
Increasing Accuracy of Iterative Refinement in
Limited Floating-Point Arithmetic on Half-Precision

Accelerators
Piotr Luszczek

University of Tennessee
Ichitaro Yamazaki

Sandia National Laboratories∗
Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory

University of Manchester

Abstract—The emergence of deep learning as a leading compu-
tational workload for machine learning tasks on large-scale cloud
infrastructure installations has led to plethora of accelerator
hardware releases. However, the reduced precision and range
of the floating-point numbers on these new platforms makes
it a non-trivial task to leverage these unprecedented advances
in computational power for numerical linear algebra operations
that come with a guarantee of robust error bounds. In order
to address these concerns, we present a number of strategies
that can be used to increase the accuracy of limited-precision
iterative refinement. By limited precision, we mean 16-bit floating-
point formats implemented in modern hardware accelerators
and are not necessarily compliant with the IEEE half-precision
specification. We include the explanation of a broader context and
connections to established IEEE floating-point standards and ex-
isting high-performance computing (HPC) benchmarks. We also
present a new formulation of LU factorization that we call signed
square root LU which produces more numerically balanced L
and U factors which directly address the problems of limited
range of the low-precision storage formats. The experimental
results indicate that it is possible to recover substantial amounts
of the accuracy in the system solution that would otherwise be
lost. Previously, this could only be achieved by using iterative
refinement based on single-precision floating-point arithmetic.
The discussion will also explore the numerical stability issues that
are important for robust linear solvers on these new hardware
platforms.

I. INTRODUCTION

Modern high-performance computing (HPC) hardware con-
tinues to experience an ongoing shift towards supporting a
variety reduced-precision formats for representing floating-point
numbers in order to offer a much increased performance rate.
However, portability is often of little concern as the hardware
tends to serve only a specific set of workloads that are of special
interest to the particular vendor. The examples include Intel’s

This research was supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. This work was partially
supported by NSF Grant No. OAC 1740250 and CSR 151428.
∗This work was done while the author was at the University of Tennessee,

USA. Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy National Nuclear Security Administration under
contract de-na0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S. Department of Energy
or the United States Government.

Cascade Lake Vector Neural Network Instructions (VNNI)
and the recently announced Xe platform for graphics cards,
AMD’s Radeon Instinct cards (MI5, MI8, MI25, MI55, MI60)
and NVIDIA’s compute cards from the Pascal, Volta, and
Turing series. Finally, ARM included 16-bit floating point
(FP16) in its NEON vector unit specification VFP 8.2-A.
These accelerators follow two types of specifications for 16-bit
floating-point format: IEEE-compliant FLOAT16 and extended-
range BFLOAT16.

At the same time, a new breed of accelerators take the use
of reduced precision to a new level as they target new machine
learning workloads with little or no regard for the established
floating-point standards. These accelerators are currently under
information embargo due to competitive advantage reasons
and therefore little is known about them. This new hardware
includes Cloud AI 100 by Qualcomm, Dot-Product Engine by
HPE, Eyeriss by MIT [1], TPU by Google [2], Deep Learning
Boost by Intel, and Zion by Facebook.

However, our perspective is different as we try to use
these new hardware chips to provide numerical accuracy that
is comparable to standards-based floating-point computation
while attaining predictable error bounds if such a guarantee is
possible.

Along these lines, we propose novel schemes that result in
mitigation strategies for a mixed-precision iterative refinement
algorithm that allows the use of lowest-precision format and
take advantage of its computational benefits. Depending on
the platform, limited precision may be as high as 10× faster
than the double-precision peak performance. For example, on
NVIDIA Volta, FLOAT64 tops out at about 6 teraFLOP/s
while Tensor Core units in the same chip are capable of
120 teraFLOP/s.

The rest of the paper is organized as follows: Section II
provides related work information in the area of limited-
precision iterative refinement; Section III contains the details
of the problem we aim to solve and Sections IV, V, and VI
describe three mitigating strategies to deal with the issues
described in the prior section; finally, Section VIII includes
the experimental results combined with the discussion and
Section IX concludes the paper and provides potential future
research directions.

II. RELATED WORK

The iterative refinement algorithm has been known for
many decades as an effective tool for increasing accuracy
of a solution of a set of simultaneous linear equations [3],
[4], [5]. It involves higher- and lower-precision floating-point
arithmetic that are applied judiciously to preserve the quality
of the solution while increasing overall performance. Higher-
precision arithmetic is often possible through already available
hardware units, though it is slower than the lower-precision.
Absent appropriate hardware, higher precision may be realized
through software-based techniques [6], [7]. The requirement
for achieving improvement in the quality of the solution is
to perform the accumulation of the residual r ≡ Ax − b in
higher-precision arithmetic than what is used for the L and U
factors.

If it is possible to customize the working precision, as is
the case on field-programmable gate arrays (FPGAs), then
the refinement can be exploited by creating custom floating-
point units [8]. Alternatively, it is possible to exploit the system
matrix conditioning and use the iterative refinement as a method
of accessing faster hardware capabilities [9]. We take this idea
further—but working within the constraints of the modern
hardware that limits the precision of the fastest format and
thus creates greater pressure on the algorithmic development
to counteract the numerical issues.

It was proposed to use Krylov subspace iteration based
on GMRES and the integration into the residual refinement
process was called GMRES-IR [10]. The impact of system
matrix spectrum on the convergence and accuracy of such
a GMRES iteration was studied by varying the spread and
clustering of the singular values of the system matrix [11].
The representation of full-precision data in half precision poses
additional issues, and a form of matrix scaling was proposed
to address it [12].

The analogous effort in deep learning involves training the
network in lower precision and performing inference in a higher
one [13], [14]. The compute imbalance between training and
inference is even higher than that of factorization and the
subsequent iterative refinement. Another difference is that in
the context of neural network training, lowering the precision
may be incorporated into the model as a regularizer.

A matrix may offer an opportunity for a faster solver if
the condition number is low enough and the speed of lower
precision may be utilized by the available hardware. Taking
advantage of the condition number of the L and U factors in
the context of least squares problems may be performed as
long as appropriate regularization is involved [15].

III. PROBLEM STATEMENT: ITERATIVE REFINEMENT IN
LIMITED PRECISION

Figure 1 shows two most common 16-bit formats for storing
and computing floating-point values on existing hardware. This
excludes possibilities afforded by synthesizing custom floating-
point designs on FPGAs.

Our goal is to solve a system of linear equations:

Format sign mantissa and exponent bits

10 + 5
IEEE 754: ±

unit round-off = 5× 10−4

7 + 8
BFLOAT16: ±

unit round-off = 4× 10−3

Fig. 1. Half precision representations in industry standards and modern
hardware. Yellow squares represent mantissa bit and navy blue squares
represent exponent bit.

Algorithm 1: Mixed precision iterative refinement with
the 16-bit factorization and 64-bit corrections.

1 L(16), U (16), P ← lu
(
A(16)

)
O
(
n3
)
× 16 bits

2 v (16) ← P\b(16) O
(
n2
)
× 16 bits

3 y (16) ← L(16)\v (16) O
(
n2
)
× 16 bits

4 x (16)
0 ← U (16)\y (16) O

(
n2
)
× 16 bits

5 for k = 1, 2, ... do
6 r (64)

k ← b(64) − A(64)x (64)
k−1 O

(
n2
)
× 64 bits

7 s(16)
k ← P\r (16)

k O
(
n2
)
× 16 bits

8 t (16)
k ← L(16)\s(16)

k O
(
n2
)
× 16 bits

9 z (16)
k ← U (16)\t (16)

k O
(
n2
)
× 16 bits

10 x (64)
k ← x (64)

k−1 + z (64)
k O (n) × 64 bits

Ax = b (1)

where A ∈ Rn×n and x , b ∈ Rn.
Algorithm 1 shows an iterative refinement adopted from

the 32/64 bit formulation [16], [17], [18] to the 16/64 bit
scenario. The algorithm solves the system from Eq. (1) by
introducing representation of matrices and vectors in fixed-
precision arithmetic:

A(64)x (64) = b(64) (2)

The algorithm lowers the precision from 64 to 32 in order to
perform all the O

(
n3
)

operations at the speed of low-precision
hardware. There are three consequences from the numerical
stability perspective:

1) Small residual vectors cannot be represented due to
limited representation range of the lower precision format:∥∥r (64)

∥∥ < FPmin.
2) Residual vectors are not accurately represented in lower

precision due to large unit round-off: u(16) > 5× 10−4.
3) The factorization suffers from a loss of accuracy due to

limited storage bits for the L and U factors:∥∥L(16)×U (16)−P×A(64)
∥∥ ≥ ∥∥L(32)×U (32)−P×A(64)

∥∥
and this is further exacerbated by the matrix’s condition
number κ(A).

Note that, in the context of least squares minimization, it
might be more preferable to numerically find min ‖b − Lx‖2

2
rather than the original min ‖b − Ax‖2

2 which is much more

computationally expensive. This is especially true if the L factor
is better conditioned than the original system matrix A [19].
The condition number of the system matrix A depends on the
originating application; but in a benchmarking context, κ(A) can
be a controlled quantity. A known result in that regard states that
κ2(A) ≈

√
n if the entries of A are normal i.i.d. symmetrically

around zero: xij ∈ N (0, 1) [20]. This can be guaranteed in
practical situations through the correct choice of the pseudo
random number generator (PRNG) for the system matrix A.
In fact, the High Performance LINPACK (HPL) benchmark
uses a uniform distribution around zero: U

(
− 1

2 , 1
2

)
[21] which

is sufficiently well conditioned in practice in order to bound
the condition number at a reasonable level. And at the same
time, matrices generated in such a way would still cause an
excessive pivot growth, especially when partial pivoting is not
used.

IV. COPING WITH LIMITED RANGE: PROMOTION TO
SINGLE PRECISION

One of the main reasons why the classic mixed-precision
iterative refinement does not experience problems with limited
range was due to the fact that single precision format devotes
8 bits to the exponent. The number of exponent bits is much
more limited in half-precision format from IEEE (BFLOAT16,
of course, does not have this problem as it shares its exponent
format with FLOAT32). In order to deal with this limitation,
we propose to promote the computation of the solves during
the refinement to single-precision. This could be achieved
by making another copy of the L and U factors in single
precision, but this would increase the storage complexity by
O
(
n2
)
. Instead, we simply perform the promotion on-the-fly

during the back and forward solves. This induces additional
computational cost of conversion during each iteration—but
this is completely masked by the memory-access overhead
since the solves are bandwidth-limited.

V. COPING WITH LIMITED RANGE: ADAPTIVE RESIDUAL
SCALING

To cope with the limited representation range, we propose
to scale the residual vectors as their norm becomes small so
they can be represented in the lower-precision format while
the scaling factor is represented in higher precision. In this
strategy, we focus on lines 8 and 9 of Algorithm 1, and propose
to replace these lines with the following three steps that scale
the residual vector before casting it in lower precision (the
scaling factor is chosen to be the maximum value with respect
to the magnitude):

1) t (16)
k ← L(16)\

(
s(16)

k /max
∣∣∣r (64)

k

∣∣∣)
2) z (16)

k ← U (16)\t (16)
k

3) x (64)
k ← x (64)

k−1 + z (64)
k ×max

∣∣∣r (64)
k

∣∣∣
In the first step, scaling the k-th vector ‖sk‖/max |rk | brings

the entries of the residual closer to unity where they can be
represented most accurately in lower precision. Note that the
scaling has to take place in higher precision where the greater
range can capture the exponent correctly.

inc lude <mma. h>

using namespace nvcuda ;

global vo id wmma ker (h a l f ∗a , h a l f ∗b , f l o a t ∗c) {
/ / Declare the fragments

wmma: : fragment<wmma: : matr ix a , 16 , 16 , 16 , ha l f , wmma: :
col major> a frag ;

wmma: : fragment<wmma: : matr ix b , 16 , 16 , 16 , ha l f , wmma: :
row major> b frag ;

wmma: : fragment<wmma: : accumulator , 16 , 16 , 16 , f l o a t>
c f rag ;

/ / I n i t i a l i z e the output to zero
wmma: : f i l l f r a g m e n t (c frag , 0.0 f) ;

/ / Load the inpu ts
wmma: : load matr ix sync (a frag , a , 16) ;
wmma: : load matr ix sync (b frag , b , 16) ;

/ / Perform the mat r i x m u l t i p l i c a t i o n
wmma: : mma sync (c frag , a frag , b frag , c f rag) ;

/ / Store the output
wmma: : s tore matr ix sync (c , c frag , 16 , wmma: :

mem row major) ;
}

Fig. 2. Sample C++ code targeting Tensor Core units with WMMA primitives
available in CUDA software stack targeting compute capability 7 hardware
including NVIDIA Volta and Turing.

VI. COPING WITH LIMITED ACCURACY: PRECISION
PARTITIONING

NVIDIA CUDA 9 and its hardware’s compute capability 7
introduced warp-level operations that leverage Tensor Cores.
Their main purpose is to perform warp-synchronous matrix
multiply-accumulate (WMMA) of either the out-of-place form
D ← A× B + C or the in-place form C ← A× B + C where
A, B, C, D ∈ R4×4 and the precision of the output matrices
could be either 16- or 32-bits. We are interested in leveraging
this capability to capture additional precision bits during the
refinement.

Figure 2 shows a sample code for in-place matrix multi-
plication executed with a call to wmma::mma sync. Our
observation is that we can pack four independent vectors
into b frag and a single instruction would then perform
multiplication by 4 independent right-hand side vectors. We
propose the following partitioning of a 64-bit vector into 4
16-bit vectors:

X (64) ≡
[
x (64)

1÷16|x
(64)
17÷32|x

(64)
33÷48|x

(64)
49÷64

]
(3)

where x1÷16 represents bits from 1 to 16 of the mantissa of
x (64).

Note that, at the implementation level, this paritioning could
be achieved with a pair of the standard C library functions
frexp () and ldexp(). Subsequently, we can reconstruct the
original 64-bit representation with a dot-product:

x (64) = X (64) ×
[
100, 10−16, 10−32, 10−48]t (4)

Note that this is a floating-point equivalent of fixed-point
storage of multi-byte integers whereby the least-significant

byte stores the lowest 8 bits of the integer. The second to the
least-significant byte stores the range of bits 9÷ 16, and so
on.

Due to the way the NVIDIA hardware is organized, comput-
ing on four vectors of our proposed partitioning has the same
computational load as it would have had for a single vector.
At the same time, global GPU memory loads use 128-byte
transactions and so, with suitable storage, it might in fact have
the same bandwidth cost for either one or four vectors provided
careful coding is used. Exploiting these hardware structures is
a strong motivating factor for adopting our proposed adaptive
residual scaling approach.

By comparison, Google’s Tensor Processing Unit (TPU)
handles calculations in MXUs (matrix units) that are packaged
in one-per-core arrangement (the cores themselves are, confus-
ingly, also called Tensor Cores). The MXU accepts its input
in 32-bit format and processes them internally in BFLOAT16.
The unit of operation is a matrix-matrix multiply with a single
instruction handling 128-by-128 matrices. In order to take
advantage of such large dimensions, it is necessary to perform
packing of right-hand side entries and replication of matrix
entries so that each dot-product instruction has meaningful data
in the entire MXU.

VII. COPING WITH LIMITED RANGE: NUMERICALLY
BALANCED FACTORS WITH SIGNED SQUARE LU

In this strategy, we focus on line 1 of Algorithm 1 and
introduce a new factorization variant of LU that is more suitable
for floating-point storage format with limited range.

The traditional form of LU factorization with partial pivoting
takes the form:

PA = LU (5)

where A, L, U ∈ Rn×n and P ∈ {0, 1}n×n with L lower-
triangular, U upper-triangular, and P a permutation matrix,
respectively. This method of approaching the linear system
solve given by Eq. 1 follows the commonly used decomposi-
tional approach to numerical matrix computations [22], [23].
The partial pivoting in the LU factorization, represented by
the P matrix, maintains L well conditioned (to the extent
possible) and transfers the unbound pivot growth into U. In
fact, the majority of implementations commonly push this
one step farther and produce matrix U that could be singular
if A is singular in exact arithmetic, i.e., κ(A) = ∞, or only
singular in the working precision wp: κ

(
A(wp)

)
= +Inf. This

approach works well in a practical context because it clearly
informs the user about numerical issues with the input matrix
A. But in cases when A is well conditioned, in particular when
κ
(
A(wp)

)
� 1/u(wp) (for FP64, u ≈ 10−16), U might still

receive excessively large entries while L would be computed
with unitary diagonal and subdiagonal entries smaller than
1 in magnitude. This imbalance has to be fixed for lower-
precision factorization, and we propose to amend the standard
formulation with an algorithm that is less prone to floating-point
overflow.

There are already two factorizations that treat the diagonal
more flexibly than LU: one is LDU and the other is LDLT. The

Algorithm 2: Vector-oriented formulation of the signed
squared root LU for a square matrix A of dimension
n and produces lower- and upper-triangular matrices L
and U and a permutation matrix P.

1 P ← In×n
2 for i = 1 ... n − 1 do
3 pivot ← arg max1≤k≤n |A...,k | {find a pivot}
4 Apivot,... ↔ Ai ,... {swap current with the pivot row}

5 Ppivot,... ↔ Pi ,... {record the pivot}
6 Li+1...n,i ← Ai+1...n,i/

±
√

Ai ,i {scale L}
7 Li ,i ← ±

√
Ai ,i {record L scaling}

8 Ui ,i+1...n ← Ai ,i+1...n/
√
|Ai ,i | {scale U}

9 Ui ,i ←
√
|Ai ,i | {record U scaling}

10 Ai+1...n,i+1...n ← Ai+1...n,i × Ai ,i+1...n {Schur’s
complement}

former is for non-symmetric matrices while the latter is for
the symmetric ones. We cannot adopt these directly because
they separate the diagonal without applying it to the trailing
matrix. Thus, they cannot reap the benefits of scaling the matrix
entries and avoiding overflow in lower-precision arithmetic.
Because we require the scaling by the diagonal, we need a
nearly symmetric decomposition of the diagonal entry. We do
this by proposing a signed square root operation:

±
√

x def= sign(x)
√
|x | x ∈ R (6)

This allows us to represent any real number1 as a product
of two numbers of equal magnitude and possibly different
signs: R 3 x = ±

√
x
√
|x |. We will use this property to scale

both lower and upper matrix entries symmetrically up to a
sign. Algorithm 2 shows our proposed signed square root LU
algorithm for square matrices. Deriving its generalizations for
rectangular matrices is trivial. The algorithm also admits a
block outer product and recursive formulations. Just like the
classic LU factorization, the new algorithm can be implemented
in an in-situ fashion and with extra O (n) storage to represent
the permutation matrix that is fully compatible with the classic
LU.

VIII. EXPERIMENTAL RESULTS

First, we present two reference sets of results to gauge
the behavior of our proposed improvements. We measure
the accuracy of the factorization by computing the residual
norm: ‖r‖∞ ≡ ‖Ax − b‖∞ while the number of digits can be
estimated with log10 ‖r‖∞. Figure 3 shows a heat map of the
number of digits achieved after 20 iterations of the refinement
when both the factorization and storage of the factors uses 32-
bit floating-point arithmetic. This is an established method [16],
[17], [18] adopted by LAPACK. Bright red/orange colors in
the figure indicate close to 15 accurate digits in the solution

1Complex numbers naturally admit two square roots that are unambigously
defined and may be used for complex-domain LU factorization.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

59
0

60
0

61
0

62
0

63
0

64
0

65
0

66
0

67
0

68
0

69
0

70
0

71
0

72
0

73
0

74
0

75
0

76
0

77
0

78
0

79
0

80
0

81
0

82
0

83
0

84
0

85
0

86
0

87
0

88
0

89
0

90
0

91
0

92
0

93
0

94
0

95
0

96
0

97
0

98
0

99
0

10
00

Matrix size

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

Ite
ra

tio
ns

hpl6432

2.5

5.0

7.5

10.0

12.5

15.0

Fig. 3. Heat map of the number of digits of accuracy when performing iterative
refinement using single-double precisions. The horizontal axis represents the
matrix size and the vertical axis shows the estimate of number digits of
achieved accuracy: log10 ‖Ax − b‖∞.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

59
0

60
0

61
0

62
0

63
0

64
0

65
0

66
0

67
0

68
0

69
0

70
0

71
0

72
0

73
0

74
0

75
0

76
0

77
0

78
0

79
0

80
0

81
0

82
0

83
0

84
0

85
0

86
0

87
0

88
0

89
0

90
0

91
0

92
0

93
0

94
0

95
0

96
0

97
0

98
0

99
0

10
00

Matrix size

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

Ite
ra

tio
ns

noscale

0

3

6

9

12

15

Fig. 4. Heat map of the number of digits of accuracy when performing iterative
refinement using half-double precisions. The horizontal axis represents the
matrix size and the vertical axis shows the estimate of number digits of
achieved accuracy: log10 ‖Ax − b‖∞.

while black indicates few digits: 2 or less. For matrices up to
about 400, the third iteration delivers 15 digits of accuracy—a
full precision result for 64-bit format even though factorization
only used 32 bits. For matrices beyond the size of 400, a
fourth iteration might be needed to get the full set of digits of
accuracy. In Figure 4, we repeat the same experiment but with
the factors and refinement limited to FP16. Very few digits
are recovered for matrices under 200 and almost no digits
beyond that. We proceed to the tests that seek to improve
the accuracy by using the methods we proposed earlier. It is
worth noting that the result from Figure 4 does not use any
precision-extending modes that are available in both Tensor
Core from NVIDIA or MXU from Google: the inputs, the
outputs, and the intermediate computation uses 16-bit IEEE
format.

We start with the strategy of promoting the entries of the
L and U factors to single precision to temporarily extend the
range of the computed values. We also use single precision
to accumulate the results. Figure 5 shows the resulting heat
map of accuracy. The number of recovered digits does not
go as high as for the experiments with single-double iterative
refinement presented in Figure 3. However, there are many
matrices for which the method recovers many digits in the
solution—much more, in fact, than when using half-precision
alone.

We proceed by abandoning the use of single-precision
altogether and we only use adaptive scaling to control the
range of the entries in the solution. Figure 6 shows the heat

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

59
0

60
0

61
0

62
0

63
0

64
0

65
0

66
0

67
0

68
0

69
0

70
0

71
0

72
0

73
0

74
0

75
0

76
0

77
0

78
0

79
0

80
0

81
0

82
0

83
0

84
0

85
0

86
0

87
0

88
0

89
0

90
0

91
0

92
0

93
0

94
0

95
0

96
0

97
0

98
0

99
0

10
00

Matrix size

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

Ite
ra

tio
ns

upcast

0

3

6

9

12

15

Fig. 5. Heat map of the number of digits of accuracy when performing iterative
refinement using half-double precisions with single-precision promotion for
the solves. The horizontal axis represents the matrix size and the vertical axis
shows the estimate of number digits of achieved accuracy: log10 ‖Ax − b‖∞.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

59
0

60
0

61
0

62
0

63
0

64
0

65
0

66
0

67
0

68
0

69
0

70
0

71
0

72
0

73
0

74
0

75
0

76
0

77
0

78
0

79
0

80
0

81
0

82
0

83
0

84
0

85
0

86
0

87
0

88
0

89
0

90
0

91
0

92
0

93
0

94
0

95
0

96
0

97
0

98
0

99
0

10
00

Matrix size
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
Ite

ra
tio

ns

hpl6416

0

3

6

9

12

15

Fig. 6. Heat map of the number of digits of accuracy when performing iterative
refinement using half-double precisions with adaptive scaling. The horizontal
axis represents the matrix size and the vertical axis shows the estimate of
number digits of achieved accuracy: log10 ‖Ax − b‖∞.

map of the accurate digits in the solution. We observe that
even though the single precision is gone, we manage to attain
similar accuracy levels for the same set of matrices.

Next, we tested the mixed-precision iterative refinement
when storing the solution vectors in a partitioned form and the
heat of observed accuracy is presented in Figure 7. The results
are in line with the prior two methods and we show again that
it is possible to maintain high accuracy of the solution without
the use of single precision as long as matrix conditioning in
half precision is conducive to obtaining convergent iteration.

Finally, we present the accuracy results from running our
new LU variant that deals with the limited range during the
factorization by using the newly proposed signed square root

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

59
0

60
0

61
0

62
0

63
0

64
0

65
0

66
0

67
0

68
0

69
0

70
0

71
0

72
0

73
0

74
0

75
0

76
0

77
0

78
0

79
0

80
0

81
0

82
0

83
0

84
0

85
0

86
0

87
0

88
0

89
0

90
0

91
0

92
0

93
0

94
0

95
0

96
0

97
0

98
0

99
0

10
00

Matrix size

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

Ite
ra

tio
ns

solv4splt

0

3

6

9

12

15

Fig. 7. Heat map of the number of digits of accuracy when performing iterative
refinement using half-double precisions with partitioning of the mantissa bits.
The horizontal axis represents the matrix size and the vertical axis shows the
estimate of number digits of achieved accuracy: log10 ‖Ax − b‖∞.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

59
0

60
0

61
0

62
0

63
0

64
0

65
0

66
0

67
0

68
0

69
0

70
0

71
0

72
0

73
0

74
0

75
0

76
0

77
0

78
0

79
0

80
0

81
0

82
0

83
0

84
0

85
0

86
0

87
0

88
0

89
0

90
0

91
0

92
0

93
0

94
0

95
0

96
0

97
0

98
0

99
0

10
00

Matrix size

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

Ite
ra

tio
ns

solv6416ssqrt

0

3

6

9

12

15

Fig. 8. Heat map of the number of digits of accuracy when performing
iterative refinement using half-double precisions with signed square root LU
factors. The horizontal axis represents the matrix size and the vertical axis
shows the estimate of number digits of achieved accuracy: log10 ‖Ax − b‖∞.

operation. Figure 8 shows the heat map of accuracy across the
same matrix dimensions as was presented before. The results
are more accurate with more digits in the solution recovered
during the iteration for a number of matrix sizes.

IX. CONCLUSIONS AND FUTURE WORK

We presented multiple methods that allowed us to recover
some of the accuracy that would have been lost when using
half-precision arithmetic in the mixed-precision refinement
algorithm. We show how a number of range- and accuracy-
enhancing strategies combined with the new variant of LU
factorization, based on the newly proposed signed square root
operation, greatly improve the correct digits in the linear
system solve when compared with the original mixed-precision
refinement that uses half precision for LU factorization.

In the future, we would like to look into more exotic
accelerator hardware and see how our proposed methods extend
the usability of these platforms to numerical linear algebra.
Further modifications of the original mixed-precision iteration
refinement algorithm are also possible and will be the subject
of future research.

ACKNOWLEDGMENTS

This research was partiallay supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. It was also partially supported
by the National Science Foundation through OAC-1740250.

REFERENCES

[1] Y. Chen, J. S. Emer, and V. Sze, “Eyeriss v2: A flexible and
high-performance accelerator for emerging deep neural networks,” CoRR,
vol. abs/1807.07928, 2018. [Online]. Available: http://arxiv.org/abs/1807.
07928

[2] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, R. C. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,

and D. H. Yoon, “In-datacenter performance analysis of a tensor
processing unit,” CoRR, vol. abs/1704.04760, 2017. [Online]. Available:
http://arxiv.org/abs/1704.04760

[3] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Princeton,
NJ, USA: Prentice-Hall, 1963.

[4] ——, The Algebraic Eigenvalue Problem. London, UK: Oxford
University Press, 1965.

[5] G. Peters and J. H. Wilkinson, “On the stability of Gauss-Jordan
elimination with pivoting,” Communications of the ACM, vol. 18, pp.
20–24, 1975.

[6] J. R. Hauser, “Berkeley SoftFloat,” 2018, http://www.jhauser.us/
arithmetic/SoftFloat.html.

[7] ——, “Handling floating-point exceptions in numeric programs,” ACM
Transactions on Programming Languages and Systems, vol. 18, no. 2,
pp. 139–174, March 1996.

[8] J. Lee, G. D. Peterson, R. J. Harrison, and R. J. Hinde, “Mixed
precision dense linear system solvers for high performance reconfigurable
computing,” ser. 2009 Symposium on Application Accelerators in High-
Performance Computing (SAAHPC’09), University of Illinois at Urbana-
Champaign, USA, 2009.

[9] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak,
“Mixed precision iterative refinement techniques for the solution of dense
linear systems,” Manchester Institute for Mathematical Sciences, School
of Mathematics, The University of Manchester, Tech. Rep. MIMS EPrint:
2007.124, 2007, iSSN 1749-9097, Reports available from: http://www.
manchester.ac.uk/mims/eprints.

[10] E. Carson and N. J. Higham, “A new analysis of iterative refinement
and its application to accurate solution of ill-conditioned sparse linear
systems,” SIAM J. Sci. Comput., vol. 39, no. 6, pp. A2834–A2856, 2017.

[11] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing GPU
tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative
refinement solvers,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis, ser.
SC ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 47:1–47:11.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3291656.3291719

[12] N. J. Higham, S. Pranesh, and M. Zounon, “Squeezing a matrix into half
precision, with an application to solving linear systems,” 2018, mIMS
Preprint.

[13] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” CoRR, vol.
abs/1502.02551, 2015, accessed: 2018-08-01. [Online]. Available:
http://arxiv.org/abs/1502.02551

[14] ——, “Deep learning with limited numerical precision,” in Proceedings of
the 32nd International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37.
Lille, France: PMLR, 2015, pp. 1737–1746, accessed: 2018-08-01.
[Online]. Available: http://proceedings.mlr.press/v37/gupta15.html

[15] G. W. Howell and M. Baboulin, “LU preconditioning for overdetermined
sparse least squares problems,” in Proceedings of Parallel Processing
and Applied Mathmetics (PPAM) 2015, Lublin, Poland, 2015, to appear.

[16] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra,
“Exploiting the performance of 32 bit floating point arithmetic in obtaining
64 bit accuracy (revisiting iterative refinement for linear systems),” in
ACM/IEEE SC 2006 Conference (SC’06), Nov. 2006, p. 50.

[17] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov, “Accelerating scientific computations with
mixed precision algorithms,” Computer Physics Communications, vol.
180, pp. 2526–2533, 2009.

[18] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek,
and S. Tomov, High Performance Computing and Grids in Action. IOS
Press, Amsterdam, Nov. 2007, ch. Exploiting Mixed Precision Floating
Point Hardware in Scientific Computations.

[19] G. Peters and J. H. Wilkinson, “The least-squares problem and pseudo-
inverses,” Comput. J., vol. 13, pp. 309–316, 1970.

[20] A. Edelman, “Eigenvalues and condition numbers of random matrices,”
Ph.D. dissertation, Massachusetts Institute of Technology, May 1989.

[21] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark:
Past, present, and future,” Concurrency and Computation: Practice
and Experience, vol. 15, no. 9, pp. 803–820, August 10 2003, dOI:
10.1002/cpe.728.

[22] G. W. Stewart, Matrix Algorithms: Volume 1: Basic Decompositions.
SIAM, 1998.

[23] ——, Matrix Algorithms: Volume II: Eigensystems. SIAM, 2001.

http://arxiv.org/abs/1807.07928
http://arxiv.org/abs/1807.07928
http://arxiv.org/abs/1704.04760
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.manchester.ac.uk/mims/eprints
http://www.manchester.ac.uk/mims/eprints
http://dl.acm.org/citation.cfm?id=3291656.3291719
http://arxiv.org/abs/1502.02551
http://proceedings.mlr.press/v37/gupta15.html

	Introduction
	Related Work
	Problem Statement: Iterative Refinement in Limited Precision
	Coping with Limited Range: Promotion to Single Precision
	Coping with Limited Range: Adaptive Residual Scaling
	Coping with Limited Accuracy: Precision Partitioning
	Coping with Limited Range: Numerically Balanced Factors with Signed Square LU
	Experimental Results
	Conclusions and Future Work
	References

