
Int. J. Signal and Imaging Systems Engineering, Vol. x, No. x, 2017 1

Evaluation of Directive-based Performance
Portable Programming Models

M. Graham Lopez, Wayne Joubert, Verónica G.
Vergara Larrea, Oscar Hernandez

Computational and Computer Sciences Directorate,
Oak Ridge National Laboratory,
Oak Ridge, TN, USA
E-mail: {lopezmg,joubert,vergaravg,oscar}@ornl.gov

Azzam Haidar, Stanimire Tomov, and
Jack Dongarra

Innovative Computing Laboratory,
University of Tennessee,
Knoxville, TN, USA
E-mail: {haidar,tomov,dongarra}@icl.utk.edu

Abstract: We present an extended exploration of the performance portability of
directives provided by OpenMP 4 and OpenACC to program various types of
node architectures with attached accelerators, both self-hosted multicore and offload
multicore/GPU. Our goal is to examine how successful OpenACC and the newer offload
features of OpenMP 4.5 are for moving codes between architectures, and we document
how much tuning might be required and what lessons we can learn from these experiences.
To do this, we use examples of algorithms with varying computational intensities for
our evaluation, as both compute and data access efficiency are important considerations
for overall application performance. To better understand fundamental compute vs.
bandwidth bound characteristics, we add the compute-bound Level 3 BLAS GEMM
kernel to our linear algebra evaluation. We implement the kernels of interest using
various methods provided by newer OpenACC and OpenMP implementations, and we
evaluate their performance on various platforms including both x86 64 and Power8 with
attached NVIDIA GPUs, X86 64 multicores, self-hosted Intel Xeon Phi KNL, as well as
an X86 64 host system with Intel Xeon Phi coprocessors. We update these evaluations
with the newest version of the NVIDIA Pascal architecture (P100), Intel KNL 7230,
Power8+, and the newest supporting compiler implementations. Furthermore, we present
in detail what factors affected the performance portability, including how to pick the right
programming model, its programming style, its availability on different platforms, and
how well compilers can optimize and target multiple platforms.
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1 Introduction and Background

Performance portability has been identified by the U.S.
Department of Energy (DOE) as a priority design
constraint for pre-exascale systems such as those in the
current CORAL project as well as upcoming exascale
systems in the next decade. This prioritization has been
emphasized in several recent meetings and workshops

such as the Application Readiness and Portability
meetings at the Oak Ridge Leadership Computing
Facility (OLCF) and the National Energy Research
Scientific Computing Center (NERSC), the Workshop
on Portability Among HPC Architectures for Scientific
Applications held at SC15 [1], and the DOE Centers of
Excellence Performance Portability Meeting [2].
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There are two main node-architecture types being
considered in the road to exascale as part of the
DOE CORAL project architectures [3]: one with
heterogeneous accelerators represented by IBM Power
based systems with multiple NVIDIA Volta GPUs
per node [4, 5]; and the other with homogeneous
third-generation Intel Xeon Phi based nodes [6]. With
both of these hardware “swimlanes” for applications
to target, writing performance portable code that
makes efficient use of all available compute resources
in both shared and heterogeneous memory spaces is
at present a non-trivial task. The latest OpenMP
4.5 specification defines directives-based programming
models that can target both traditional shared memory
execution and accelerators using new offload capabilities.
However, with growing support from compilers, the
degree to which these models are successful is not
yet clear, particularly in the context of the different
node-architectures enumerated above. While shared
memory programming has been available in, and
the main focus of, the industry-standard OpenMP
specification for more than a decade, the recent
4.0 and 4.5 versions have introduced support for
offloading to heterogeneous accelerators. While the
shared memory model can support some types of
self-hosted accelerators, the offload model has been
introduced to further support heterogeneous accelerators
with discrete memory address spaces.

This study is a continuation of our efforts
to understand if there is a single programming
model (and which programming style) that can be
used to program host multicore, homogeneous, and
heterogeneous accelerators, and what the potential
performance or productivity trade-offs might be. Here,
we extend some previous work [7, 8] by porting
algorithms of various computational intensities, ranging
from BLAS level 3 GEMM to bandwidth-bound Jacobi
and BLAS level 1 AXPY, to each of the shared memory
and offload style of OpenMP as well as OpenACC with
both host and accelerator targeting. We use various
compilers on both homogeneous and heterogeneous
hardware platforms and compare the performance of
the directives variants to platform-optimized versions
of the algorithms where available and as provided in
3rd-party libraries, and use these as a “baseline” for
the best-case performance. Otherwise, we compare to
machine theoretical peak FLOPS (for compute-bound
kernels) or bandwidth (for memory-bound kernels). We
also discuss our experiences of using OpenMP 4.5 and
OpenACC and the issues that we identified which
can affect performance portability. We summarize these
experiences to reflect the current “state of the art” for
achieving performance portability using directives.

2 Related Work

Perhaps the most portable option for developers is
to use standardized language features such as co-

arrays and ‘do concurrent,’ present in the Fortran
standard [9] since 2008. Recently, new parallelization
features have been proposed [10] for inclusion in the
C++17 standard. However, due to the slow-moving
nature of standardization and implementations, these
features presently remain inadequate for accelerator
programming with heterogeneous compute capabilities
and memory hierarchies.

Two new efforts that have gained notoriety for
performance portability are Kokkos [11] and RAJA [12].
Both rely on C++ language features that allow the
application developer to target multiple architectures
with a single implementation. However, these solutions
are not available to C or Fortran applications unless
foreign function interfaces are used, undoing some of the
convenience that these projects try to provide.

Another programming model specifically designed for
performance portability across architectures is OpenCL.
Previous work has evaluated OpenCL in the context of
performance portability [13, 14, 15]. However, OpenCL
is a lower-level model than directives, requiring explicit
representation of the computational kernels in a style
similar to CUDA. While using programming models
like OpenCL can benefit performance, some application
developers find it difficult to maintain or optimize the
code for multiple architectures, specially since some of
its optimizations are not portable.

Directives-based programming has been
supported [16] on the Intel Xeon Phi accelerator platform
even before OpenMP 4.0. This model supported both
“native” and “offload” modes which, respectively, run
code locally on the device or send isolated kernels for
execution in a manner similar to GPUs. Additional
directives-based models have included PGI compiler
accelerator directives, CAPS HMPP, OpenMPC [17],
and hiCUDA [18]. Previous studies [19] of the directives-
based approach for GPU programming showed that,
with additional code transformations, performance
comparable to that of hand-tuned CUDA can be
achieved in some cases [20].

Other Performance Portability Studies using Accelerator
Directives. As interest increases in performance
portable programming models for accelerators, there
has been an increase in published studies of the same.
Some recent examples include a thorough head-to-
head comparison of the OpenACC and OpenMP
programming styles [21], but no direct performance
evaluations were provided. Another examination of both
OpenMP and OpenACC was undertaken when the
SPEC ACCEL [22] benchmarks suite was ported [23]
from OpenACC to OpenMP. However, at this stage,
only the Intel Xeon Phi architecture was targeted by
the OpenMP offload directives, so there was no sense
of performance portability across multiple architectures
provided. A more comprehensive effort has been
provided by Martineau et al. [24], where the TeaLeaf
mini-app was ported to many programming models
and covered host CPU, NVIDIA GPU, and Intel Xeon
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Phi architectures. This was a broad effort to examine
programming models and architectures, but it only
used a single application example and did not focus on
the suitability of directives specifically for performance
portability.

3 Directive-based Programming
Models for Accelerators

3.1 OpenMP and OpenACC

OpenMP is the de-facto standard API for shared
memory programming with widespread vendor support
and a large user base. It provides a set of directives to
manage, synchronize, and assign work to threads that
share data. Recently, with the adoption of OpenMP
4.0 and 4.5, the OpenMP shared memory programming
model was extended to support accelerators, and this
substantially changed the programming model from
previous versions of the API. The OpenMP “fork-
join” model was extended with the introduction of
device constructs for programming accelerators. These
constructs allow compute-intensive code regions to be
offloaded to accelerator devices where new OpenMP
environments can be instantiated. For this, OpenMP 4.5
uses the target construct to create a data environment
on the device and then execute the code region on that
device. OpenMP 4.5 provides target data directives
that can map data to/from the accelerator and update
that data on both the host and accelerator within the
target data regions. In addition, OpenMP 4.0 added
the teams, distribute and SIMD directives that can be
used to describe different types of parallelism.

OpenACC is another specification focused on
directive-based ways to program accelerators. The
OpenACC programming model is similar to OpenMP
4.5, but its directives focus on accelerator programming
and are more “descriptive” than “prescriptive” in nature.
The idea is that it is best for the user to describe
the parallelism and data motion in a more general way
via directives so that the OpenACC compiler can have
more freedom to map the parallelism to the hardware.
The goal of this approach is to be able to map the
parallelism of an application to targets with different
architectural characteristics using the same source code
in a performance portable style. The user can also
provide additional clauses (or hints) to the compiler
to further specify and improve this mapping and code
generation.

The OpenACC acc loop directive can distribute the
loop iterations across gangs, workers, or vectors. It is
also possible to use the acc loop directive to distribute
the work to gangs while still in worker-single and vector-
single mode. For OpenACC (and OpenMP), it is possible
in some cases to apply loop directives like collapse

to multiple nested loops to flatten the loop iteration
space that we want to parallelize. We can also specify a
workers or vectors clause to distribute the iterations

across workers or vectors. If we only specify acc loop,
the compiler has the option to decide how to map the
iteration space across gang, workers, or vectors. This
is an important feature of OpenACC because it gives
the compiler the freedom to pick how to map the loop
iterations to different loop schedules that take advantage
of the target accelerator architecture.

3.2 OpenACC and OpenMP 4.5 differences

There are still significant stylistic differences between
these two specifications, but they are converging in terms
of features and functionality. One of the most significant
differences is their philosophy: the “descriptive”
philosophy of OpenACC vs. the “prescriptive” approach
of OpenMP 4.5 that may impact the way code is
written and the performance portability of the resulting
parallelism. For example, OpenMP 4.5 has no equivalent
for the acc loop directive in OpenACC. In OpenACC,
the developer can specify that a loop is parallel and
the compiler will determine how to distribute the loop
iterations across gangs, workers, or vectors. In OpenMP
4.5, the programmer has to specify that a loop is
parallel but also how the work in the loop should be
distributed. This also applies to any loop in a loop
nest that is marked with acc loop parallel. The
only way to accomplish this in OpenMP is to use the
combined directive omp teams distribute parallel

for simd with a collapse clause, which collapses the
iteration space across perfectly nested loops. The final
schedule used is implementation defined. For example,
Intel compilers that target SIMD instructions will pick
one team and several parallel threads with SIMD
instructions. Compilers that target GPUs will pick
parallelizing over teams and parallel threads or SIMD
regions (executed by threads). This works well for
perfectly nested parallel loops, however, it does not work
when the loop nests are imperfect or have function
calls. At the time of this writing, it seems likely that
future OpenMP specifications will provide a directive
equivalent to acc loop.

3.3 Writing OpenMP 4.5 using a Performance
Portable style

To write OpenMP in a “performance portable” style we
need to exploit certain behaviors of the OpenMP 4.5
accelerator model execution that are implementation-
defined, and as such, are left for the compiler to optimize
the code for specific architectures. This is described in
[25]. For example, when a teams construct is executed,
a league of threads is created, where the total number of
teams is implementation-defined but must be less than or
equal to the number of teams specified by the num teams

clause. If the user does not specify the num teams clause,
then the number of teams is left completely to the
implementation.

Similarly, the maximum number of threads created
per team is implementation defined. The user has the
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option to specify a thread limit clause that gives an
upper bound to the implementation defined value for
the number of threads per team. The purpose of this
implementation defined behavior is to allow the compiler
or runtime to pick the best value for a given target region
on a given architecture. If a parallel region is nested
within a teams construct, the number of threads in a
parallel region will be determined based on Algorithm
2.1 of the OpenMP 4.5 specification [26]. A user can
request a given number of threads for a parallel region
via the num threads clause.

For work-sharing constructs such as distribute

and parallel for/do, if no dist schedule or
schedule clauses are specified, the schedule type is
implementation defined. For a SIMD loop, the number
of iterations executed concurrently at any given time is
implementation defined, as well. The preferred number
of iterations to be executed concurrently for SIMD can
be specified via the simdlen and safelen clauses,
respectively.

An example of writing OpenMP in “performance
portable” style can be seen when using the Intel 16.2
compiler, which sets the default value for num teams

to one and attempts to use all the number of threads
available on the host. When using an Intel Xeon Phi
as an accelerator in offload mode, the Intel compiler
reserves one core on the co-processor to manage the
offloading and uses all the remaining threads available
on the Intel Xeon Phi (Knights Corner) for execution.
On the other hand, the Cray 8.4.2 compiler, by default,
uses one team and one thread when running on the
host. When running on the GPU, however, if there is
a nested parallel region within a team, it defaults to
one thread per parallel region. Writing OpenMP in a
“performance portable” style might require the user to
force the compiler to use a specific number of teams (e.g.
num teams(1)).

Another example of an implementation-dependent
behavior can be observed in the LLVM compiler,
which defaults to schedule(static,1) for the parallel
loops when executed inside a target region that is
offloaded to a GPU. The OpenMP 4.5 Cray compiler
implementation picks one thread to execute all parallel
regions within a target teams region (the equivalent
of num threads(1)). Due to the slightly different
interpretations of the OpenMP specification, it is crucial
to understand how the specific compiler being used
implements a particular feature on different platforms,
and more studies are needed to understand this.

3.4 Representative Kernels

In order to study the performance portability of
accelerator directives provided by OpenMP 4 and
OpenACC, we chose kernels that can be found in HPC
applications, and we classified them loosely based on
their computational intensity.

Dense Linear Algebra (DLA): DLA is well
represented on most architectures in highly optimized

libraries based on BLAS and LAPACK. As benchmark
cases, we consider the daxpy vector operation, the dgemv
dense matrix-vector product operation and the dgemm
dense matrix-matrix product operation. For our tests we
compare our OpenMP 4 and OpenACC implementations
against Intel’s MKL implementation on the Xeon host
CPU and Xeon Phi platforms, and we compare against
CUBLAS for the GPU-accelerated implementation on
Titan.

Jacobi: Similarly to previous work [8] studying
various OpenMP 4 offload methods, we include here
data for a Jacobi iterative solver for a discretized
constant-coefficient partial differential equation. The 2-
D case represented here is a well-understood kernel for
structured grid and sparse linear algebra computational
motifs. Its behavior is similar to that of many application
codes, and the Jacobi kernel itself is used, for example,
as part of implicit grid solvers and structured multigrid
smoothers.

HACCmk: The Hardware Accelerated Cosmology
Code (HACC) is a framework that uses N-body
techniques to simulate fluids during the evolution of the
early universe. The HACCmk [27] microkernel is derived
from the HACC application and is part of the CORAL
benchmark suite. It consists of a short-force evaluation
routine which uses an O(n2) algorithm using mostly
single-precision floating point operations.

3.4.1 Parallelization of DLA kernels

Here we study two linear algebra routines that are
representative of many techniques used in real scientific
applications such as Jacobi iteration, Gauss-Seidel
methods, Newton-Raphson, among others. We present
an analysis of the daxpy, dgemv and the dgemm routines.
The daxpy and dgemv kernels are well-understood
by compilers, specified in the BLAS standard, and
implemented in all BLAS libraries. daxpy takes the form
of y ← y + αx for vectors x and y and scalar α. dgemv
takes the form y ← βy + αAx or alternatively y ← βy +
αATx for matrix A, vectors x and y, and scalars α and
β. These are referred to as the non-transpose (“N”) and
transpose (“T”) forms, respectively. The two routines
are memory bound and their computational patterns are
representative of a wide range of numerical methods.
The dgemm is a compute-bound kernel that is hard to
implement for a subsequently adequate optimization by
a compiler. We note that good implementation requires
a complex design of its loops in order to increase data
reuse, vectorization, and contiguous data accesses that
minimize cache misses. Moreover, in order to reach a high
fraction of the hardware peak, the dgemm routine often
must be written in assembly or intrinsics. It takes the
form C ← βC + αAB where A, B and C are matrices,
α and β are scalars.

The main differences between them are:

• daxpy is a single loop operating on two vectors of
contiguous data that should be easily parallelizable
by the compiler; daxpy is the more memory



Evaluation of Directive-based Performance Portable Programming Models 5

double alpha , beta , ∗A, ∗B, ∗C;
int m, n , k ;
for ( int i = 0 ; i < m; ++i ) {

for ( int j = 0 ; j < n ; ++j ) {
double sum = 0 . 0 ;
for ( int l = 0 ; l < k ; ++l ) {

sum += A( i , l ) ∗ B( l , j ) ;
}
C( i , j ) = beta ∗ C( i , j ) + alpha ∗ sum ;

}
}

Listing 1: ijk loop implementation of dgemm routine

double alpha , ∗x , ∗y ;
int n ;
#pragma omp ta rg e t data map( to : x [ 0 : n ] ) &

map( tofrom : y [ 0 : n ] )
{

int i ;
#pragma omp ta rg e t teams
{

#pragma omp d i s t r i b u t e p a r a l l e l for
for ( i =0; i<m; i++)

y [ i ] += alpha ∗ x [ i ] ;
} // teams

} // data

Listing 2: OpenMP 4 version of daxpy; OpenACC similar

bandwidth-bound operation (than dgemv) with
unit stride data access; daxpy on vectors of
dimension n requires 2n element reads from
memory and n element writes;

• dgemv is two nested loops that can be parallelized
row- or column-wise, resulting in data accesses that
are contiguous or not, and where reductions are
required or not (depending on the transpose option
as well).

• dgemm reads three matrices and writes one. Thus,
for square matrices of size n, it reads/writes 4n2

data, while performing 2n3 operations. Listing 1
shows its basic simple ijk-loop implementation.
The ijk-loop implementation is not cache-aware
and is hard to be vectorized and parallelized by a
compiler.

Listing 2 shows the code used for the daxpy operation
with OpenMP 4 directives; the OpenACC version
used similarly straightforward directives based on the
equivalent OpenACC syntax. The code consists of a
data region specifying arrays to transfer to and from the
accelerator and a parallel region directing execution of
the DAXPY loop to the device. For the OpenMP 4.5
version we did not specify an OpenMP SIMD directive
in the inner loop since this vectorization pattern was
recognized by all the tested compilers (Intel, PGI, and
Cray).

Listing 3 shows the code for the dgemv operation, N
case. The code has a similar structure including a data
region but also several loops including a doubly nested
loop and if statement. Additionally, the non-stride-1
access poses a challenge for compilation to efficient code.

double alpha , beta , ∗x , ∗y , ∗A;
int m, n ;
#pragma omp ta rg e t data map( to :A[ 0 :m∗n ] ) &

map( to : x [ 0 : n ] ) map( tofrom : y [ 0 :m] ) &
map( a l l o c : tmp [ 0 :m] )

{
int i , j ;
double prod , xval ;
#pragma omp ta rg e t teams
{

#pragma omp d i s t r i b u t e p a r a l l e l for &
private ( prod , xval , j )

for ( i =0; i<m; i++) {
prod = 0 . 0 ;
for ( j =0; j<n ; j++)

prod += A[ i+m∗ j ]∗ x [ j ] ;
tmp [ i ] = alpha ∗ prod ;

}
i f ( beta == 0 . 0 ) {

#pragma omp d i s t r i b u t e p a r a l l e l for
for ( i =0; i<m; i++)

y [ i ] = tmp [ i ] ;
} else {

#pragma omp d i s t r i b u t e p a r a l l e l for
for ( i =0; i<m; i++)

y [ i ] = beta ∗ y [ i ] + tmp [ i ] ;
} // i f

} // teams
} // data

Listing 3: OpenMP4 version of dgemv/N

In listing 4, we show the OpenACC equivalent code
to allow a direct comparison for this accelerator-portable
use case.

double alpha , beta , ∗x , ∗y , ∗A;
int m, n ;
#pragma acc data pcopyin (A[ 0 :m∗n ] ) &

pcopyin (x [ 0 : n ] ) pcopy (y [ 0 :m] ) &
c r ea t e (tmp [ 0 :m] )

{
int i , j ;
double prod , xval ;
{

#pragma acc p a r a l l e l loop gang &
private ( prod , xval , j )

for ( i =0; i<m; i++) {
prod = 0 . 0 ;
for ( j =0; j<n ; j++)

prod += A[ i+m∗ j ]∗ x [ j ] ;
tmp [ i ] = alpha ∗ prod ;

}
i f ( beta == 0 . 0 ) {

#pragma acc p a r a l l e l loop gang
for ( i =0; i<m; i++)

y [ i ] = tmp [ i ] ;
} else {

#pragma acc p a r a l l e l loop gang
for ( i =0; i<m; i++)

y [ i ] = beta ∗ y [ i ] + tmp [ i ] ;
} // i f

} // teams
} // data

Listing 4: OpenACC version of dgemv/N

The ijk-loop implementation of the dgemm kernel,
as mentioned above, is not cache-aware and cannot
be vectorized. This can be observed for example
by examining performance counters, available through
libraries like PAPI, with which we conducted an
extensive study. Our analysis concludes that in order to
achieve an efficient execution for such computation, we
need to maximize the CPU occupancy and minimize the
data traffic while respecting the underlying hierarchical
memory design. Unfortunately, today’s compilers cannot
introduce the needed highly sophisticated cache/register
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based loop transformations and, consequently, this kind
of optimization should be studied and implemented by
the developer. This includes techniques like reordering
the loop or the data so that it can be easily
vectorized, prefetching the data that will be reused in
registers, unrolling most inner kernel or maybe writing
it explicitly in assembly or intrinsic, and using an
optimal blocking strategy. However, the goal of this
paper is not to provide the most optimized dgemm
routine, but rather provide an implementation that
introduces some of the techniques mentioned above while
preserving an acceptable level of complexity. For that,
we first developed different loop reordering versions and
show the most representatives of them (jik, kji). The
parallelization is challenging, in particular for the kji and
kij loops, since the data over the k direction must be
summed at the end. Thus, careful attention is required
for the parallelization. The ijk loop implementation is
not cache-aware and cannot be vectorized. The jik can
be vectorized over the i direction and might have better
locality. However, it becomes quickly cache unaware
when the matrix sizes exceed the cache size since it
loads the whole row of A and the whole column of B to
compute one element of C. The kji implementation can
be vectorized over the i direction, but similarly to ijk is
cache unaware and requires to load and store the whole
matrix C for every step k.

As will be observed during the experimental
section, the loop reordering by itself can speedup the
computation when the data fits into the cache size,
or L2 cache size, but will fail above this sizes. The
remedy to this issue is to use double-layer of blocking
to increase cache reuse. Here we start discussing a
more sophisticated implementation. To simplify the
description, we illustrate in Listing 5 and Figure 1 a
snapshot of the blocked kernel design. It consists of 3
nested loops that go over the sizes M, N, K by block,
and then at the innermost loop, calls the basic simple
kernel that itself consists of 3 nested loops. The goal
here is to increase the cache reuse. The block size will
be tuned to make the blocks of A, B, C fit into the
L2 cache at least. We observe in the results section
that this implementation is able to achieve acceptable
performance.

Our parallelization strategy consisted of giving the
minimal information to the compilers via OpenMP 4.5
and OpenACC to give them the freedom to generate
good optimized code to target multiple architectures.

3.4.2 Parallelization of Jacobi

The Jacobi kernel utilized for this study was derived
from the OpenMP Jacobi example available at [28].
The original code, written in Fortran, is parallelized
using OpenMP’s shared programming model (OpenMP
3.1). As described in [8], in order to compare different
programming models the Jacobi kernel was first
transformed to OpenMP’s accelerator programming
model (OpenMP 4), and then it was compared to the

double alpha , beta , ∗A, ∗B, ∗C;
int M,N,K, i , j , k ;
for ( int k = 0 ; k < K; k += BLK K)
{

for ( int i = 0 ; i < m; i += BLK M)
{

#pragma omp p a r a l l e l for schedu le ( dynamic )
for ( int j = 0 ; j < n ; j += BLK N)
{

int bm = min (M BLOCK SIZE, M−i ) ;
int bn = min (N BLOCK SIZE , N−j ) ;
int bk = min (K BLOCK SIZE , K−k ) ;
dgemm simple kernel (bm, bn , bk , . . . ) ;

}
}

}

Listing 5: double layer cache blocking implementation of
dgemm routine

BLKN 

BLKk 

BLKk 

BLKM BLKM 

BLKN 

M

K

K

N

A C 

B 

Figure 1: The design of the double layer blocked dgemm
routine.

shared programming model when offloaded to the GPU
via the omp target directive. In this work, the Jacobi
kernel was also ported to OpenACC.

To port the shared OpenMP 3.1 code to OpenACC,
we added a parallel loop construct to each of the two
main loops inside the Jacobi subroutine. In addition, we
added a data construct outside the main do while loop
to specify which arrays and variables should be copied
to the device (copyin), which need to be copied back
to the host via (copyout) and allocated on the device
via (create). Finally, since the solution computed in
the device is needed for each iteration, an update clause
was added to the do while control loop. We did not
specify a loop schedule or if the the acc loop was gang,
worker, or vector, to let the compiler pick the strategy
for optimization and performance portability.

Additional optimizations were explored to improve
performance. Given that the two main do loops
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are doubly nested loops, we added a collapse(2)

to the parallel loop directive. We also tested the
performance impact of using the -ta=tesla:pinned

option at compile time to allocate data in CUDA pinned
memory, as well as the -ta=multicore option to run
OpenACC on the CPU host.

3.4.3 Parallelization of HACCmk

The HACCmk kernel [27] as found in the CORAL
benchmark suite has shared memory OpenMP 3.1
implemented for CPU multicore parallelization. There
is one for loop over particles, parallelized with omp

parallel for, which contains a function call to the
bulk of the computational kernel. This function contains
another for loop over particles to make overall two
nested loops over the number of particles and the
O(n2) algorithm as described by the benchmark. A good
optimizing compiler should be able to automatically
vectorize all of the code within the inner function call to
achieve good shared memory performance.

We have observed that the Cray 8.5.0 and Intel
16.0.0 compiler, for example, can successfully vectorize
all the statements of the inner procedure. This is the first
instance where the amount of parallelization obtained
will critically depend on the quality of the compiler
implementation.

In order to transform this code to the OpenMP
accelerator offload model, we created a target region
around the original OpenMP 3.1 parallel region. Since
this region contains two main levels of parallelism,
we decided to parallelize the outer level across teams
and OpenMP threads within the teams using the
distribute parallel for construct, which allows the
compiler to choose the distribution of iterations to two
dimensions of threads. In this case, the Cray compiler
automatically picked one thread for the parallel for

as an implementation defined behavior when targeting
a GPU. The Intel compiler, in comparison, picked one
team when targeting self-hosted Xeon Phi processors.
We relied on the firstprivate default for scalars in the
target region and the map(tofom:*) default map for the
rest of the variables, except for xx, yy and zz arrays,
which are needed only in the accelerator.

We added an omp declare target construct to the
Step10 subroutine which is called from within the outer
loop. For the inner level of parallelism, we explicitly
added an omp simd construct with a reduction clause
on the variables xi, yi and zi inside the Step10
subroutine to provide an extra hint to the compiler to
vectorize the inner loop. We did this in order to ensure
maximum vectorization since most of the performance
of this kernel depends on vectorization for multicore
architectures.

For the OpenACC version of the HACCmk
microkernel, we parallelized the outer loop level with the
acc parallel loop which calls the subroutine Step10.
However, the Cray 8.5.0 OpenACC compiler would not
allow a reduction clause on the acc loop vector

[ l a b e l=code hacc , b a s i c s t y l e=\ s c r i p t s i z e ]
#pragma omp dec l a r e t a r g e t
void
Step10 ( int count1 , f loat xxi , f loat yyi ,

f loat zz i , f loat fsrrmax2 , f loat mp rsm2 ,
f loat ∗xx1 , f loat ∗yy1 , f loat ∗zz1 ,
f loat ∗mass1 , f loat ∗dxi , f loat ∗dyi ,
f loat ∗ dz i ) ;

#pragma omp end de c l a r e t a r g e t
int main ( ) {
. . .
#pragma omp ta rg e t teams private ( dx1 , dy1 , dz1)&
#pragma omp map( to : xx [ 0 : n ] , yy [ 0 : n ] , zz [ 0 : n ] )
#pragma omp d i s t r i b u t e p a r a l l e l for
for ( i = 0 ; i < count ; ++i ) {

Step10 (n , xx [ i ] , yy [ i ] , zz [ i ] , fsrrmax2 ,
mp rsm2 , xx , yy , zz , mass , &dx1 ,
&dy1 , &dz1 ) ;

vx1 [ i ] = vx1 [ i ] + dx1 ∗ f c o e f f ;
vy1 [ i ] = vy1 [ i ] + dy1 ∗ f c o e f f ;
vz1 [ i ] = vz1 [ i ] + dz1 ∗ f c o e f f ;

}
. . .
}
void
Step10 ( . . . ) {
. . .
#pragma omp simd private ( dxc , dyc , dzc , r2 , m, f ) &
#pragma omp reduct ion (+: xi , yi , z i )

for ( j = 0 ; j < count1 ; j++) {
dxc = xx1 [ j ] − xxi ;
dyc = yy1 [ j ] − yyi ;
dzc = zz1 [ j ] − z z i ;
r2 = dxc ∗ dxc + dyc ∗ dyc + dzc ∗ dzc ;
m = ( r2 < fsrrmax2 ) ? mass1 [ j ] : 0 . 0 f ;
f = powf ( r2 + mp rsm2 , −1.5 )

− (ma0 + r2 ∗(ma1 + r2 ∗(ma2
+ r2 ∗(ma3 + r2 ∗(ma4 + r2∗ma5 ) ) ) ) ) ;

f = ( r2 > 0 .0 f ) ? m ∗ f : 0 . 0 f ;
x i = x i + f ∗ dxc ;
y i = y i + f ∗ dyc ;
z i = z i + f ∗ dzc ;

}
. . .

}

Listing 6: OpenMP 4.5 version of HACCmk

construct within an acc routine gang region. This
required us to manually inline the entire subroutine. This
is an OpenACC implementation bug as OpenACC 2.5
allows this. The PGI 16.5 compiler was able to apply
the reduction correctly. We left inlined the routine to be
able to experiment with both compilers (PGI and Cray)
and have a single version of the code. The inner loop
was marked with acc loop with a private and reduction
clause. For the OpenACC version we did not specify any
loop schedule in the acc loop to allow the compiler pick
the best schedule for the target architecture (e.g., in this
case the GPU or multicore). We did this to both test the
quality of the optimization of the OpenACC compiler
and to measure how performance portable OpenACC is
across architectures. In listings 6 and 7 below we show
the HACCmk kernel implemented using OpenMP 4.5
and OpenACC 2.5.

4 Results

In this section, we present results obtained from
porting the previously described kernels to directives-
based programming models and then examine some
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. . .
#pragma acc p a r a l l e l private ( dx1 , dy1 , dz1 ) &
#pragma acc copy ( vx1 , vy1 , vz1 ) &
#pragma acc copyin ( xx [ 0 : n ] , yy [ 0 : n ] , zz [ 0 : n ] )

#pragma acc loop
for ( i = 0 ; i < count ; ++i ) {

const f loat ma0 = 0.269327 , ma1 = −0.0750978 ,
ma2 = 0.0114808 , ma3 = −0.00109313 ,
ma4 = 0.0000605491 , ma5 = −0.00000147177;
f loat dxc , dyc , dzc , m, r2 , f , xi , yi , z i ;
int j ;
x i = 0 . ; y i = 0 . ; z i = 0 . ;

#pragma acc loop private ( dxc , dyc , dzc , r2 , m, f )&
#pragma acc reduct ion (+: xi , yi , z i )

for ( j = 0 ; j < n ; j++ ) {
dxc = xx [ j ] − xx [ i ] ;
dyc = yy [ j ] − yy [ i ] ;
dzc = zz [ j ] − zz [ i ] ;

r2 = dxc ∗ dxc + dyc ∗ dyc + dzc ∗ dzc ;
m = ( r2 < fsrrmax2 ) ? mass [ j ] : 0 . 0 f ;
f = powf ( r2 + mp rsm2 , −1.5 ) −
( ma0 + r2 ∗(ma1 + r2 ∗(ma2 + r2 ∗(ma3
+ r2 ∗(ma4+ r2∗ma5 ) ) ) ) ) ;
f = ( r2 > 0 .0 f ) ? m ∗ f : 0 . 0 f ;

x i = x i + f ∗ dxc ;
y i = y i + f ∗ dyc ;
z i = z i + f ∗ dzc ;
}
dx1 = xi ;
dy1 = yi ;
dz1 = z i ;

}
vx1 [ i ] = vx1 [ i ] + dx1 ∗ f c o e f f ;
vy1 [ i ] = vy1 [ i ] + dy1 ∗ f c o e f f ;
vz1 [ i ] = vz1 [ i ] + dz1 ∗ f c o e f f ;

}
. .

Listing 7: OpenACC 2.5 version of HACCmk

issues affecting their performance portability. For the
evaluations conducted in this paper, we used the
following systems.

The OLCF Titan [29] Cray XK7 contains AMD
Interlagos host CPUs connected to NVIDIA K20X
GPUs. For the OLCF Titan system, a compute node
consists of an AMD Interlagos 16-core processor with
a peak flop rate of 140.2 GF and a peak memory
bandwidth of 51.2 GB/sec, and an NVIDIA Kepler
K20X GPU with a peak single/double precision flop rate
of 3,935/1,311 GF and a peak memory bandwidth of 250
GB/sec. For this platform, Cray compilers are used, with
versions 8.4.5, 8.5.0, and 8.5.5. See [8].

The OLCF Summitdev IBM system [30] contains
IBM Power8+ host CPUs connected to NVIDIA P100
GPUs. Compute nodes on Summitdev have two IBM
Power8+ 10-core processors with a peak flop rate of
approximately 560 GF and a peak memory bandwidth
of 340 GB/sec, and four NVIDIA Tesla P100 GPUs with
a peak single/double precision flop rate of 10.6/5.3 TF
and a peak memory bandwidth of 732 GB/sec. For the
new experiments on Summitdev, the IBM XL C/C++
13.1.5, IBM XL Fortran 15.1.5, and PGI 17.1 compilers
were used.

Experiments were also conducted on the OLCF
Percival [31] Cray XC40 Knights Landing (KNL) system.
Each compute node on Percival contains a 64-core Intel
Xeon Phi 7230 processor which has a peak flop rate of

2.66 TF and a peak memory bandwidth of 115.2 GB/sec.
On this system, the Intel 17.0.0 20160721, the GCC 6.2.0,
and the PGI 17.1 compilers were used.

The NICS Beacon Intel Phi Knights Corner
system [32] compute nodes contain two 8-core Xeon E5-
2670 processors and four 5110P Intel Phi processors.
Each Intel Xeon processor has a peak flop rate of 165 GF
and a peak memory bandwidth of 51.2 GB/sec, which
translates to combined peak rates for the two CPUs of
330 GF and 102.4 GB/sec. Each Intel Xeon Phi processor
has peak double precision performance of 1,011 GF and a
peak memory bandwidth of 320 GB/sec. For the results
presented here, Intel compilers were used on this system,
with version 16.0.1 from the Intel XE Compiler suite
version 2016.1.056 and version 16.0.3 20160415.

The Intel Xeon Phi KNC 7210 processor used for the
DLA evaluations is composed of 64 processors running
at 1.3 GHz (1.5 GHz max turbo frequency) with a
maximum memory bandwidth of 102.4 GB/sec; the
KNL 7250 uses 68 processors running at 1.4 GHz (1.6
GHz max turbo frequency) and a maximum memory
bandwidth of 115.2 GB/sec. The Intel Xeon Haswell
processor E5-2650 v3 is composed of 10 cores running at
2.3 GHz (3 GHz max turbo frequency) with a maximum
memory bandwidth of 68 GB/sec.

4.1 Dense Linear Algebra

We ran an extensive set of experiments to illustrate our
findings. Figures 2-11 illustrate the performance results
in double precision (DP) arithmetic for the daxpy, the
dgemv “N” and the the dgemv “T” kernels, respectively,
for the four types of hardware and in both offload and
self-hosted configurations. We use the same code to show
its portability, sustainability, and ability to provide close
to peak performance when used in self-hosted model,
on a KNC 7120, KNL 7250, CPU and when using the
offload model on the KNC 7120 and a K20X GPU. We
also present the OpenACC implementation using either
the Cray or the PGI compiler.

The basic approach to performance comparisons for
the DLA kernels is to compare performance for a
range of problem sizes, using custom kernels written
with OpenMP or OpenACC directives and, when
appropriate, comparisons with system libraries (MKL
for Intel processors and cuBLAS for GPUs). The
figures show the portability of our code across a
wide range of heterogeneous architectures. In addition
to the portability, note that the results confirm the
following observations. Our implementation achieves
good scalability, is competitive with the vendor
optimized libraries, and runs close to the peak
performance. In order to evaluate the performance of
an implementation, we rate its performance compared
to what we refer to as practical peak which is the peak
performance that can be achieved if we consider the
computation time is zero. For example, the daxpy routine
reads the two vectors x and y and then writes back
y. Overall, it reads and writes 3n elements (that in
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DP equals to 24n bytes) and performs 2n operations.
Therefore, if we consider that the computation time
is near zero and the operation is entirely memory
bandwidth bound, then the time to perform the daxpy
operation will be the time to R/W the 24n bytes which
is B/(24n) seconds, where B denotes the achievable
peak bandwidth measured in Bytes/s. Thus, the peak
performance is P = flops/time = B/12. To show this,
we plot the practical peak performance that each of
these routines can achieve based on the achievable
bandwidth B. The value of B is noted in the graphs. The
roofline bandwidth limit is shown for each case, and the
performance is reported in Gflop/s.

Our goal is to perform as many DLA operations
as possible on the discrete accelerator between data
transfers with the host. For this reason, we present
timings for the kernel only, without the transfers.
Experiments show that the first kernel, from a sequence
of kernel calls, may be slower and thus unrepresentative
for the rest; therefore, we perform a “warmup” kernel
call after the transfer and prior to the actual “timing
call,” to eliminate this effect. Also, to ensure the kernel
has completed before the final timer call, a single-word
update to host is performed to cause a wait for the
possibly asynchronous kernel to complete.

4.1.1 daxpy

For the daxpy test case, our implementation
demonstrates performance portability across all tested
hardware. The code of this routine is simple: it operates
on vectors (i.e., contiguous data) and thus the compiler
is able to perform an excellent job optimizing it for
the target hardware. We also compared the self-hosted
model on KNC with the offload model and, as illustrated
in Figure 4, both implementations reach the same
performance. Similarly, the same code performs very
well on the Nvidia K20X GPU (Figure 2), Nvidia P100
GPU (Figure 3), a recent Xeon CPU, and the newer
Xeon Phi KNL 7250 (Figure 5). The results shown
here are promising and appealing. Our proposed offload
model is able to match and even sometimes overcome
the optimized routine from the vendors libraries on all of
the experimented hardware. Moreover, the proposed one
source code reach very close to the theoretical roofline
model for this routine.

4.1.2 dgemv

Figures 6-11 show a performance comparison for the
dgemv routine of our offload mode (running on a set of
different architectures: CPU, Xeon Phi, and GPU) vs.
both our code running in self-hosted model on the KNC
and either the optimized Intel MKL dgemv from Intel or
the cuBLAS dgemv from Nvidia. Our self-hosted results
are important since they allow us to understand the
performance of our code despite the effect of the offload
directives. The comparison with the self-hosted and the
MKL native shows the efficiency of the OpenMP 3.1
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Figure 2: Performance measurement of the daxpy kernel
on GPU K20X using three different method of offloading
and comparing to the vendor optimized cuBLAS Library.
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Figure 3: Performance measurement of the daxpy kernel
on Nvidia GPU P100 using offloading model with PGI
17.1 and comparing to the vendor optimized cuBLAS
Library.

directive into getting performance close to the optimized
routine. The comparison between our model (self-hosted
vs. offload) shows the portability behavior of the code
and the possible overhead that could be introduced by
the offload model. As shown, the offload model does
not affect the performance of the kernel in any of the
dgemv cases. More impressive is that this behavior has
been demonstrated across multiple platforms (GPUs,
KNC, etc). We note that the lower performance behavior
shown for the dgemv non-transpose case on the KNC is
due to the fact that the parallelization is implemented
in such a way that every thread is reading a row of
the matrix. This means that every thread reads data
that is not contiguous in memory. On the CPU and
KNL, we believe that, due to the size of the L3 level
of cache and to the hardware prefetch, the code can
still give acceptable results close to the MKL library
and about 70% of the achievable peak. Because of the
lack of hardware prefetching and the complex memory
constraints of KNC, one might propose writing a more
complex and parametrized kernel to reach better results.
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Figure 4: Performance measurement of the daxpy kernel
on Xeon Phi KNC 7210 using the offload model and
comparing to itself in native model and to the vendor
optimized Intel MKL Library.
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Figure 5: Performance measurement of the daxpy kernel
on either a Xeon Phi KNL 7250 or recent CPU E5-2650
v3 running OMP4 as native model and comparing it to
the vendor optimized Intel MKL Library.

For the GPU case, the results are mixed; the Cray
compiler, with OpenMP 4 or OpenACC, is able to nearly
match the cuBLAS performance, but the PGI compiler
with OpenACC generates poorly performing code on
both K20x and the P100. The dgemv transpose case is
considered more data access friendly where each thread
reads a column of the matrix, which means reading
consecutive elements. For this case, we can see that our
implementation performs as well as the libraries and
achieves performance numbers close to the peak on all
the considered platforms. Due to the simple structure of
the code and stride-1 accesses, all compiler and directive
combinations performed near peak performance on the
two recent generation of Nvidia GPU.

4.1.3 dgemm

We studied the compute intensive kernel dgemm on
the Intel E2650 v3 CPU (Haswell) and Intel KNL.
The dgemm is well known to be the most complex
kernel to implement. In our design, we propose to
order the iterations of the nested loops in such a way
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Figure 6: Performance measurement of the dgemv ”N”
kernel on GPU K20X using three different method
of offloading and comparing to the vendor optimized
cuBLAS Library.
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Figure 7: Performance measurement of the dgemv ”N”
kernel on Xeon Phi KNC 7210 using the offload model
and comparing to itself in selfhosted model and to the
vendor optimized Intel MKL Library.

that we increase locality and expose more parallelism
for vectorization. The matrix-matrix product is an
example of perfectly nested loops which means that
all the assignment statements are in the innermost
loop. Hence, loop unrolling, and loop interchange can
be useful techniques for such algorithm [33, 34]. These
transformations improve the locality and help to reduce
the stride of an array-based computation. We proposed
the loop ordering ijk, jik, and kji. Each of these flavor
gave us the opportunity to either unroll, vectorize or
perform both to the two most inner loops, which also
allows us to reorder the computations for continuous
access and improved vectorization. Figures 12 and 13
show the performance that can be achieved using any
of the basic simple three loop implementations. As
expected, the ijk loop ordering is the worst between the
three of them. The jik is generally the best and the kji
reaches the same or higher performance than the jik for
small matrices. We note that for sizes less than 2,000,
the kji always achieves higher performance than the
jik. Nevertheless, we can easily see that all simple loop



Evaluation of Directive-based Performance Portable Programming Models 11

Matrix size
1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

G
flo

p/
s

0
5

10
15
20
25
30
35
40
45
50

Performance study of the dgemv "T" on GPU K20X

cuBLAS v7.5
Our using Cray 8.5.0 & OMP 4.0 offload
Our using Cray 8.5.0 & OpenACC offload
Our using PGI 16.5 & OpenACC offload
Roofline based on the achievable Bandwidth 192 GB/s

Figure 8: Performance measurement of the dgemv “T”
kernel on GPU K20X using three different method
of offloading and comparing to the vendor optimized
cuBLAS Library.
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Figure 9: Performance measurement of the dgemv
kernels (for both the “N” and “T” cases) on a Nvidia
GPU P100 using offloading model with PGI 17.1 and
comparing to the vendor optimized cuBLAS Library.

implementations suffer when the matrix size is large, e.g.,
the matrices do not fit into the L2 cache in the case of
CPU computations (see Figure 12).

For that, one of the best practices for numerically
intensive operations, is to implement blocking strategies
for better cache reuse. We focused on blocking to
increase the performance and proposed another blocked
implementation that call the simple basic kernel at its
most inner loop. Since we had three basic kernels, we
provided three flavors of the blocked dgemm routine. Our
study concludes that the cache reuse ends up being one
of the key factors for performance. The idea is that when
data is loaded into L2 cache, it will be reused as much as
possible before its replacement by new data. The amount
of data that can be kept into L2 cache becomes an
important tuning parameter and is hardware dependent.
We note that the blocking size for the CPU was different
from the one for the KNL. We performed a set of
auto-tuning processes in order to determine the best
combination. It turned out that 64, 64, 256 is the best
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Figure 10: Performance measurement of the dgemv “T”
kernel on Xeon Phi KNC 7210 using the offload model
and comparing to itself in selfhosted model and to the
vendor optimized Intel MKL Library.
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Figure 11: Performance measurement of the dgemv
kernels (for both the “N” and “T” cases) on a Xeon
Phi KNL 7250 running OMP4 as self-hosted model and
comparing it to the vendor optimized Intel MKL Library.

one for the E2560 v3 CPU for BLK M BLK N, BLK K,
respectively, while 32, 32, 1024 is best for the KNL.
The results obtained by the blocking implementation
can reach half of what the vendor-optimized library can
achieve, and about 40-50% of the theoretical peak of
the machine. This is a very attractive result, and in
particular the fact that by introducing a little bit of
complexity to the code without breaking the proposed
offload model, we are able to achieve performance that
is about half of the vendor-optimized routine, which
is mostly written in assembly. Also, since the blocking
parameter can be defined in the header of the routine,
we consider that this design is acceptable and portable.
Otherwise, by running only the basic simple loop, one
can never achieve high performance for any compute
intensive kernel.

4.2 Jacobi

The results obtained from comparing the performance
of OpenMP 3.1 (shared memory) with the OpenMP
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Figure 12: Performance measurement of different
implementation of the dgemm kernel on a Intel 2650 v3
CPU (Haswell) running OMP4 as self-hosted model and
comparing it to the vendor optimized Intel MKL Library.
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Figure 13: Performance measurement of different
implementation of the dgemm kernel on a Xeon Phi KNL
7250 running OMP4 as self-hosted model and comparing
it to the vendor optimized Intel MKL Library.

4.0 (accelerator) and OpenACC versions of the Jacobi
kernel are shown in Figure 14. The OpenACC version
of the kernel achieves the highest performance for both
the PGI 16.5 and CCE 8.5.0 compilers. The OpenMP
4 (accelerator) version when offloaded to the GPU
results in better performance than the OpenMP 3.1
(shared) version executed natively on the Intel Xeon
Phi, and than the OpenMP 4 (accelerator) version when
executed on the Intel Xeon Phi and offloaded to itself.
When running the OpenMP 3.1 (shared) and OpenMP
4 (accelerator) version in native mode, we see similar
performance results, though the shared version results in
slightly higher performance. For this kernel, the lowest
performance was observed when running the OpenMP 4
(accelerator) version on the host and offloading to the
Intel Xeon Phi.

Ref. [8] explains in detail the two different execution
modes possible on Titan and Beacon. For Titan, there
is standard using only the CPU, and offload running
the executable on the CPU and offloading to the GPU.
For Beacon, three different execution modes are possible:

Figure 14: Jacobi kernel. Memory bandwidth of
OpenMP 3.1 (shared memory), OpenMP 4 (offload) and
OpenACC versions of Jacobi when running on Beacon
and Titan. The OpenMP 3.1 (shared memory) model
was measured on a 16-core AMD Opteron processor
using 16 threads.

standard running only on the CPU, offload running the
executable on the CPU and offloading to the Intel Xeon
Phi, and also native or self-hosted mode running on
the Intel Xeon Phi directly. The additional platforms
included in this study, Summitdev and Percival, are also
capable of similar execution modes. On Summitdev, the
standard and offload modes are available, whereas on
Percival, only standard is available.

In the case of OpenACC version, the optimizations
described in 3.4.2 did not result in a significant
performance improvement. The results shown here
include the collapse(2) directive for the first loop in
the Jacobi subroutine. In order to run the OpenACC
Jacobi kernel in different platforms, we used attempted
to use the -ta=host and the -ta=multicore compiler
flags for PGI 17.1. As expected, we found that using
the -ta=host flag resulted in sequential code. The
-ta=multicore flag, however, was useful to run the
OpenACC Jacobi kernel on the AMD Interlagos, and the
Intel KNL processors. Unfortunately, although PGI 17.1
was able to compile Jacobi on the Power8+ system, the
application terminated abnormally without executing
the full number of iterations. Those results are not
included here.

Two distinct binaries were built with the PGI
17.1 compiler to run the OpenACC Jacobi kernel on
Titan: one built using the multicore target architecture,
and another using the NVIDIA specific one. The
highest performance on the K20x was obtained for the
OpenACC kernel using the PGI compiler, followed by
the OpenMP 4 kernel code compiled with the Cray
8.5.5 compiler. When running only on the CPU, we
observed that the best performance was achieved by
using the OpenMP 3.1 (shared) kernel. On Summitdev,
the OpenACC kernel built with PGI 17.1 was able
to achieve approximately 90% of the peak memory
bandwidth on the P100 GPU for medium size matrices.
Results from Titan and Summitdev experiments are



Evaluation of Directive-based Performance Portable Programming Models 13

summarized in Fig. 15. Note that we do not have a Cray
platform with P100 GPUs installed, and so do not report
P100 results for using the Cray compiler.

Figure 15: Jacobi kernel. OpenMP 3.1 (shared,
OpenMP 4 (offload), and OpenACC versions of
Jacobi when running on Titan (Bulldozer/K20x) and
Summitdev (P8+/P100).

On Percival, the OpenACC Jacobi kernel compiled
using the -ta=multicore flag achieved the highest
performance. Our experiments show that changing the
ACC NUM CORES variable had a significant impact in
performance. The best performance was observed when
setting ACC NUM CORES to 64, to match the number of real
cores on a Percival compute node. For matrices larger
than 160,000 elements, the PGI OpenACC multicore
kernel performed better than the rest, followed closely by
the OpenMP 3.1 (shared) kernel with GCC 6.2.0. Fig. 16
summarizes the results from the different kernels ran on
Percival.

Figure 16: Jacobi kernel. OpenMP 3.1 (shared),
OpenMP 4 (offload), and OpenACC versions of Jacobi
when running on Percival (KNL Intel Xeon Phi 7230).

4.3 HACCmk

Figure 17 shows the HACCmk speedup of the OpenMP
4.5 (offload) and OpenACC versions when running on
an NVIDIA K20x GPU as compared to the OpenMP

Figure 17: HACCmk kernel. Speedup of OpenMP
4.5 (offload) and OpenACC running on GPUs when
compared to OpenMP shared memory running on a
Bulldozer AMD using 8 threads.

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

100" 200" 400" 800" 1600" 3200"

Sp
ee
du

p&
ov
er
&8
&O
pe

nM
P&
Th

re
ad

s&

Problem&Size&(#&of&par;cles)&

OpenACC"0"Mul4core"(PGI)"0"8"threads"

Figure 18: HACCmk kernel. Speedup of OpenACC
(multicore) compared to OpenMP shared memory
running on a Bulldozer AMD using 8 threads.

shared memory running on a Bulldozer AMD using 8
host CPU threads since each floating point unit is shared
between 2 of the 16 physical cores. The OpenMP 4.5
and OpenACC versions always outperform the shared
memory version running on the CPU. This is what
we would expect given the K20x compute capabilities.
Both OpenMP and OpenACC produced the same loop
schedules using (327,0,0) grid blocks for the i loop and
(128,0,0) threads for the threadblock for the j loop using
both Cray and PGI compilers. For the Cray compiler,
the speedups achieved when using OpenMP 4.5 offload
and OpenACC are similar for small problem sizes, but
there is a difference for the largest program size. This due
to the inlining of Step10 (see Sec. 3.4.3) which helped
the OpenACC version achieved a 12% improvement over
OpenMP 4.5 using the Cray compiler. We observed less
OpenACC speedup when using the PGI 16.5 compiler.
The PGI compiler generated code that produced more
thread divergence for the inner acc loops (e.g. control
flow instructions) achieving only 49.4% of the occupancy
when compared to 79.5% from the OpenACC code
compiled with the Cray compiler.

Figure 18 shows the HACCmk speedup of OpenACC
(multicore) over OpenMP 3.1 using 8 threads when
running on a Bulldozer AMD using 8 cores using
PGI 17.1. We used the OpenACC environment flag
ACC NUM CORES=8 to specify 8 OpenACC threads. The
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OpenACC version outperforms the OpenMP 3.1 version.
The main reason is the inlining of the subroutine in the
OpenACC version The PGI compiler only parallelize the
code at the gang level for multicores, which is equivalent
to the OpenMP 3.1 version. At the time of the writing,
when we tried to use OpenMP 4.5 offload to run on the
the AMD processor, we did not see good speedups. The
Cray implementation serialized the OpenMP 4.5 version
and it did not support the multicore mode for OpenACC.

When HACC OpenMP 4.5 self-hosted on the Xeon
Phi system and running on 240 OpenMP threads, we
saw significant improvements over the baseline. The Intel
compiler was able to vectorize all the instructions in the
Step10 routine. As the problem size increased, we see
significant improvements in performance because it is
able to exploit the long vector units on the Xeon Phi.

5 Discussion and Conclusions

Directives like OpenMP 4 and OpenACC are designed to
give programmers a way to express parallelism in their
applications so that compilers can map this parallelism
to significantly different hardware architectures. Because
this is a difficult expectation, compiler implementations
are still determining the optimal ways to fulfill
these performance portability requirements. This means
that application developers must be aware of general
differences that arise from using directives on different
platforms and compilers.

There are several examples of “lessons learned” that
applied to all of the kernels that we studied. All of these
apply to the compiler versions used on this study. The
value for OpenMP teams will be supplied by the Cray
compiler, and a single thread is supplied for parallel

for. However, the Intel compiler will choose 1 team
and multiple threads for parallel for. Similarly, the
Cray compiler maps SIMD parallelization to a GPU
threadblock, while the Intel compiler converts SIMD in
actual vector instructions for the Xeon Phi. These types
of differences are of course necessary to map to varying
architectures, but to achieve optimal portability, the
application developer must be aware of them.

During the development of this study, we made
other small discoveries that turned out to be critical to
achieving performance portability and the results that
we have presented. In the following section, we explain
some of these in the context of the application kernel
that exposed the finding.

Lessons from DLA
We found with the DLA that performance portability

is possible using directives across multiple architectures
when we have good optimizing compilers. For DAXPY,
all programming approaches for all tested platforms
(OpenMP4/Phi, OpenMP3.1/Phi, OpenMP4/GPU,
OpenACC/GPU) were able to roughly track the
performance of the respective optimized linear algebra
libraries (MKL, cuBLAS). For DGEMV/T the same
was true. However, for DGEMV/N, for some cases this

was true (OpenMP3.1/Phi 7250, OpenMP4/GPU/Cray
compiler, OpenACC/GPU/Cray compiler), but for
other cases (OpenMP4/Phi 7210, OpenMP3.1/Phi 7210,
OpenACC/GPU/PGI compiler) the user-written code
highly underperformed the optimized libraries due to
the difficulty of the compiler optimizing the non-stride-1
arithmetic as well as slightly more complex code logic
having to do with multiple parallel loops.

For the well-performing cases, the code for the
respective methods was written in a natural way
without requiring excessive effort for manual code
transformations. Since the kernels are very fundamental
in nature, it seems likely that compiler implementors
would include these or similar cases in their performance
regression suites, hence the good performance. For
DAXPY and DGEMV/N, this is a success story for the
compilers and directives-based methods since they were
all able to generate nearly-optimal code. For DGEMV/T
however, the added complexities created challenges
which for some compilers were unsurmountable. We also
learned that the omp simd directive is not needed to
achieve performance portability when compilers have
good automatic vectorization capabilities.

However, for the compute intensive dgemm
kernel, performance portability and compiler-based
optimizations are not as straightforward as for the
memory bound kernels; here performance depends
critically on the kernel design. This was illustrated
by quantifying the performance for a number of
simple implementations. The results clearly show
that the compiler can not accomplish much for the
simple loop implementations, and that algorithmic
changes are needed. We note that even simple loop
transformations can help the compilers to significantly
improve performance. In order to get another level of
improvement, we demonstrated that the design must
include hierarchical communications and optimized
memory management. In particular, we show that
only after we (1) developed algorithmic designs that
feature multilevel blocking of the computations that
increase cache reuse and use different loop reordering to
improve vectorization, and (2) introduced autotuning,
our implementations reached acceptable performance
(around 50% of the peak of the machine).

Lessons from Jacobi
Jacobi is another example where we were able

to achieve good performance portability across
architectures using the OpenMP 4.5 accelerator
programming model. Performance depends on OpenMP
programming style and on which mode is being in the
hardware. The best performance was achieved when
we ran OpenMP 4.5 in Xeon Phi self hosted mode and
when OpenMP 4.5 was using in the offloading for GPUs.
We also learned that OpenACC as a programming
model is easier to use than OpenMP. Both the PGI
and CCE implementations of OpenACC were able to
achieve good performance with minimal effort. When
converting the code to OpenACC, the PGI compiler
was able to automatically insert the loop schedules and
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levels of parallelism such as gang and vector directives
on both of the main loops inside the kernel. One of the
goals of OpenACC directives is to give this flexibility to
compiler. The drawback of using OpenACC is its lack
of or poor implementations on multiple architectures
(such as Xeon Phi or CPU). This impacts its usability
for performance portability as of now.

When we tried offloading both OpenACC and
OpenMP 4.5 to CPU multicores, this resulted in
poor performance due to implementations not being
optimized yet on the Cray and PGI compiler. We
were able to successfully compile OpenMP 4.5 on
Xeon Phi. The performance is good when running in
OpenMP 4.5 accelerator model on self-hosted mode vs
offloading target regions to the Xeon Phi from CPU.
OpenMP 4.5 accelerator model was able to achieve
comparable performance to OpenMP 3.1 in self-hosted
mode, which supports the idea that the OpenMP 4.5
accelerator model is performance portable. This was
very encouraging as we can use the OpenMP accelerator
model as a performance portable programming style
that can achieve good performance across multiple
architectures.

We were able to use GCC for both the OpenACC
version of the Jacobi kernel and the OpenMP 4.5 version.
Using the ACC DEVICE TYPE environment variable, we
were able to also compare the performance of the
OpenACC kernel when run on the CPU vs. when
offloaded to the GPU.

With the PGI 17.1 compiler, we observed better
performance of the OpenACC kernel when the
-ta=tesla:cc60 and the -ta=tesla:cc35 compiler
flags were used on the Power8+ and the Cray XK7
system, respectively. As expected, our results show that
using the -ta=host compiler flag results in sequential
code. To run OpenACC code on the CPU, we explored
using the -ta=multicore compiler flag and found that
on the Power8+ system, incorrect results were produced.
However, on both the Intel KNL system and the Cray
XK7 AMD CPU, we were able to run the OpenACC
kernel successfully. On the Intel KNL system, setting
ACC NUM CORES to 64 produced the best results, which
represents the total number of cores on a compute node.
By default, all visible hardware threads were being used.

Lessons from HACCmk When using the same
compiler, the performance gap between OpenACC and
OpenMP 4.5 can be small when the OpenMP 4.5
parallelization strategy (e.g. loop schedules, etc) matches
the one picked by the OpenACC compiler. Also their
difference in performance is small when using the same
compiler to compile both versions. One of our findings
is that the performance of OpenACC depends on the
ability of the compiler to generate good code. We
observed a significant performance variation between
when OpenACC is compiled with Cray 8.5.0 and the
PGI 16.5. Further investigation showed a significant
performance variation when we tried PGI 16.7. This
tells us that compilers play a significant role on the
the level of performance portability of a programming

model. When we compiled OpenMP 4.5 to run self-
hosted on the Xeon Phi, the Intel compiler ignores
the target directives. These includes omp teams, omp

distribute, omp declare target or any form of a
target combined directives. Because of this behavior,
we had to transform the combined directive omp

distribute parallel for to individual directives omp

distribute and omp parallel for.
The omp simd directive is extremely useful for

performance portability, not only to specify parallelism
for offloading to accelerators, but depending on the
implementation, it can be critical to achieve good
levels of vectorization across compilers when there exist
different levels of support for automatic vectorization.
Compilers are not yet able to consistently identify these
opportunities in all cases, so it must be used to ensure
that vectorization is used where appropriate. Although,
GPUs do not have vector units, the SIMD directive can be
helpful to identify potential very fine-grained parallelism
that can be executed by SMT threads (e.g. GPU
warps) and by using this directive, the programmers can
increase the performance portability of the model. We
were able to achieve good OpenMP 4.5 performance on
GPUs and self hosted Xeon Phi. However, it would be
helpful if future Intel compilers support the combined
target directives.

We experience better performance when using
OpenACC (multicore) vs OpenMP 3.1 baseline when
running in an AMD Bulldozer processor using 8 cores
using PGI 17.1. One of the reasons is because OpenACC
provides more information to vectorization phase of the
compiler including information about reductions. Being
able to specify another level of parallelism in OpenACC
that target vector instructions was profitable. We were
not able to do the same with OpenMP 4.5 and target
multicore. At the time of the writing, the Cray compiler
serialized the OpenMP 4.5 (offload) code on the CPU.

6 Future Work

Compiler implementations and new HPC architectures
are currently evolving quickly, and there is a wealth
of future study that presents itself in this area. Some
straightforward technical tasks to further round out
the portability aspect of the exploration with more
platforms and implementations. We have been working
with implementers to address implementation bugs as
we encounter them during this study, and so as the
functionality and performance improves, the apparent
performance portability of directives could possibly
change accordingly.

We observed sensitivity of the performance (and
therefore overall performance portability) to not only
the choice of a programming model, its programming
style, and quality of the compiler implementation,
but also the compilation optimizations requested by
the user. A thorough parameter space exploration
of compiler options, directive clause arguments, and
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runtime environment setup is necessary to more fully
understand these effects. When such a large parameter
space exists, autotuning presents itself as a likely
candidate for improvement of the model, both from a
performance as well as usability point of view. Such a
parameter space exploration could also better inform
the SPEC ACCEL committee’s prescriptions for writing
performance portable OpenMP 4 as described in Sec. 3.3,
and if these are sufficient for application kernels.

This paper focused heavily on the performance and
portability of expressing the fine-grained parallelism
of application kernels using directives. However,
various coarse-grained parallelization schemes such as
tasking are needed to efficiently address multiple
levels of compute and memory heterogeneity. How to
productively couple these different models of expressing
parallelism and the performance implications of the
choices made about granularity, etc., are not yet well-
understood, but thought to be critical to achieving
exascale performance for real-world applications.
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