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Abstract—Solving linear Diophantine systems of equations is applied in discrete-event systems, model checking, formal languages

and automata, logic programming, cryptography, networking, signal processing, and chemistry. For modeling discrete systems with

Petri nets, a solution in non-negative integer numbers is required, which represents an intractable problem. For this reason, solving

such kinds of tasks with significant speedup is highly appreciated. In this paper we design a new solver of linear Diophantine systems

based on the parallel-sequential composition of the system clans. The solver is studied and implemented to run on parallel

architectures using a two-level parallelization concept based on MPI and OpenMP. A decomposable system is usually represented by a

sparse matrix; a minimal clan size of the decomposition restricts the granulation of the technique. MPI is applied for solving systems for

clans using a parallel-sequential composition on distributed-memory computing nodes, while OpenMP is applied in solving a single

indecomposable system on a single node using multiple cores. A dynamic task-dispatching subsystem is developed for distributing

systems on nodes in the process of compositional solution. Computational speedups are obtained on a series of test examples, e.g.,

illustrating that the best value constitutes up to 45 times speedup obtained on 5 nodes with 20 cores each.

Index Terms—MPI, OpenMP, linear diophantine system, Petri net, clan, speed-up

Ç

1 INTRODUCTION

SOLVING linear Diophantine systems is applied in a wide
range of disciplines, such as in discrete-event systems

[1], model checking [2], formal languages and automata [3],
logic programming [4], cryptography [5], networking and
signal processing [6], and chemistry [7].

Petri nets [1] represent a discrete-event system widely
applied for verification of communication protocols; evalu-
ating network performance; manufacture control and busi-
ness processes managements; solving tasks in chemistry
and biology; and modeling concurrent computations. There
are two basic approaches to check models represented by
Petri nets. These are based on: (1) the model state space
(called a reachability graph), and (2) solving linear Diop-
hantine algebraic equations and inequalities. Other auxil-
iary techniques, such as reduction and decomposition, are
also applied. In most cases, solving a Diophantine system,
either homogeneous or heterogeneous, requires results in
non-negative integer numbers, which represents an intrac-
table problem. Further, it is rather difficult to predict the
number of basis solutions and the system solving time
based on its size [8].

Solving a homogeneous Diophantine system in non-neg-
ative integers is used for such powerful Petri net analysis
techniques as linear invariants of places and transitions,
siphons, and traps. Note that solving heterogeneous sys-
tems and systems of inequalities is reduced to solving
homogeneous systems [9]. For solving a homogeneous sys-
tem, an algorithm was proposed by Toudic [10] and further
refined by Colom and Silva [11]. The algorithm was imple-
mented in manifold software systems for Petri nets analysis,
including module Adriana [1], developed by the first author
as a plugin for system Tina [12].

In [13], a technique has been introduced to speed up solv-
ing a linear system involving decomposition into subsets of
equations called clans. This technique can be considered
supplementary to the traditional methods for parallel solv-
ing of dense [14] and sparse [15] systems. Decomposability
of a matrix into clans is its intrinsic property, based on the
sign of its elements. As a result of the decomposition, a set
of clans is obtained. The minimal clan size limits the granu-
larity of the technique since after the decomposition we can
only unite some clans to obtain bigger ones. Possible vari-
ance in clan size introduces some initial imbalance. A
speedup is obtained as a consequence of sets of systems,
having lesser dimensions, being solved instead of solving
the source system directly.

In this paper, we describe a recent implementation of the
decomposition into clans [13] on modern parallel architec-
tures using multiple nodes with MPI communications
between them [16], [17], [18], and OpenMP [19], [20] to
extract additional parallelism within the nodes’ multiple
cores. The software developed is called ParAd (Parallel
Adriana). For the parallel implementation of ParAd, we
transform the sequential composition of clans specified in
[13] into a parallel-sequential composition to employ
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multiple computing nodes. To use OpenMP, we transform
the Toudic algorithm to provide maximal possible indepen-
dence of passages for basic loops. To compensate for the ini-
tial imbalance of the decomposition into clans, we develop
and verify protocols of dynamic scheduling of tasks for MPI
nodes. Using multi-core architectures provides up to 15�
speedup on 20 cores versus one core, while the composition
yields an additional acceleration of 2–3� on 5 nodes.

2 SOLVING SYSTEMS VIA COMPOSITION OF

THEIR CLANS

The technique of solving systems via composition of their
clans (functional subnets) has been developed first for Petri
nets [21], [22] and then generalized on an algebraic structure
of rings with a sign [13].

Let us consider a homogeneous linear system

A~x ¼ 0;

over a ring with a sign, and suppose that there is an algo-
rithm to find its general solution and to represent it in the
following form:

~x ¼ G~y;

where G is a matrix of basis solutions and ~y is a vector of
independent free variables.

A nearness relation on the set of the system equations is
defined in the following way: two equations are near if they
contain at least one variable with a nonzero coefficient of
the same sign. A clan relation is defined as a transitive clo-
sure of the nearness relation, and a subset obtained as a
result of equation partitioning is called a clan. After the
decomposition into k clans, a system matrix is represented
as a union of a block-column matrix and a block-diagonal
matrix [13]

A ¼
A1

^

A1

_

0 ::: 0

A2

^

0 A2

_

::: 0
::: ::: ::: ::: :::

Ak

^

0 0 ::: Ak

_

2
666664

3
777775
;

where an ith block-row matrix represents a clan Ai that is

specified by a pair of nonzero matrices Ai ¼ ðAi

^

;Ai

_

Þ. The
block-column matrix A

^

¼ ðA1

^

; . . . ; Ak

^

ÞT specifies connection
of clans and the corresponding variables are called contact
variables; the block-diagonal matrix corresponds to the inter-

nal variables of clans defined by Ai

_

. It has been proven [13]
that a contact variable belongs to exactly two clans, wherein
one clan contains it with a positive sign and the other clan
contains it with a negative sign. As a consequence, a decom-
posable matrix is a sparse one. The complexity of the
decomposition algorithm is linear in the number of nonzero
elements of matrix A. Thus, for a contact variable, repre-

sented by a column of matrix A
^

, nonzero elements are situ-

ated in exactly two matrices, e.g., Ai

^

and Aj

^

entering one of
them with the positive sign and the other with the negative
sign. Based on this property, the idea for writing the compo-
sition system consists in equating the variable values
obtained using bases of the two mentioned clans.

The compositional algorithm (Fig. 1) of solving a linear
system [13] consists of the following steps:

� decompose a system into its clans;
� obtain a general solution for each clan 1 � j � k,

where k is the number of clans

~xj ¼ Gj~yj;

� solve the composition system

F~y ¼ 0;

where matrix F is obtained for variables connecting
a pair of clans in such a way that their values, com-
puted according to each clan basis solution, coincide;
its solution is represented as~y ¼ R~z;

� recover the source system solution as

~x ¼ H~z;

where H ¼ GR and G is a joint matrix of solutions
for clans.

As demonstrated in [13], the compositional algorithm
enables a computational speedup because it results in solv-
ing a set of systems of lesser dimension that can also be eas-
ily implemented and computed in parallel.

Note that the clan size limits the granularity of this tech-
nique because the decomposition algorithm produces a set
of the minimal clans, which represents a basis for the clans
structure regarding the operation of union [13]. Obtained
clans of varying sizes introduce some imbalance, which
should be mended during the compositional solution.

When the composition system is rather big compared to
clans, it was advised [13] to implement the composition in a
sequential way; the corresponding process has been repre-
sented as a collapse of the decomposition graph. The most
fine granulation is obtained for a pairwise (edge) collapse,
where at each step a system is solved, corresponding to the
composition of a pair of connected clans (Fig. 2). In the
decomposition graph, a vertex corresponds to a clan and an
edge corresponds to the contact variables entering both
clans; the edge weight equals the number of common con-
tact variables. At each step of collapse, an edge is contracted

Fig. 1. Solving a system with simultaneous composition of its clans.
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that corresponds to solving the composition system for the
pair of clans connected by the edge.

To gain an additional speedup from a fast implementa-
tion of the approach on parallel architectures, we here offer
a parallel-sequential process of the decomposition graph
collapse. It is rather difficult to formalize the task comple-
tely in terms of graph theory because systems started in par-
allel are not solved at the same time. This is especially
significant when solving a system in non-negative integer
numbers due to somewhat unpredictable solve time. An
example of such a parallel-sequential collapse is shown in
Fig. 3; its width is 20, and the maximal number of workers
is 4. Contracting 4 edges on the first step means solving 4
systems in parallel by 4 workers; on the second step, 2
systems are solved; on the third step, 1 system is solved.
However, organizing the process by steps seems inefficient
because of the various time it takes for solving systems even
of the same size.

Therefore, because of the various clan sizes and unpre-
dictable system solve times, we implement a dynamic
scheduling approach based on a greedy strategy of an edge
choice. A greedy strategy works rather well for the sequen-
tial collapse [13]. When starting jobs for solving systems on
edges in parallel, we should use an independent set of the
graph edges [23]. The dynamic scheduling uses two sub-
graphs: a current working subgraph D and a subgraph con-
taining the set of contracting edges P . If there are free MPI
workers, an independent edge (together with edges of P ) is
chosen, removed from D, and added to P , and the corre-
sponding job is started. When there are no independent
edges in a graph D [ P and both graphs are not empty, we
should wait until an ongoing job finishes. When a job

finishes, the corresponding edge is removed from P ,
returned to D, and contracted according to the rules speci-
fied in [13]. When an edge is contracted, its two vertices are
replaced by a single vertex, and sets of their incident edges
merge; contraction of a triangle leads to obtaining edges
with weights equal to a sum of weights for edges adjacent
to the contracted edge.

3 OVERALL ORGANIZATION OF PARAD

We implement the technique of the system (matrix) decom-
position into its clans, and, further, solve the corresponding
linear homogeneous system of equations through composi-
tion of clans [13] in the domain of integer numbers (Diop-
hantine systems) independently from employed solvers of
systems. This enables us to use different solvers, compare
them, and solve specific tasks such as obtaining non-nega-
tive solutions valuable for analysis of Petri net. The general
scheme of the ParAd layout is shown in Fig. 4.

ParAd consists of the following basic subsystems:
decomposition into clans, simultaneous composition, paral-
lel-sequential composition, and a set of solvers. We develop
a specialized solver, ParTou, for obtaining non-negative sol-
utions on multi-core architectures studied in the next sec-
tion, and use a flexible solver 4ti2 [24] for the entire integer
domain and its given subdomains. Other solvers can be
integrated into ParAd as well, using the specified interface.

Historically, to manage solving big systems with Adri-
ana, manifold intermediate data for clans have been stored
in temporary files. We preserve this scheme in ParAd
because using files allows more flexibility to attach external
solvers. Note that, should optimization for a definite type of
system and a set of solvers be required, the software can be
easily modified for using data structures stored in RAM.
Additionally, it can be implemented as a library instead of a
standalone compositional solver.

4 PARALLEL IMPLEMENTATION OF TOUDIC

ALGORITHM USING OPENMP

The Toudic algorithm [10] finds non-negative integer
solutions of homogeneous linear Diophantine systems.
Originally, it was offered for finding place and transition
invariants of a Petri net, which are given by the solutions of
the equations

Fig. 2. Solving a composition system sequentially (edge collapse of a
weighted graph).

Fig. 3. Solving a composition system parallel-sequentially.

Fig. 4. The general scheme of ParAd’s layout.
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~xC ¼ 0;

and

C~y ¼ 0;

respectively, where C represents the incidence matrix of a
Petri net [25]. Invariants play a central part in investigating
structural properties of Petri nets, e.g., properties that do
not depend on the initial marking. We use an improved var-
iant of the algorithm presented by Colom and Silva [11].

Traditionally, the algorithm description is provided for
finding the place invariants, and we use this specification
further in the paper. Note that to find the transition invari-
ants, a transposed matrix C is used with the same algo-
rithm. The basic idea of the algorithm is rather simple. At
each passage it cleans a column of matrix C, adding to it
new rows until the obtained matrix equals zero. The same
transformations on rows are applied to a unit matrix, which
finally contains basis solutions. A simplified specification of
the Toudic algorithm follows:

� Step 0. Form a united matrix ðC;XÞ, where X ¼ E;
assign j ¼ 0.

� Step 1. If column j of matrix C contains coefficients
of the same sign, stop; there is no solution with all
the positive components.

� Step 2. Create ðC0; X0Þ in the following way:
– Step 2.1. Copy rows i where ci;j ¼ 0 of matrix

ðC;XÞ into matrix ðC0; X0Þ.
– Step 2.2. For each pair of rows ði; i0Þ, ci;j < 0,

ci0;j > 0 of matrix ðC;XÞ, create a new row
c0i00;k ¼ �ci;jci00;k þ ci0;jci00;k,
x0i00;l ¼ �ci;jxi00;l þ ci0;jxi00;l of matrix ðC0; X0Þ.

� Step 3. Assign ðC;XÞ :¼ ðC0; X0Þ, j :¼ jþ 1.
� Step 4. If C 6¼ 0 goto Step 1, otherwise X is a sought

matrix of basis solutions.
If at each passage column j contains both positive and

negative elements, the algorithm finds basis solutions; oth-
erwise, it stops in a middle. If we are interested in basis any-
way, it requires some minor amendments [11]. At Step 1, for
nonzero elements of column j of matrix ðC;XÞ, the corre-
sponding rows of matrix ðC;XÞ are cleaned. And we pro-
ceed with the next j :¼ jþ 1 column, in case j is not the last
column.

Some optimization improves the performance of the
algorithm [11]. The coefficients ci0;j and ci;j used at Step 2.2
are reduced by their greatest common divisor when obtain-
ing the new row of matrix ðC0; X0Þ. At a passage of the algo-
rithm, instead of the next column, a column that produces
the smallest number of new rows is chosen—namely, a col-
umn j with minimal value of n � p, where n is the number of
negative and p is the number of positive elements ci;j in the
column. Finally, the obtained intermediate basis solutions
X0, before assigning at Step 3, are filtered with regard to the
non-negative integer lattice; only maximal solutions left.

The specified algorithm, including all the mentioned
amendments, was implemented in C in 2005 in the Adriana
software package [1] and delivered as a plugin for system
Tina [12]. Its performance is on par with the best known
tools for Petri nets analysis. Regardless of this success, anal-
ysis of real-life systems in a feasible time—for instance
when modeling sophisticated networking protocols and

airplane control systems—requires performance improve-
ment in a dozen and more times.

To improve performance, we choose to use OpenMP
[19], [20] for the parallel implementation of the Toudic
algorithm. We prefer OpenMP rather than MPI [16]
because elements on a passage can be processed sim-
ply, where there would be heavy load of MPI communi-
cations of data between nodes if implemented on
distributed-memory architectures. In the next section
we consider decomposition of a system into clans for
use on distributed-memory architectures with MPI.

First attempts to directly supply Adriana codewritten in C
with OpenMP directives actually led to slowdown in some
cases because passages of basic loops were too connected.
The algorithm has therefore been completely reorganized to
remove sequential dependencies as much as possible. An
indicator has been added to thematrix row to specify the row
presence and the number of greater elements within the lat-
tice to filter solutions. Instead of sequiential transformations
of rows, indicators are changed in parallel and then all the
rows are reorganized at once in a separate loop. The row indi-
cators allowed the copying and combining of rows, which
constitutes the basic action at a step, in parallel. As a result,
some minor dependencies remain for processing columns
with elements of the same sign, finding the best column, and
filtering solutions expressed with “#pragma omp critical”
and “#pragma omp atomic.” The reduction technique has
been employed for summation and conjunction, for instance
with “#pragma omp simd reduction(+:np,nm)”.

We use the “#pragma omp parallel for” directive of the C
preprocessor for the outer loops on the matrix rows for
employingmultiple cores for independent passages of a loop.
For processing a row, we employ single instruction, multiple
data (SIMD) facilities of a core with the “#pragma omp simd”
directive. The following fragment of a program from ParAd
illustrates the implementation of the parallel copy of the
matrix rows represented in Step 2.1 of the algorithm:

#pragma omp parallel for private(i,k)

for( i = 0; i < nIz; i++ ){

int *C1b = lc( C1, i+1, nc );

int *Cbz = lc( C, Iz[i], nc );

#pragma omp simd

#pragma unroll

for( k = 0; k < nc; k++ )

C1b[k] = Cbz[k];

int *X1b = lx( X1, i + 1, nx );

int *Xbz = lx( X, Iz[i], nx );

#pragma omp simd

#pragma unroll

for( k = 0; k < nx; k++ )

X1b[k] = Xbz[k];

}

Here, matrix C0 is denoted as C1 and matrix X0 is
denoted as X1, vector Iz contains indexes of rows (for a cho-
sen column) the elements of which equal zero, and macros
lc and lx are used to find the pointer to the first element of
the specified row.

Removing zero and non-maximal rows from a matrix is
rather hard work. To avoid doing this, we use the row
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indicator whose value equals zero in case the row is actually
present and should be processed. The useless rows are
removed in an implicit way: they are ignored when creating
rows of a new matrix ðC0; X0Þ at Step 2.

Parallel implementation of Step 2.2 can use the “collapse
(2)” directive to merge two nested loops on i and i0, though
this actually decreases performance. Indeed, for rather big
source data, there is no available number of cores for paral-
lel implementation of nested loops.

An arbitrary matrix contains non-zero elements located
randomly that does not produce much disbalance though
some individual tasks can have matrices of specific forms.
Dynamical load balancing with a chunk of a dozen produ-
ces the best performance improvement of some ten percent
on average. It is achieved adding “schedule (dynamic, 10)”
to the corresponding “#pragma omp parallel for” direc-
tives. The obtained speedup of ParTou compared to
Adriana is discussed in Section VI and illustrated with
tables and diagrams. The maximal speedup achieved on a
20-core node is up to 15�.

5 PARALLEL-SEQUENTIAL IMPLEMENTATION OF

CLAN COMPOSITION ON MPI

Decomposition of a Petri net into its functional subnets
(clans) [21] has been applied to obtain speedup of com-
putations when analyzing models represented by Petri
nets—in particular, for verification of networking proto-
cols [22]. In [13] the technique is presented in an abstract
form applicable to a linear system over a ring with a
sign. In this section we use the decomposition of a sys-
tem into its clans and either simultaneous or parallel-
sequential composition of clans to gain computational
speedup on modern distributed-memory architectures
using MPI [16].

A peculiarity of solving a Diophantine system in non-
negative numbers is the unpredictability of system solv-
ing time and the number of basis solutions, which can be
rather big for small systems [8]. This fact hampers appli-
cation of static analysis and preparatory workload balanc-
ing. Thus, a dynamic scheduling and workload balancing
have been chosen. The master represents a scheduler of
jobs and also implements minor transformations of the
obtained basis solutions by multiplying matrices. A
worker solves a given system. This approach minimizes
the transmitted data: a system is sent from the master to
a worker and a basis solution is sent from a worker to the
master.

Investigations using the MPI Parallel Environment
(MPE) profiler reveal the fact that information exchange
does not constitute a bottleneck, even using a classical
MPI_Send/MPI_Recv pair for data transmission. The mas-
ter is rather available to do scheduling on demand when a
worker becomes free; and on the other side, the master is
not too idle multiplying obtained matrices. With multicore
implementation of GraphBLAS which is used for sparse
integer matrix multiplication, there will be more opportuni-
ties to load cores of the master node. Compared to the
time required to solve a linear Diophantine system in non-
negative numbers, standard MPI communication does not
represent a bottleneck.

5.1 Organization of Workers for Solving Systems

According to the compositional technique [13], a system
must be solved for each of the clans, and then a composi-
tion system must be solved. When the composition system
is particularly big, a collapse of the decomposition graph is
implemented, and a set of systems is solved. The most fine
granulation is obtained via a pairwise collapse, when a
system is solved for each pair of connected clans. The most
frequently required job, though—and the most complex
from computational point of view—is solving a system.
That is why we organize workers for solving systems only.
Decomposition and other auxiliary jobs are implemented
by master. We note that decomposition complexity is
linear in the size of the system, and besides decomposition,
matrix multiplication is required, the time complexity of
which is square in the number of nonzero elements of a
sparse matrix.

A basic protocol, represented in Fig. 5, has been devel-
oped for communication with workers, which suits both
solving systems for clans and collapse (pairwise) of the
decomposition graph. Each message is started with a single
character that specifies its type; the rest of the message con-
tent depends on its type. The protocol is represented with a
Petri net. A place p6 represents a branching—either to pro-
ceed with sending jobs by t5 or finish a worker by sending a
closing message by t6.

A worker sends an ‘R’ (“Ready”) message, consisting of a
single character, and waits tor the master reply. There are
two possible variants of the master reply: ‘W’ (“Work”), fol-
lowed by a job for the worker and ‘C’ (“Close”) to close the
worker as there is no more jobs for this worker. A job’s con-
tent is organized as follows: the system number (an integer)
denoted as z; the system length (an integer) denoted as
lenm; the system (its sparse matrix) of lenm bytes stored in
bufm. Then, solving system with a Solver is called (see
below), and when it is finished, the worker composes a
reply to the master containing the system solution. A reply
is organized as follows: ‘D’ (“Data”) an indicator that data
follows; the system number (an integer) denoted as z; the
basis length (an integer) denoted as lenr; the basis (its sparse
matrix) of lenr bytes stored in bufr. The following simplified
listing specifies the worker code:

Fig. 5. Basic protocol of communicatingmaster with workers (a Petri net).
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while(1){

c = ‘R’;

MPI_Send(&c,1,MPI_CHAR,0,51,

MPI_COMM_WORLD);

MPI_Recv(&c1,1,MPI_CHAR,0,52,

MPI_COMM_WORLD,&status);

if(c1!=‘W’) break;

MPI_Recv(&z,1,MPI_INT,0,53,

MPI_COMM_WORLD,&status);

MPI_Recv(&lenm,1,MPI_INT,0,54,

MPI_COMM_WORLD,&status);

bufm = malloc(lenm);

MPI_Recv(bufm,lenm,MPI_CHAR,0,55,

MPI_COMM_WORLD,&status);

Solver( bufm, lenm, bufr, &lenr );

free(bufm);

c=‘D’;

MPI_Send(&c,1,MPI_CHAR,0,51,

MPI_COMM_WORLD);

MPI_Send(&z,1,MPI_INT,0,56,

MPI_COMM_WORLD);

MPI]_Send(&lenr,1,MPI_INT,0,57,

MPI_COMM_WORLD);

MPI_Send(bufr,lenr,MPI_CHAR,0,58,

MPI_COMM_WORLD);

free(bufr);

}

Each of the messages is additionally specified with its
number for the accurate implementation of the communica-
tion protocol between master and workers, which repre-
sents two-level dynamic scheduling. The first level is
applied for solving a system for clans, the second level is
applied for parallel-sequential composition of clans.

5.2 Communication with Workers for Solving
Systems on Clans

Communication with workers is regulated by the basic pro-
tocol (Fig. 5), which is developed into a more detailed
scheme (represented with Figs. 6 and 7) with regard to a sit-
uation when there is no job for a worker—though it can be
required further for parallel-sequential solving of composi-
tion systems. Overlapping the mentioned two levels is a
direction for future work.

The protocol of master-worker communication specified
by a Petri net and represented in Fig. 5 has been verified
and optimized using the technique studied in [1]. It pos-
sesses the properties of an ideal communication protocol
model: liveness, boundedness, and safeness. This means it
can work for an unlimited time without deadlocks and
overflow of buffers; each action can be implemented from
any valid state.

To keep a few workers waiting for a job to appear, a wait-
ing list is organized by the master. The waiting list consists
of an array waiting_list and its size waiting_num. When
there is no job for a ready worker, its process number is
added to the list:

waiting_list[waiting_num++] = p;

When a worker is required, its process number is taken
from the waiting list:

p = waiting_list[–waiting_num];

When solving systems for clans, there is no situation in
which processes are taken from the waiting list. If the num-
ber of workers is greater than the number of clans, we start
the required number of workers, and the rest enter the wait-
ing list. If the number of workers is smaller than the number
of clans, we start a job for a new clan immediately after
receiving the “Ready” message. After solving the systems
for all the clans, process numbers of ready workers stored
in the waiting list are passed to the composition of clans.

Solving systems for clans on a given number of workers
is represented by the following code:

zs = zf = zc = 0;

while(zs < nz || zf < nz || zc < numprocs-1) {

MPI_Recv(&c,1,MPI_CHAR,MPI_ANY_SOURCE,51,

MPI_COMM_WORLD,&status);

p = status.MPI_SOURCE;

switch(c) {

case ‘R’: // job request

if (zs >= nz) {

waiting_list[waiting_num++] = p;

zc++;

break;

}

c1 = ‘W’;

zs++;

MPI_Send(&c1,1,MPI_CHAR,p,52,

MPI_COMM_WORLD);

MPI_Send(&zs,1,MPI_INT,p,53,

MPI_COMM_WORLD);

buf=system[zs].buf;

len = system[zs].len;

MPI_Send(&len,1,MPI_INT,p,54,

MPI_COMM_WORLD);

MPI_Send(buf,len,MPI_CHAR,p,55,

MPI_COMM_WORLD);

break;

case ‘D’: // data

MPI_Recv(&z,1,MPI_INT,p,56,

MPI_COMM_WORLD,&status);

MPI_Recv(&len,1,MPI_INT,p,57,

MPI_COMM_WORLD,&status);

buf = malloc(len);

solution[z].len = len;

solution[z].buf = buf;

MPI_Recv(buf,len,MPI_CHAR,p,58,

MPI_COMM_WORLD,&status);

zf++;

break;

}

}

Here zs, zf, and zc are the numbers of started jobs, fin-
ished jobs, and closed (waiting) workers, respectively. After
receiving message number 51, the master extracts the
worker process number p from the message status and pro-
cesses the message depending on its type. If the worker is
ready (‘R’), the processing depends on whether there is a
job for that worker. In case there is no job (zs � nz, where
nz is the total number of clans), the worker process number
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is added to the waiting list. Otherwise, a job is created and
sent to the worker. We represent a generalized code using
simple memory buffers as an analog to the sparse matrix
files with two fields: len, the buffer length, and buf, the
buffer address. All the systems are contained in an array
called system while all the solutions are stored in an array
called solution. It is expected that a worker will return the
same system number as the one sent to the worker (z = zs).

5.3 Communication with Workers for Composition
of Clans

Composition of clans is implemented either by simulta-
neously solving a single system or via parallel-sequential
pairwise composition of clans; the corresponding choice is
given with the command line flags “-c” or “-s”, respectively.
The simultaneous composition is implemented by the mas-
ter after it first closes all workers in the waiting list:

if ( numprocs > 1) {

for(p = 0;p < waiting_num;p++) {

c1 = ‘C’;

MPI_Send(&c1,1,MPI_CHAR,waiting_list[p],

52, MPI_COMM_WORLD);

}

waiting_num = 0;

}

Parallel-sequential composition is organized in terms of
tasks that are dynamically scheduled for execution among
the workers. The dynamic parallel-sequential collapse of
the decomposition graph is provided by two functions:
ChooseEdge, which chooses the next edge for the collapse,
returning 1 when an edge has been chosen and 0 otherwise;
and CollapseEdge, which implements a collapse (contraction)
of a previously chosen edge. To coordinate the functioning
of the two routines, two lists of vertices are kept: list ‘e’ of
size n that specifies the actual current graph; and list ‘pe’ of
size pn specifies a set of edges being currently collapsed
(corresponding to systems that are being solved by work-
ers). When an edge is chosen by ChooseEdge, it is removed

from ‘e’ and inserted into ‘pe’. For an edge choice Choo-
seEdge checks list ‘pe’ to avoid choosing an edge with verti-
ces listed in ‘pe’. In this way, processing of independent
subsets of edges is provided. Before the choice, edges of ‘e’
are sorted in the order of descending edge weights for
ensuring a greedy strategy of the edge choice.

The protocol of the master and workers’ interaction for
parallel-sequential composition of clans (Fig. 8) is the most

Fig. 8. Protocol of communicating master with workers for parallel-
sequential composition (a Petri net).

Fig. 7. Communication protocol between master and workers for sending
results – basis solutions (a time diagram).

Fig. 6. Protocol of communicating master with workers for sending a sys-
tem (a time diagram).

1164 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 5, MAY 2019

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 01,2020 at 20:42:43 UTC from IEEE Xplore.  Restrictions apply. 



complex because it takes into consideration the dynamic pro-
cess when new jobs appear only after finishing previous
ones. That is why taking workers from the waiting list speci-
fied by t1, t4, and t5 is the basic way of dispatching jobs to
workers. The central part of the communication protocol rep-
resented by t8, t10 is closing workers when there are no more
available jobs for them. The bottom part represents receiving
and processing a message from a worker. After receiving
data with t18 and processing it with t23 and t32, the communi-
cation protocol returns to the main loop. The protocol repre-
sented in Fig. 8 has been verified and optimized using the
technique studied in [1], considered with more detail in the
previous subsection for the protocol shown in Fig. 5.

Parallel-sequential composition of clans on a given num-
ber of workers is represented by the following code:

while(zs < nz-1 || zf < nz-1 || zc < numprocs-1) {

while(waiting_num > 0 && maybe_edge) {

if(ChooseEdge(‘f’, e, &n, pe, &pn)) {

ce.v1 = pe[pn-1].v1; ce.v2 = pe[pn-1].v2;

ce.w = pe[pn-1].w;

z = ce.v1*(nx+1)+ce.v2;

FilterContactPlaces(ce.v1,ce.v2,z);

CreateCompositionSystem(ce.v1,ce.v2,z);

c1 = ‘W’;

zs++;

p=waiting_list[–waiting_num];

MPI_Send(&c1,1,MPI_CHAR,p,52,

MPI_COMM_WORLD);

MPI_Send(&z,1,MPI_INT,p,53,

MPI_COMM_WORLD);

len = system[z].len;

buf = system[z].buf;

MPI_Send(&len,1,MPI_INT,p,54,

MPI_COMM_WORLD);

MPI_Send(buf,len,MPI_CHAR,p,55,

MPI_COMM_WORLD);

} else maybe_edge=0;

}

if(zs > = nz-1 && zf > = nz-1) {

for(p = 0;p < waiting_num;p++) {

c1 = ‘C’;

MPI_Send(&c1,1,MPI_CHAR,

waiting_list[p],52,MPI_COMM_WORLD);

zc++;

}

waiting_num = 0;

if(zs < nz-1 && zf < nz-1 && zc < numprocs - 1)

break;

}

MPI_Recv(&c,1,MPI_CHAR,MPI_ANY_SOURCE,51,

MPI_COMM_WORLD,&status);

p = status.MPI_SOURCE;

switch(c) {

case ‘R’:

if(zs < nx - 1)

waiting_list[waiting_num++] = p;

else {

c1=‘C’;

MPI_Send(&c1,1,MPI_CHAR,p,52,

MPI_COMM_WORLD);

zc++;

}

break;

case ‘D’:

MPI_Recv(&z,1,MPI_INT,p,56,

MPI_COMM_WORLD,&status);

ce.v2=z%(nx+1); ce.v2 = z%(nx+1);

ce.w = 0;

MPI_Recv(&len,1,MPI_INT,p,57,

MPI_COMM_WORLD,&status);

buf = malloc(len);

solution[z].len = len;

solution[z].buf = buf;

MPI_Recv(buf,len,MPI_CHAR,p,58,

MPI_COMM_WORLD,&status);

zf++;

AddUnitSolutions(&solution[z]);

ComposeJointMatrix(&solution[ce.v1],

&solution[ce.v2]);

MultiplySPM(&solution[ce.v1],&solution

[z]);

MinimizeBasis(&solution[ce.v1]);

CollapseEdge(&ce, e, &n, pe, &pn);

maybe_edge = 1;

break;

}

}

The outer ‘while’ loop provides conditions rather similar
to the ones described in the previous subsection. The differ-
ence is that the number of contracted edges for a connected
graph is the number of vertices minus one. The nested
‘while’ loop implements the edge collapse when there is
both a waiting worker process and a valid edge to be con-
tracted. The variable maybe_edge enables it to avoid active
waiting in the following way: it is reset when there are no
edges to be contracted (namely when ChooseEdge returns
0) and it is set when such an edge can appear (namely after
calling CollapseEdge).

When composing a job for a worker, the chosen edge
(numbers of its vertices) is encoded into a variable ‘z’ and
decoded from the received message when the worker
returns its results. Routine FilterContactPlaces selects con-
tact places for a chosen pair of connected clans (an edge).
Routine CreateCompositionSystem creates a composition
system for a chosen pair of clans and stores it in system [z]
buffer.

When data are received from a worker, the contracted
edge vertices are recovered from variable ‘z’ and stored
into ce.v1 and ce.v2. For the edge encoding-decoding, a
radix equal to the number of clans plus one is chosen that
gives unique numbers of all the systems solved. Received
basis solutions are stored in the buffer of solution[z], sup-
plied with unit solutions for absent variables by AddUnit-
Solutions. Then, a joint matrix of basis solutions for a pair
of clans is composed by ComposeJointMatrix and stored in
the solution buffer of the first contracted clan solution[ce.
v1]; multiplication of this matrix by the composition sys-
tem solutions with MultiplySPM gives an intermediate
result stored in the same buffer of solution[ce.v1]. Finally,
the basis minimized with the MinimizeBasis routine is
obtained. To accomplish the process, the edge is actually
contracted by CollapseEdge.
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6 ANALYSIS OF OBTAINED BENCHMARKS

For obtaining benchmarks, Petri net models from the Model
Check Contest (MCC) collection [26]—especially scalable
ones that have a parametric specification—have been used.
The following models have been selected: AirplaneLD, a
simplified version of a landing detector for an airplane;
DLCround, a distributed language compiler; AutoFlight, an
automatic flight control system; CloudDeployment, a cloud
application deployment; SharedMemory, processes sharing
memory; HypertorusGrid, hypertorus communication grid.
Specifications of the selected models’ sizes and their ability
to decompose are represented in Table 1. Note that random
sparse matrices are mostly indivisible. To check the scalabil-
ity of the clans composition, we also develop a dedicated
generator of clan structure gclans with random values
obtained according to a given range and density.

To run programs, we use two kinds of hardware: a desk-
top computer, Hare (Intel Core i5 3.2 GHz, 4 cores), and a
cluster Saturn [27], including an Alembert cluster of nine
double Intel Haswell E5-2650 v3 @ 2.30 GHz CPUs (10 cores
each) and Descartes cluster having 16 nodes of two Gaines-
town E5520 @2.27 GHz (8 cores each). Computer Hare
works under Ubuntu 16.04, gcc 5.4.1 from the GNU Com-
piler Collection with OpenMP 4.0 and libc 2.23, MPICH 3.2.
Cluster Saturn [27] works under Scientific Linux 7.3; com-
pute nodes are accessible through Slurm allocation. Also,
we use GraphBLAS 1.1.2 from the SuiteSparse distribution
for sparse matrix multiplication.

We first consider benchmarks of solving linear Diophan-
tine systems in non-negative integers with ParTou on vari-
ous numbers of cores on a desktop computer, Hare, and on a
node of the Saturn Alembert cluster (20 cores). Then, we pro-
vide comparisons with a solver struct from the Tina toolbox
[12], which is considered the best at the moment. Second, we
estimate speedup of solving linear Diophantine systems via
simultaneous and parallel-sequential composition of clans
using ParAdwith a solver zsolve from the 4ti2 toolbox [24] on

nodes of the Saturn Descartes cluster. Note that most of the
MCCmodels are decomposed into clans, which provides the
opportunity for solving them faster using composition. A
preliminary check of decomposition ability can be imple-
mentedwith tool Deborah [21], developed in 2005.

ParAd is launched from the command line that specifies
input and output file names and options. The input file con-
tains a given system matrix while the output file stores
obtained basis solutions. An option “-c” specifies simulta-
neous composition of clans and an option “-s” specifies paral-
lel-sequential composition of clans, by default no composition
is applied. The solver name is specifiedwith “-r name” option.
The deafault solver ParTou provides an option “-c number” to
specify the number of employed threads (cores), by default
themaximal available number of threads is used.

Benchmarks obtained for solving systems with ParTou
are primary because they reveal a certain speedup, even in
cases where a system is indecomposable. Running times for
various models on various numbers of threads (cores)
obtained on the Hare computer and Saturn cluster are com-
pared in Tables 2 and 3, respectively. Though we adjusted
scaling parameters, there is certain amont of scatter in terms
of times for various models. For instance, rather small values
are obtained for a hypertorus model (4 dimension); using a
model of 5 dimension gives about 100� larger values.

We can see that the best time is achieved where the num-
ber of threads is close to the number of actual cores, and
hyperthreading is not of much use except for a few separate
cases. When the number of threads equals the actual num-
ber of cores, the obtained speedup is, on average, 0:5c,
where c is the number of cores. For some bigger models,
higher speedup has been obtained—up to 0:75c—for Airpla-
neLD with scaling parameter 2000; the corresponding run
on a single core of a Saturn node takes about 5 hours.

A comparison of running times for various models
obtained by ParTou and struct is represented by diagrams
in Figs. 9 and 10 for the Hare computer and the Saturn clus-
ter, respectively. One can conclude that even on a regular
computer like Hare, ParTou runs about 4 times faster than
one of the best programs (i.e., struct), while on a Saturn clus-
ter node it runs about 8 times faster.

Decomposition into clans gives stable speedup when
solving Diophantine systems in the integer domain. Possi-
bilities of gaining speedups when solving a system in non-
negative numbers is very rare, even when a system is
decomposed in clans. This is easily explained by the fact
that the space complexity of solving a system in non-nega-
tive integers is exponential, with rather big and unpredict-
able numbers of basis solutions. As far as each solution

TABLE 1
Specification of Selected Models for Benchmarks

Notation Name Places Transitions Arcs Clans

al AirplaneLD 7019 8008 30528 4
dc DLCround 5343 8727 24849 3621
af AutoFligh 3950 3936 9104 2833
cd CloudDeployment 2271 19752 389666 1345
sm SharedMemory 2651 5050 20000 51
ht HypertorusGrid 2025 5184 20736 162

TABLE 2
ParTou Benchmarks on a Desktop Hare

(1 Thread – Seconds, 2-16 Threads – Speedups)

Model: Threads 1 2 4 8 16

al 1368.116 s 1.51 2.92 3.09 3.33
dc 1445.034 s 1.66 2.41 2.29 2.31
af 257.868 s 1.46 1.78 1.62 1.67
cd 54.818 s 1.01 1.01 1.01 1.01
sm 178.438 s 1.64 2.54 2.16 2.15
ht 78.698 s 1.67 2.32 2.05 2.09

TABLE 3
ParTou Benchmarks on a Cluster Saturn Node

(1 Thread – Seconds, 4-40 Threads – Speedups)

Model: Threads 1 4 10 20 40

al 2179.910 s 4.09 7.47 9.37 11.74
dc 2520.872 s 3.19 5.87 6.21 3.23
af 366.799 s 2.42 3.17 2.44 2.5
cd 35.954 s 1.02 1.02 1.02 1.02
sm 291.491 s 3.41 4.76 1.69 0.93
ht 108.563 s 3.03 4.46 3.57 1.86
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should be stored when solving the final system of composi-
tion, some improvements are considered impossible.

Further, we study some benchmarks of running ParAd
with zsolve to solve in parallel clans and parallel-sequential
composition of clans in the integer domain. Note that even
when solving a system on a single node, composition gives
a certain speedup because it enables solving a sequence of
systems of lesser dimension [13].

Benchmarks for composition of clans obtained on a few
nodes of the Saturn cluster for various models are presented
in Fig. 11. The number of nodes has been chosen in the
range of 5–9 to run a separate clan on a separate core. The
results demonstrate the fact that composition of clans is use-
ful from a practical point of view, and it gives up to 10�
speedup for models with moderate numbers of clans and 5–
20 percent for models with larger numbers of clans. Sequen-
tial composition offers modest advantages in the present
implementation, which can be explained by rather large
numbers of little clans. For future implementations, some
technique for aggregation of small clans seems useful.

Finally, we study the scalability of clan composition using
a dedicated generator of clan structure, gclans. It creates an
ideal matrix structure, which can be considered as a

benchmark in the best case. To obtain a matrix, we specify
the clan size, the number of clans, the values range, and the
clans (connections) density. Solving a system consisting of k
clans, we load k nodes at the first stage (Fig. 1), solving sys-
tems for all the clans in parallel. For a general Diophantine
system, similar nodes work approximately the same time.
Then, at the second stage, the composition system is solved
on a single node. Thus, an ideal time of solving a system
equals about double the time of solving a system for a clan.
When the number of available nodes is smaller than the
number of clans, the duration of the first stage is increased
by the corresponding factor. The results collected into Table 4
confirm the above reasoning, illustrating the scalability of the
technique: the best result for 4 clans is achieved on 5 nodes;
for 9 clans on 10 nodes; and for 15 clans on 16 nodes. Note
that Table 4 does not reflect the fact that the composition of
clans itself gives about k2 times speedup compared to the
direct solution of a systemwhere k is the number of clans.

Scalability of results for real-life models is represented in
Table 5. For the first model AirplaneLD (al), the number of
clans remains the same (4 clans) and the best performance is
achieved for 5 computing nodes with about double speed-up.
For the second model HypertorusGrid (ht), the number of
clans grows rapidlywith the scaling parameter corresponding
to the number of dimensions. Greater number of computing
nodes gives better results though it grows rather modestly
because we do not have the required number of nodes (com-
pared to the clans number shown in Table 1) in Decartes clus-
ter and the composition system is rather big compared to the
clan size. Note that for 6D case, 4ti2 [24] fails to solve the sys-
tem ether directly or via simultaneous composition while par-
allel-sequential composition solves it in about two hours.

7 CONCLUSIONS

In this paper, we studied the implementation of ParAd, soft-
ware for solving linear Diophantine systems on modern par-
allel architectures using OpenMP and MPI. Its theoretical

Fig. 9. Comparison of bencmarks for ParTou and struct on a desktop
computer Hare (seconds).

Fig. 10. Comparison of bencmarks for ParTou and struct on a cluster
Saturn node (seconds).

Fig. 11. ParAd benchmarks on a cluster Saturn (seconds).

TABLE 4
ParAd Scalability Benchmarks on a Cluster Saturn for Matrices

Obtained by Gclans (1 Node – Seconds,
5-16 Nodes – Speedups)

Clans: Nodes 1 5 9 13 16

4�400 13.921 s 2.39 2.33 2.32 2.28
8�400 32.441 s 1.96 2.38 2.35 2.36
12�400 57.824 s 1.73 1.87 2.06 2.05
15�400 80.203 s 1.58 1.77 1.73 1.88
20�400 159.779 s 1.35 1.42 1.45 1.46
40�400 395.004 s 1.26 1.32 1.33 1.34

TABLE 5
ParAd Scalability Benchmarks on a Cluster Saturn for Real-Life

Models (1 Node – Seconds, 4-16 Nodes – Speedups)

Model: Nodes 1 5 9 13 16

al-1000 46.477 s 1.29 1.28 1.27 1.27
al-2000 305.391 s 1.21 1.20 1.19 1.18
al-4000 2222.194 s 1.18 1.17 1.16 1.15
ht-4D 34.479 s 1.88 1.91 1.92 1.93
ht-5D 484.332 s 1.31 1.32 1.39 1.62
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base is constituted by methods for solving linear systems via
simultaneous and sequential composition of their clans [13]
and utilizes a technique of parallel-sequential composition
of clans, developed in this paper. For obtained benchmarks,
a collection of Petri nets, i.e., sparse matrices, which repre-
sent models of real-life systems, has been used and increases
the credibility of the obtained benchmarks.

ParAd represents an environment for solving systems
using simultaneous and parallel-sequential composition of
their clans, which can use various solvers for solving a lin-
ear system. ParAd runs on a cluster of compute nodes using
MPI. A set of protocols for communicating master and
worker processes has been specified by Petri nets and veri-
fied; a dynamic task dispatching subsystem has also been
developed. The required number of nodes is limited by the
number of clans a system is decomposed to. Benchmarks
show that ParAd gives up to 10 times speedup.

Further, we developed ParTou, a solver of linear Diop-
hantine systems in non-negative numbers. The performance
has been improved compared to Adriana due to the devel-
opment of a parallel algorithm and its implementation
using OpenMP for running on multi-core architectures. The
best obtained speedup on 20 cores is about 15 times.

Note that GPU issues [28], [29] are beyond the scope of
this paper. Solving heterogeneous systems, balancing clan
size, and using asynchronous MPI communication schemes
including RMA (Remote Memory Access), represent direc-
tions for future work as well as fault-tolerance issues.
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