(k);

}

(b) Factor diagonal block and nested tasks for panel column update

Fig. 3. OpenMP task implementation of BLR factorization: depend

clause is used to specify the data dependencies among the tasks, where
A.getTile(k, k) returns the pointer to keep track of the (k, k)-th block.
Line 11 is a blocking call that factors the diagonal and broadcast the data
to panel row/column. lookaheadUpdateA and remainingUpdateA have similar
structure, where we create an OMP task for the update column. In that task,
we solve the panel for U, broadcast it down the column, then create nested
tasks to compute individual updates.

Flat MPI implementation. Thus, it did not present a significant
challenge to integrate OpenMP tasks to the sequential code.
Furthermore, since many of the application codes already use
OpenMP, this OpenMP implementation does not require any
change to compile the code. Overall, the tasking improved
the performance of Flat MPI by removing the synchronization
points and reducing the idling time of the cores due the load
imbalance. However, correctly scheduling the communication
tasks for optimal performance remained a challenge. As the
process count increases, it becomes more difficult to coor-
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dinate these communication tasks, and some tasks may be
blocked on the communication, keeping the cores idle.

VI. PARSEC IMPLEMENTATION

PaRSEC [5] is a distributed runtime system capable of
scheduling tasks on heterogeneous resources and handle data
movements internally. Tasks are placed based on distributed
data placement, and task migration across nodes is not sup-
ported. Multiple domain specific languages (DSLs) can be
built on top of the runtime system, sharing a common set
of infrastructures (scheduler, communication engine, data rep-
resentation). Out of the currently available DSLs we use for
this study two: the Parameterized Task Graph and the Dynamic
Task Discovery.

A. Dynamic Task Discovery Model

DTD allows the sequential task insertions into the PaRSEC
runtime, hence providing a simpler to use API, capable of
describing distributed algorithms. To use DTD, a user must
specify the distribution of the data that the tasks operate on, the
dependency among the tasks through their data usage, and the
code that the task executes once all the required data becomes
available. DTD can deliver reasonable levels of performance
on small- and medium-sized platforms [4], but has scalability
issues when the number of participating processes become too
large. Recent study in StarPU [25] has demonstrated that by
pruning the task graph it is possible to delay the task insertion
bottleneck, allowing sequential task insertion model to scale
to a larger number of processes. Although DTD could benefit
from such optimization, we did not implement it in our current
version.

In order to free us from manually moving data among
the processes and managing a temporary buffer for the non-
local data, we ported our OpenMP implementation to use
the DTD interface in PaRSEC. Since DTD provides the
sequential insert task interface, as can be seen in Figure 4, our
DTD implementation resembles our OpenMP implementation.
Thus, it was straightforward to implement. At each step, we
first insert the diagonal factorization task dgetrf. We then
compute the off-diagonal blocks of the panel by inserting
the triangular solve tasks dtrsm_l and dtrsm_u for each
off-diagonal block in the lower and upper triangular factors,
respectively. Finally, we insert the tasks to update each block
in the trailing sub-matrix. To recycle the temporary buffer for
the non-local data, we call data_flush when the non-local
data is no longer needed.

In order to transition our MPI implementation to use the
PaRSEC runtime, we had to describe the data distribution
in the PaRSEC data descriptor format. Though the PaRSEC
data collections can be more dynamic and support non-regular,
non-2DBC distributions, we decided to restrict the PaRSEC
data collection to a regular 2DBC distribution, which our MPI
implementation uses, using the API provided by PaRSEC.

BLR factorization requires the runtime system to dynam-
ically change the size of the data being sent or received
since the numerical rank of the block changes during the

factorization. DTD provides this capability by enabling us to
specify the size of the data in the task body. We use this
feature such that our implementation sends only the required
amount of data specified by the current numerical rank. Similar
to Flat MPI, the dynamic size of the blocks imposes an
increased communication load, as the size of the blocks must
be propagated before sending the block data.

In order to maintain the minimum amount of the memory
usage, we would also like to reallocate the data as the low-
rank block is recompressed. PaRSEC provides a flexible data
descriptor that supports irregular data sizes, which allows the
reallocation of the data to accommodate rank changes. Our
current implementation does not use this functionality. Instead,
we specify a maximum rank for each low-rank block to avoid
the reallocation at the cost of higher memory consumption.

for(k = 0; k < NT; k++){

// diagonal DGETRF
insert_task(taskpool, parsec_dgetrf,

1, "getrf",

sizeof(int) , &k ,VALUE,

PASSED_BY_REF, TILE_OF(A, k, k) ,INOUT | AFFINITY,

PASSED_BY_REF, TILE_OF(IP, k, 0),OUTPUT,

PARSEC_DTD_ARG_END);

if(k < NT-1){

for(int i = k+1; i < NT; i++){

insert_task(taskpool, parsec_dtrsm_l,

...);

insert_task(taskpool, parsec_dtrsm_u,

...);

}

data_flush(dtd_tp, TILE_OF(A, k, k));

data_flush(dtd_tp, TILE_OF(IP, k, 0));

for(int i = k+1; i < NT; i++){

for(int j = k+1; j < NT; j++){

insert_task(taskpool, parsec_dgemm,

...);

}

}

}

}

int parsec_dgemm(parsec_execution_stream_t *es,

parsec_task_t *this_task) {

int k, i, j;

double *A, *B, *C;

parsec_dtd_unpack_args(this_task, &k, &i, &j,

&descA, &A, &B, &C);

int rankA = (int)A[0]; // rank of non-local block A
int rankB = (int)B[0]; // rank of non-local block B
int mb = descA->super.nbi[i]; // # of rows in block C
int nb = descA->super.nbi[j]; // # of cols in block C
// perform update
...

// update the output message size
new_count = rank * (mb + nb) + 1;

dtd_update_count_of_flow(this_task, 2, new_count);

}

Fig. 4. PaRSEC DTD implementation of BLR factorization, insertion of the
tasks in sequential order with the data usage information provided. We show
how the data usage is specified only for the dgetrf task: it executes the
code parsec_dgetrf that takes three arguments k, A, and IP, where the
diagonal block A and pivoting IP are passed in by references. The INOUT

flag indicates that the data needs to be read and will be written. AFFINITY
flag indicates that this task will be executed on the process that owns the k-th
diagonal block. PARSEC_DTD_ARG_END signals the end of parameters list.
DTD provides an API dtd_update_count_of_flow to update the size
of the data to be sent in the task body.
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B. Parameterized Task Graph Model

PTG uses a concise, parametrized task graph description
known as Job Data Flow (JDF) to represent the dependencies
between tasks. As we will show in the later section, the
developer needs to specify for each task class: 1) the data
distribution, 2) the possible input parameter values, 3) the
process that will execute the task based on the data dis-
tribution, 4) the data dependency between the task classes
and 6) the actual code body of the task. Based on these
pieces information, PaRSEC can discover and execute all the
available tasks at run time, moving the data as the tasks
are completed—without exploring the whole task graph at
once. Previous results have shown that PTG can deliver a
significant percentage of the hardware peak performance on
heterogeneous distributed machines [26].

In the dataflow description of the PTG DSL, each computa-
tional task is defined by a set of parameters and a number of
input and output flows of data. Unlike in the DTD implemen-
tation, the PTG model requires the programmer to express the
data dependencies between tasks as mathematical relationships
between the tasks’ parameters. These data dependencies, along
with the shape and size of the data, must be specified and
agreed on by the pair of tasks that is sending and receiving
the data.

Figure 5 shows the JDF specification of the diagonal fac-
torization task, where the parameter k defines the task (for
factorizing the k-th diagonal block). The second line specifies
the range of the parameter, showing that all integer values
between 0 and the last diagonal index, NT, are legal for the
parameter k. On the third line, the locality statement specifies
that the k-th diagonal factorization task will be executed by
the process that owns the specified data (i.e., the k-th diagonal
block). Finally, the data dependencies for the tasks are defined
(the data can be initialized by reading from the memory,
outputted to the memory, or passed in or to another task).

For the computational task to be executed, once all the
input flows are locally available, we can simply call (in the
BODY) the computation kernels developed for the Flat MPI
implementation.

Given this dataflow expression in JDF format, the PTG pre-
processor generates the C/C++ code that encodes the symbolic
task representation. Then, at run time, the PaRSEC runtime
explores the task graph, moves the specified data between the
tasks, and executes the tasks as all the required data become
available—without the overhead of task discovery, which our
DTD implementation has to pay.

Our PTG and DTD implementations use the same data
distribution descriptor, allowing a smooth transition from the
DTD to PTG implementation. From programmability perspec-
tive, PTG introduces a completely different parallelization
philosophy, driven by data dependencies and not by control
dependencies. For most of HPC users, converting their parallel
applications (e.g., parallelized with MPI and OpenMP) might
require decent amount of effort. However, the description
provides enough information to the runtime itself to allow for

automatic communication and computation overlap, as well as
collective pattern description, providing a strong base for more
scalable and more efficient implementations.

dgetrf(k)

k = 0 .. NT

: descA(k, k) //locality

RW A <- (FIRST) ? descA(k,k)

<- (!FIRST) ? C dgemm(k_prev, DIAG, DIAG)

-> (END>=START) ? A dtrsm_l(k, START..END)

-> (END>=START) ? A dtrsm_u(k, START..END)

RW IP <- IP ipiv_in(k) [type = PIVOT count = NB]

-> IP ipiv_out(k) [type = PIVOT count = NB]

/* Priority */
;1

BODY

{

// Factorizing diagonal block (k, k)
int mb = descA.nbi[k];

double *dA = &(((double*)A)[1]);
iinfo = LAPACKE_dgetrf(LAPACK_COL_MAJOR,

mb, mb, dA, mb, ipiv);

}

dgemm(k, i, j)

...

RW C <- (k == 0) ? descA(i, j) : C dgemm(k-1, i, j)

[count = COUNT_C]

-> (k == lastk && i == j) ? A dgetrf(m)

[count = COUNT_C]

...

/* Priority */
;(j == k+1 ? 1 : 0)

BODY

{

...

// update the output message size
this_task->locals.COUNT_C.value = 1 + ranks * (mb + nb);

}

Fig. 5. PaRSEC PTG specification of the diagonal factorization tasks: defining
the parameter space, data locality, and data dependencies, written in JDF.
In the figure, “RW” specifies that these diagonal factorization tasks both
read and write the data (equivalent to “INOUT” in DTD), while the left-
arrow and right-arrow show where the data is read from and written to
at the completion of the task, respectively: e.g., for reading the data A,
“descA(k,k)” indicates that the data is read from the memory at the
initialization, while “C dgemm(k_prev, DIAG, DIAG)” indicates that
the task dgemm(k_prev, DIAG, DIAG) will send the data C, which
the diagonal factorization uses as A. The “type” combined with “count”
indicates the temporary buffer size for sending and receiving the data. It is
possible to change the size of the data to be sent (e.g., when the numerical
rank changes after the recompression), by changing the local value passed to
“count” in BODY.

VII. PERFORMANCE EVALUATION

In addition to evaluating the effort needed for each imple-
mentation qualitatively, here we compare the performance of
the models quantitatively.

A. Experimental Setup

For our experiments, we used a software package called
ppohBEM [27] that numerically solves the integral equations
for simulating the electrostatic field based on the boundary
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Fig. 7. Test matrices information

element method. In particular, we used the BLR matrices
generated by the software package called HACApK [20],
which uses the low-rank matrix format for solving dense
linear systems of equations. To compute the appropriate matrix
permutation and partition for generating the low-rank matrix,
HACApK uses the geometrical information associated with the
underlying physical problem such that the off-diagonal blocks
of large dimensions become low-rank. Figure 7 shows the size
information of our test matrices, and their initial numerical
ranks are shown in Figure 6.

We compiled the entire software stack using Intel Par-
allel Studio XE 2019 suite and linked with the cor-
responding MPI and OpenMP library. We used PaR-
SEC library in the master branch as of June 2019 with
DTD dtd_update_count_of_flow API in development
branch, and the release version 6.9.0 of Charm++. Our exper-
iments were conducted on Bridge cluster located at Pittsburgh
Supercomputing Center (PSC). Each compute node has 2 Intel

Haswell (E5-2695 v3) CPUs with 14 cores per CPU, running
at 2.3–3.3 GHz, and are interconnected using Intel Omni-Path.

Experiments were run using all 28 cores per node starting
from one node through up to 16 nodes (448 cores), which were
enough to show the overall performance trend. Results for the
1ms dataset starts from 4 nodes due to memory constraint. For
the Flat MPI model, each core has one process; for MPI+OMP,
the best configuration we observed is with two processes per
socket (with the socket cores evenly divided between the
processes), so a total of four MPI processes per node. For
the AMPI model we use the SMP mode, with two processes
per node, each with 14 threads, and set the virtual process
number to be three times the physical core counts. Finally,
for PaRSEC implementations we have one process per node
with one core dedicated to communication thread, and the
rest as computation threads. To avoid non-uniform memory
access (NUMA) effect for data accesses, PaRSEC data must
be initialized from all the threads.

B. Experimental Results
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Fig. 8. The average wait time of a MPI process in a collective call for the
flat MPI model, shown as percentage of total execution time. Minimum and
maximum shown as well

1) Flat MPI: In our experiments with the 2DBC distri-
bution of the blocks, the total computational load was well
balanced among the processes. However, at each step of the
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factorization, the different sizes and ranks of the blocks created
significant load imbalances among the processes. Since our
Flat MPI implementation introduces global synchronization,
all the processes have to wait for the slowest processes, and the
accumulated idle time due to the load imbalance can become
significant in the total factorization time. This observation
had motivated us to explore alternative programming models
besides Flat MPI.

Figure 8 illustrates these load imbalances for the three
test matrices. To measure the imbalance, we put a barrier
before each broadcast and accumulated this wait time for each
process. As shown in the figure, the average idle time can be
as high as 77% of the execution time, while the error bars
indicate that the total computational load among the processes
has a much smaller variation for most cases.

Thus, the existence of such large imbalance opens opportu-
nities for oversubscription-based approaches to translate this
wasted waiting time into useful computation time for another
thread. Moreover, in the case where over 50% of the time
is wasted in average on all processes, it seems extremely
plausible that oversubscription could drastically reduce the
wasted time and therefore minimize the time-to-solution.
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Fig. 9. Execution time of each model on different datasets, top) 338ts, middle)
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and 1050 seconds respectively. Both X- and Y-axis are plotted on log2 scale.
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2) AMPI: In Figure 9 the green and the pink lines show the
results comparing AMPI with Flat MPI. By oversubscribing
the cores, we expect AMPI to be able to reduce the idle
time, thus achieving better performance than the Flat MPI
model. Unfortunately, the result contradicts our expectation.
To investigate why the AMPI is taking more time to execute,
we timed the different sections in the Flat MPI/AMPI im-
plementation using a smaller test dataset on a single node
(28 processes, 84 virtual processes). Figure 10 shows the
trace for one process. FactorDiag includes dgetrf and the
resulting broadcast to panel row and column. PanelUpdate
computes the panel, BCastPanel broadcasts the panel blocks
to the corresponding column or row processes. UpdateRemain
is the computation of the update kernel on trailing submatrix.

Since we oversubscribe by 3:1, AMPI’s UpdateRemain time
is roughly 1/3 of Flat MPI’s time. But the AMPI BCastPanel
time is much larger and is the reason for the longer execution
time. We varied the oversubscription factor from 1 to 5, and
3 was the best configuration.

BCastPanel
FactorDiag
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UpdateRemain1
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Fig. 10. Execution stream of the different sections for one selected process,
top) Flat MPI, bottom) AMPI. Most of the BCastPanel time are likely idle
time

3) MPI+OMP: In Figure 9, in addition to the factorization
time, the black line shows the average total compute time for
each process, as obtained from the Flat MPI model result.
It also has ticks for the minimum and maximum among the
processes as well. The line serves as an unattainable lower
bound of the execution time, as it represent the most favorable
scenario, one that only accounts for computational costs and
completely disregard all costs related to data movements.

The first thing we notice is that Flat MPI model performs
the worst among the remaining tested programming models,
all other models perform better at some degree. This is
expected as the strongest point of all the other approaches is
to somewhat relax the strong synchronization inherent to the
Flat MPI model. Second, MPI+OMP scales well as the number
of nodes increases, but there are still limitations to prevent it
from obtaining better performance, as we will analyze later.

4) PaRSEC DTD: The DTD implementation performs bet-
ter than MPI+OMP at the beginning, which can be attributed
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to its finer-grain dependency, further removing the synchro-
nization imposed on block columns. But PaRSEC DTD has
it’s own issues, mainly with regard to the scalability of the
sequential task insertion. As the node count increases, the
performance begins to deviate from that of the PaRSEC PTG
version to finally become worse than the Flat MPI result for
the human 4⇥ 4 dataset on 16 nodes. We believe that as we
strong scale, the overhead of PaRSEC DTD task discovery
starts to take a bigger portion of the execution time, and the
discovery and insertion of local tasks being slower than the
execution of already inserted tasks. DAG trimming technique
proposed in [25] likely can help mitigate the problem but is
not implemented in this case.
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right) Detail breakdown of the diagonal factorization task for MPI+OMP
model

5) PaRSEC PTG: The PTG implementation performs con-
sistently better than the other models. Not only it removes
all global synchronizations (replacing them with fine grain
synchronizes at the task level), but also creates more op-
portunity for communication computation overlap; it has the
features allowing us to specify higher priorities to diagonal
tasks. Given the disparity between diagonal/off-diagonal com-
putation loads, this capability ensures high levels of parallel
workloads and cores occupancy by directing the runtime to
follow, even losely, the algorithmic critical path [28].

To understand the improvement from MPI+OMP to PaR-
SEC PTG, we profiled the executions on a single node.
MPI+OMP was run with two processes, each on a socket.
The left plot in Figure 11 shows a summary of each thread’s
occupancy information, defined as the summation of all the
computation kernels’ time on a thread divided by the total ex-
ecution time. On a single node, both models achieve over 90%,
and we can attribute the rest roughly to runtime overhead.

But a closer look at the diagonal factorization kernel in
MPI+OMP reveals that all the processes in the current panel
will call this kernel in order to receive the actual diagonal
factorization. Root process will thus complete the computation
then block on the broadcast to panel row and column, while the
receiving processes will directly block on the broadcast. The
right plot in Figure 11 shows that if the kernel is doing only
broadcast (not the root), it takes as long as needed to complete
the broadcast and exit. But on root process it will block on
the broadcast for additional time after the computation.

On the other hand, PaRSEC delegates all the communication
to a single thread dedicated to communications and uses
non-blocking communications. It removes this synchronization

point and likely provided the performance benefits we observe
in Figure 9 as we scale.

VIII. CONCLUSION

In this paper, we implemented BLR LU factorization
as a test case using five programming models: Flat MPI,
MPI+OMP and alternative models AMPI/Charm++, PaRSEC
DTD, and PaRSEC PTG. We summarized our experience
implementing the algorithm using these models, and evaluated
their respective performance. The results indicate the potential
for the task based approach to address the load imbalance
and outperform Flat MPI. Overall PaRSEC PTG achieved the
best execution time and scalability, with a certain cost on
the programming effort. PaRSEC DTD provides a smoother
transition to task-based runtime but face scalability issues as
the number of nodes grows. MPI+OMP can obtain reasonable
results and might be more familiar and easier to implement.
AMPI’s result for this test case is unexpected and warrants
further investigation.

Several features needed for an efficient BLR factorization
are highlighted, including necessary capabilities to address
load imbalance, handle dynamic data sizes, reduce synchro-
nization, and provide the ability to highlight the algorithm
critical path. We hope that this work can motivate future
adoption of alternative programming models to tackle the
irregular workloads arising from the system or the application.

Our current implementation is designed as a benchmark
to compare different programming models. It is possible to
further optimize some of the implementations. For exam-
ple, instead of using the 2DBC distribution, we may evenly
distributed the dense tiles close to the diagonal among the
processes, which may greatly improve the load balance and
improve performance. Since PaRSEC handles all the data
movement, the user just needs to define a new data distribution,
making it easy to use a different data distribution. Other
programming models like Task-aware MPI (TAMPI) [29]
implements the interoperability services between MPI and
OpenMP tasks, and can be further investigated. We observed
a higher memory consumption of PaRSEC based approaches
due to the temporary buffer used in the runtime, a quantitative
evaluation in this aspect will also be interesting in the future.
Finally, GPU kernels can also be added to offload work and
speed up computation.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Experiments were performed on the Bridge system at Pittsburgh
Supercomputing Center (PSC). We compiled the entire software
stack using Intel Parallel Studio XE 2019 suite and linked with the
corresponding MPI and OpenMP library. We used PaRSEC library
in the master branch as of June 2019 PaRSEC bitbucket Link with
DTD dtd_update_count_of_�ow in a development branch, and the
release version 6.9.0 of Charm++ Link. The implementations of the
algorithm is in a private bitbucket repository at the moment.

Experiments were run using all 28 cores per node starting from
one node through up to 12 nodes (336 cores). We repeated several
sample runs and did not observe signi�cant performance variation.
So in the result plot only one is shown.

ARTIFACT AVAILABILITY
Software Artifact Availability: —Some author-created software

artifacts are NOT maintained in a public repository or are NOT
available under an OSI-approved license.

Hardware Artifact Availability: —There are no author-created
hardware artifacts.

Data Artifact Availability: – There are no author-created data
artifacts.

Proprietary Artifacts: (One of these options remains.)
— None of the associated artifacts, author-created or otherwise,

are proprietary.

List of URLs and/or DOIs where artifacts are available:

(1) https://bitbucket.org/icldistcomp/parsec
(2) http://charm.cs.uiuc.edu/software

CONSIDERATION FOR SCC:
(Authors did not reply.)

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Operating systems and versions: GNU Linux

Compilers and versions: Intel Parallel Studio XE 2019 suite

Applications and versions: HACApK for Block low rank genera-
tion

Libraries and versions: Charm++ 6.9.0

Key algorithms: LU factorization

Input datasets and versions:

Paper Modi�cations:

Output from scripts that gathers execution environment informa-
tion.

ARTIFACT EVALUATION
Veri�cation and validation studies: We calculate the backward

error of the solution computed

Accuracy and precision of timings: Timing are donewithMPI_Time
or through the PaRSEC pro�ling system. Timing is more precise
than microsecond.

Quanti�ed the sensitivity of results to initial conditions and/or
parameters of the computational environment: No signi�cant system
variations were observed

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system.
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