
MagmaDNN: Towards High-Performance Data Analytics and
Machine Learning for Data-Driven Scientific Computing 	

D. Nichols1, N.S. Tomov1, F. Betancourt1, Stan Tomov1, K. Wang1, J. Dongarra1,2
1 Innovative Computing Laboratory
Department of Computer Science
University of Tennessee, Knoxville

2 Oak Ridge National Laboratory (ORNL), Oak Ridge
	

ISC High-Performance 2019
Workshop on “HPC Education and Training for Emerging Technologies” (HETET19)
Frankfurt, Germany
June 20, 2019

• Dense Linear Algebra (DLA) is needed in a wide variety of science and engineering
applications, including ML and data analytics problems:

•  Linear systems: Solve Ax = b
•  Computational electromagnetics, material science, applications using

boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more

•  Least squares: Find x to minimize || Ax – b ||
•  Computational statistics (e.g., linear least squares or ordinary least squares),

econometrics, control theory, signal processing, curve fitting, and many more

•  Eigenproblems: Solve Ax = λ x
•  Computational chemistry, quantum mechanics, material science, face recognition,

PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

•  SVD: A = U Σ V* (Au = σv and A*v = σu)
•  Information retrieval, web search, signal processing, big data analytics, low rank

matrix approximation, total least squares minimization, pseudo-inverse, and many more

•  Many variations depending on structure of A
•  A can be symmetric, positive definite, tridiagonal, Hessenberg, banded,

sparse with dense blocks, etc.

•  DLA is crucial to the development of sparse solvers

Dense Linear Algebra in Applications

LA for modern architectures

•  Leverage latest numerical
algorithms and building blocks
MAGMA, PLASMA, SLATE (DOE funded) ,
MAGMA Sparse, POMPEI project*

•  Polymorphic approach
Use MAGMA sub-packages for various
architectures;
Provide portability through single
templated sources using C++

•  Programming model
BLAS tasking + scheduling

•  Open standards
OpenMP4 tasking + MPI

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

 - Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

 - Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

 - PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

 - a DAG/scheduler

 - block data layout

 - some extra kernels

����������������������
���
��������������������
����������
����
��������������
�������������������������������
���������������������������
�����������	�����
����������
�����������������
���������	�����
����������������
�����
���������������������������
���
������
���������������������

 MAGMA
 Hybrid Algorithms
 (heterogeneity friendly)

Level 1 BLAS

Level 3 BLAS

PBLAS
 BLAS on tiles +
DAG scheduling

BLAS tasking +
(CPU / GPU / Xeon Phi)
hybrid scheduling

Use of BLAS for portability

Nvidia P100
The theoretical peak double precision is 4700 Gflop/s
CUDA version 8.0

Level 1, 2 and 3 BLAS
Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s

Matrix size (N), vector size (NxN)
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Gf
lop

/s

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

dgemm BLAS Level 3
dgemv BLAS Level 2
daxpy BLAS Level 1

145 Gflop/s

52 Gflop/s

4503 Gflop/s

31x

C = C + A*B

y = y + A*x

y = �*x + y

What about accelerated LA for Data Analytics?

•  Traditional libraries like MAGMA can be used as backend to accelerate the LA computations
in data analytics applications

•  Need support for
1) New data layouts, 2) Acceleration for small matrix computations, 3) Data analytics tools

Need data processing and analysis support for
Data that is multidimensional / relational

Small matrices, tensors, and batched
computations

Fixed-size
batches

Variable-size
batches

Dynamic batches

Tensors

Data Analytics and LA on many small matrices

Data Analytics and associated with it Linear Algebra on small LA
problems are needed in many applications:

•  Machine learning,
•  Data mining,
•  High-order FEM,
•  Numerical LA,
•  Graph analysis,

•  Neuroscience,
•  Astrophysics,
•  Quantum chemistry,
•  Multi-physics problems,
•  Signal processing, etc.

Filters F
Fn

 Output On

n,kO

n,kO = k,iD
i
∑ n,iF

Dk .
Convolution Pooling Convolution Pooling Fully Output

 connected predictions Data D

Convolution of Filters Fi (feature detection) and input image D:
•  For every filter Fn and every channel, the computation for

every pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed into

a batched GEMM (for efficiency; among other approaches)

chicken 0.4
boat 0.3

person 0.1
dog 0.01

Batched LAPACK
Sparse / Dense Matrix

System

Single calls to
Batched BLAS

DAG-based factorization

•  Matrix-free basis evaluation needs efficient tensor contractions,

•  Within ECP CEED Project, designed MAGMA batched methods
to split the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

 Batch_{ Ci3 = AT Bi3, for range of i3 }

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

Machine learning Applications using high-order FEM

Sparse/Dense solvers & preconditioners

Programming model: BLAS + scheduling

B
LA

S
ta

sk
in

g
+

hy

br
id

 s
ch

ed
ul

in
g

MAGMA
hybrid scheduling

1
2

Execution trace with hybrid task scheduling

4 G
PU

s +
 C

PU

Time

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

A. Haidar, K. Kabir, D. Fayad, S. Tomov, and J. Dongarra, “Out of Memory SVD
Solver for Big Data”, IEEE HPEC, September, 2017.

Yuechao Lu, et al. on out-of-GPU memory GEMMs in RSVD, TASMANIAN, etc.

0	

1000	

2000	

3000	

4000	

5000	

6000	

10K	 20K	 30K	 40K	 50K	 60K	 70K	 80K	

magma_dgetrf	

CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz V100 NVIDIA Volta GPU

80 MP x 64 @ 1.38 GHz

G
flo

p/
s

PCIe

Matrix size

Performance of LU in DP

O
ut

-o
f-G

P
U

M

em
or

y

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

•  Mixed-precision LA
•  Use new hardware features, e.g., Tensor Cores

A. Haidar, P. Wu, S. Tomov, and J. Dongarra, “Investigating half precision
arithmetic to accelerate dense linear system solvers”, SC’17 ScalA17
workshop, November 2017.

A. Haidar, S. Tomov, and J. Dongarra, and N. Higham, “Harnesing GPU Tensor
Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative
Refinement Solvers”, SC’18 (accepted), November 2018.

Posters (GTC’18 2nd place, ISC’18 1st place; 11K downloads in a month)

Matrix size
2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

2
5
3

2
63 2

6
3

2
6
3

2
6
3 2

6
3

2

6
3

2

6

3

2

6

3

2

7

3

2

7

3

2

6

3
Performance of solving Ax=b

using FP64 or IR with GMRes to achieve FP64 accuracy
FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

κ
∞
(A

)

100

101

102

103

104

105

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

•  Mixed-precision LA
•  Use new hardware features, e.g., Tensor Cores

•  Energy efficient
•  Build energy awareness and tradeoff with performance

GF
LO

Ps
 / W

at
t

0	

5	

10	

15	

20	

25	

CPU	 K40	 P100	 V100	

10x

Energy efficiency
(under ~ the same power draw)

… and 76 Gflop/Watt
using mixed-precision !

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

•  Mixed-precision LA
•  Use new hardware features, e.g., Tensor Cores

•  Energy efficient
•  Build energy awareness and tradeoff with performance

•  Batched LA
•  LA on many small matrices

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

•  Mixed-precision LA
•  Use new hardware features, e.g., Tensor Cores

•  Energy efficient
•  Build energy awareness and tradeoff with performance

•  Batched LA
•  LA on many small matrices

•  FFT
•  FFTs, convolutions, auxiliary routines (transposes, matricizations, etc.)

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

 31 32 33 34 35 36

 1 2 3 4 5 6

1!

–!!–!–!!–!!–!–!!!
–!!–!–!!–!!–!–!!!

–!!–!–!!–!!–!–!!!
–!!–!–!!–!!–!–!!!
–!!–!–!!–!!–!–!!!

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

1!

MagmaDNN

Vendor
Libraries

Run-time/
comm. APIs

LA
libraries

Standard
LA APIs

 MAGMA Templates

BLAS API LAPACK API Batched BLAS API

MPI OpenMP MKL ESSL cuBLAS ACML

MAGMA (dense) MAGMA Batched MAGMA Sparse
 SLATE

Single Heterogeneous Node

Shared memory

ScaLAPACK API

Scalable LA on new architectures
 Data abstractions and APIs
 Heterogeneous systems portability

Tile algorithms
 LAPACK++
 BLAS++

MagmaDNN
High-performance data analytics
and machine learning for many-

core CPUs and GPU accelerators

Applications •  MagmaDNN is HP Data Analytics
and ML framework built around
the MAGMA libraries aimed at
providing a modularized and
efficient tool for training DNNs.

•  MagmaDNN makes use of the
highly optimized MAGMA libraries
giving significant speed boosts
over other modern frameworks.

MagmaDNN

Vendor
Libraries

Run-time/
comm. APIs

LA
libraries

Standard
LA APIs

 MAGMA Templates

BLAS API LAPACK API Batched BLAS API

MPI OpenMP MKL ESSL cuBLAS ACML

MAGMA (dense) MAGMA Batched MAGMA Sparse
 SLATE

Single Heterogeneous Node

Shared memory

ScaLAPACK API

Scalable LA on new architectures
 Data abstractions and APIs
 Heterogeneous systems portability

Tile algorithms
 LAPACK++
 BLAS++

MagmaDNN
High-performance data analytics
and machine learning for many-

core CPUs and GPU accelerators

Applications

0"

20"

40"

60"

80"

100"

120"

5000" 10000" 15000"

MAGMA,2"

MAGMA"

MKL"

EIGEN"S
p

e
e

d
u

p

Matrix sizes

SVD performance speedup

Load Data

Preprocessing

Create/Load Model

Train Model

Predict Export Model

Design process

●  Similar to TF or PyTorch
●  MagmaDNN is designed/

optimized with this training
paradigm in mind.
However, it is customizable.

●  Load Data: Read-in any CSV, image, or other file
necessary for training.

●  Preprocessing: Shape data and store in tensors.

●  Create/Load Model: Restore a saved model or create
a new one using MagmaDNN’s Model class. Set
hyperparameters.

●  Train Model: Fit the network using SGD.

●  Predict: Use the fitted weights to predict class based
on new input.

●  Export Model: Save model to be used again.

Load Data

Preprocessing

Create/Load Model

Train Model

Predict Export Model

Workflow

Neural Network Ideas

Neural Networks are typically composed of layers
of linear transformations wrapped by activation
functions. The network is represented by some
function f.

After optimizing some loss criterion w.r.t. the
parameters of f, the function (or “network”)
becomes an accurate predictor of highly
abstracted data.

Other common, more complicated network types
exist: CNN, RNN, GANs, Belief Networks,
Boltzmann

Neural Network Ideas (cont.)

-  Layers
-  Neural Networks are comprised of

several layers put together.
-  Available Layers:

-  Input, Output (first and last layers of
the network)

-  Fully Connected (dense, linear
transformation)

-  Activation (activation function)
-  Conv2D, Pooling2D (convolutional

layer)

Input Layer

Fully Connected (FC)
Layer

Activation Layer (i.e
RELU, sigmoid…)

Convolution2D Layer

Pooling2D Layer

Output Layer

DNN example representation

 . . .

Back

propagation

Forward

propagation

.

.

.

1

13

.

.

.

1

2

n1

.

.

.

1

2

nL-1

 . . .

input layer

hidden layer 1 hidden layer L-1

output
layer L

W1

WL

n1xM

1xnL-1

Training
data

matrix
X

size MxN

Outputs
Y

(size 1x nb)

M

N

1

N

Z1 = W1 A0 + b1
A1 = σ1 (Z1)

A0 = X

ZL-1 = WL-1 AL-2 + bL-1
AL-1 = σL-1 (ZL-1)

ZL = WL AL-1+ bL
AL = σL (ZL)

dZL = AL - Y
dWL = dZL ATL-1 / nb
dbL = np.sum(dZL, axis=1, keepdims =True)/nb

dZ1 = WT
2 dZ2 .* σ’1(Z1)

dW1 = dZ1 AT0 / nb
db1 = np.sum(dZ1, axis=1, keepdims =True)/nb

 . . .

 . . .

 . . .

0) 1) L-1) L)

L+1) 2L)

nb

Compute Graph
sigmoid

+

b matmul

W x

-  All operations/math are put into
a compute graph.

-  Non-Eager
-  Gradient Support, Grad Tables

Operations & Compute Graphs

All Tensor operations are wrapped in an Operation class, which is used in the
compute graph. Operations also provide a modular interface for creating and
manipulating Tensors. They are created as shown:

Operation<float> *var = op::var<float> ("Var Name", {5, 4}, {GLOROT, {0.5, 0.2}}, HOST);

Var creates and

returns a new variable Tensor shape Tensor initializer. Options
are: GLOROT, UNIFORM,
CONSTANT, ZERO, ONE,

DIAGONAL, IDENTITY,
NONE

Tensor memory type.
Options are: HOST,

DEVICE, MANAGED,
CUDA_MANAGED

Operations & Compute Graphs (cont.)

Variables are Operations that wrap around Tensors. Operations are also used
for representing some math operation in the computational graph. For example:

Operation<float> *result = op::add(op::matmul(A, x), b);

Tensor<float> *result_tensor = result->eval();

This constructs a compute graph and eval() evaluates it into a Tensor. Available

operations are: Variable, Tanh, Sigmoid, Add, and Matmul. Since all of these are

inherited from Operation, it is simple to create/add new operations.

Operations & Compute Graph (Full Example)

auto A = op::var<float> ("A", {4, 5}, {GLOROT, {1.5, 2.0}}, MANAGED);

auto X = op::var<float> ("X", {5, 4}, {UNIFORM, {0.0, 1.0}}, MANAGED);

auto B = op::var<float> ("B", {4, 4}, {DIAGONAL, {1, 2, 3, 4}}, MANAGED);

/* compute some math operations */

auto result = op::add(op::matmul(A, X), B);

Tensor<float> *result_tensor = result->eval();

/* use results */

delete result; /* only need to delete head of tree */

delete result_tensor;

Memory Manager

-  Core Memory Kernel
-  4 memory types:

-  HOST (cpu memory)
-  DEVICE (gpu memory)
-  MANAGED (internal managed)
-  CUDA_MANAGED (cuda managed)

-  Supports interactions between all
memory types

-  Managed memory types must be
synced!

Tensors

Data with multiple axes.

Everything in MagmaDNN uses tensors.

Layers

Layers are a set of weights/biases and put a forward-prop function on the
compute graph. For instance:

layer::FullyConnectedLayer<float> *fc = layer::fullyconnected(input->out(), n_units);

This creates a weight, w, and bias, b, tensor and puts [W*input->out() + b] onto
the head of the compute graph defined by input->out().

Layers (Full Example)

auto data = op::var<float> ("data", {n_batches, size}, {UNIFORM, {-1.0, 1.0}}, DEVICE);

auto input = layer::input(data);

auto fc1 = layer::fullyconnected(input->out(), n_hidden_units);

auto act1 = layer::activation(fc1->out(), layer::TANH);

auto fc2 = layer::fullyconnected(act1->out(), n_output_classes);

auto act2 = layer::activation(fc2->out(), layer::SIGMOID);

auto output = layer::output(fc2->out());

Tensor<float> *forward_prop_result = output->out()->eval();

Training (example)

Tensor<float> data ({60000, 785}, HOST);

io::read_csv_to_tensor(data, "mnist_data_set.csv");

std::vector<Layer<float>> layers_vector;

/* Create Layers in Here as Shown Before... */

Optimizer<float> optimizer = optimizer::DistributedGradientDescentOptimizer(0.05);

Model<float> model (layers_vector, optimizer, batch_size);

model.fit(data, n_epochs);

Distributed Training
-  Many node training
-  Averages gradients
-  Implemented many strategies and optimizations (using CUDA-aware MPI)

MPI_Allreduce Asynchronous
training

Master-worker reduce Ring Allreduce

Accelerating CNNs in MagmaDNN with FFT

Ø  Convolutions Di,c * Gk,c of images Di,c and filers Gk,c can be accelerated through FFT,
as shown by the following equality, consequence of the convolution theorem:

 Di,c * Gk,c = FFT-1 [FFT(Di,c) .* FFT(Gk,c)],

where .* is the Hadamard (component-wise) product, following the ‘.*’ Matlab notation

Ø  Developed mixed-precision (FP16-FP32) FFT using the GPU’s Tensor Cores (TC) acceleration

Ø  Dynamic splitting to increase the FP16 accuracy, while using high-performance TC

 XFP32(:) = s1 X1FP16(:) + s2 X2FP16(:)

 [X1 X2] = FFT([X1 X2] in FP16+ (e.g., go to radix 4, where the FFT matrix is exact in FP16)

 FFT (X) ≈ s1 X1 + s2 X2

Accelerating CNNs with FFT

Ø  Accuracy of the mixed-precision
(FP16-FP32) FFT

Reference:
X. Cheng, A. Sorna , Ed D’Azevedo, K. Wong, S. Tomov, "Accelerating
2D FFT: Exploit GPU Tensor Cores through Mixed-Precision," The
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC'18), ACM Student Research Poster, Dallas,
TX, November 11-16, 2018.

https://icl.utk.edu/projectsfiles/magma/pubs/77-mixed-precision-FFT.pdf
https://www.jics.utk.edu/recsem-reu/recsem18

Accelerating CNNs with Winograd’s minimal filtering algorithm

Ø  FFT Convolution is fast for large filters;
Typical filters are small, e.g., 3x3, where Winograds’s
algorithm has been successful;
In 2D, convolution of tile D of size 4x4 with
filter F of size 3x3 is computed as

 D * F = AT [[G D GT] .* [BT D B]] A

where B, G, and A are given on the right:

Ø  Computing for a number of filters, sliding the tile over a batch of images, each with a number of

channels, can be expressed as batched gemms, e.g.,
batch m n k (sizes coming from VGG-16 CONVOLUTION LAYERS)
16x64 12544 64 3
16x64 12544 64 64
16x16 12544 128 64
16x16 12544 128 128
…

Install and Build

Dependencies:

-  Cuda (>9.0)
-  CuDNN (>6.0)
-  Magma (>2.3.0) (>2.5.0 for half-precision)

Download MagmaDNN from
https://bitbucket.org/icl/magmadnn (currently not up
to date) or clone it using

hg clone https://bitbucket.org/icl/magmadnn

Compiling/Installing: Copy the make.inc file
from make.inc-examples/ to MDNN’s root,
change any necessary settings in make.inc and
then run

sudo make install

Testing: You should now be able to run the
below command

make testing && cd testing && sh run_tests.sh

this will run the default testers for the
MagmaDNN package.

Hyperparameter optimization

OpenDIEL architecture:
 (A) GUI launcher creates a configuration file
 for the workflow, and executive will read
 this file to set up workflows;
 (B) After initial configuration, executive
 starts all modules;
 (C) The modules have access to the
 communication library, and directly
 communicate or utilize tuple-space
 communication.

MagmaDNN training performance (single V100 GPU)

Data: 60,000 images, 28x28 pixels each

MagmaDNN scalability and SGD speedup

0"

1"

2"

3"

4"

5"

6"

7"

1" 2" 3" 4" 5" 6" 7" 8"

ASGD"Peak"

MagmaDNN"

S
p

e
e

d
u

p

Number of GPUs

Speedup vs. TensorFlow

MagmaDNN benchmarks and testing examples …

Current work and Future directions
•  Performance portability and unified support on GPUs/CPUs

–  C++ templates w/ polymorphic approach;
–  Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APIs.
–  Shows potential; still lacks the arsenal of features present in other popular frameworks

•  Hyperparameter optimization
–  Critical for performance to provide optimizations that are application-specific;
–  A lot of work has been done (on certain BLAS kernels and the approach) but still need a simple framework to handle the entire library;
–  Current hyperparameter optimization tool must be further extended in functionalities
–  Add visualization and OpenDIEL to support ease of GPU deployment over large scale heterogeneous systems

•  Extend functionality, kernel designs, and algorithmic variants
–  BLAS, Batched BLAS, architecture and energy-aware
–  New algorithms and building blocks, architecture and energy-aware
–  Distribution strategies and (asynchronous) techniques for training DNN on large scale systems

•  Use and integration with applications of interest (with ORNL collaborators)
–  Brain-computer interface systems
–  Post-processing data from electron detectors for high-resolution microscopy studies (Unmixing 4-D Ptychographic Images)
–  Optimal cancer treatment strategies

Collaborators
 and Support

MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
LLNL
ORNL
ANL
SANDIA
University of California, Berkeley
University of Colorado, Denver
TAMU
INRIA, France
KAUST, Saudi Arabia
University of Manchester, UK

CEED: Center for
Efficient Exascale Discretizations

