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ABSTRACT
This work presents an implementation of a linear least squares
solver for distributed-memory machines with GPU accelerators,
developed as part of the Software for Linear Algebra Targeting
Exascale (SLATE) package. From the algorithmic standpoint, the
work leverages recent advances in dense linear algebra, speci�cally
the communication-avoiding QR factorization. From the implemen-
tation standpoint, the work represents a sharp departure from the
traditional conventions established by legacy packages, such as
LAPACK and ScaLAPACK. It is based on representing the matrix
as a collection of individual tiles, and using batch operations for
o�oading work to accelerators. The article lays out the principles
of the new approach, discusses the implementation details and
presents the performance results.

CCS CONCEPTS
• Mathematics of computing → Computations on matrices;
• Computing methodologies → Linear algebra algorithms;
Massively parallel algorithms.
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1 MOTIVATION
There is an urgent need for multi-GPU–accelerated, distributed-
memory software. In the United States, the plan for achieving
the Exascale relies heavily on the use of GPU-accelerated ma-
chines, similar to the Summit1 and Sierra2 systems at Oak Ridge
National Laboratory (ORNL) and Lawrence Livermore National
Laboratory (LLNL), respectively, which currently occupy positions
#1 and #2 on the TOP500 list. Although an alternative path exists—
the Intel A21 system, Aurora, planned for the Argonne National
Laboratory (ANL)3 4—no public information about the architecture
has been released so far.

The urgency of the situation is underscored by the architectures
of the aforementioned systems.5 The Summit system contains three
NVIDIA V100 GPUs per each POWER9 CPU. The peak double-
precision �oating-point performance of the CPU is 22 (cores) ⇥
24.56 GFLOPS = 540.32 GFLOPS. The peak performance of the
GPUs is 3 (devices) ⇥ 7.8 TFLOPS = 23.4 TFLOPS, i.e., 97.7% of
performance is on the GPU side, and only 2.3% of performance is
on the CPU side.

Considering the huge gap between the computing power of sys-
tems like Summit and Sierra and their interconnection technology,
there is a strong motivation for pursuing algorithmic innovations
that aim to minimize communication [5, 12]. At the same time, the
disparity between the capabilities of the CPUs and the capabilities
of the GPUs provides a strong incentive to aggressively optimize
the CPU tasks residing in the critical path of the algorithm, using
solutions for e�cient multithreading and cache e�ciency [10].

Here we present the only implementation, that we know of, that
targets Summit- and Sierra-class machines, i.e., large distributed-
memory systems drawing virtually all of their computing power
from GPU accelerators. Our implementation is based on the in-
frastructure of the Software for Linear Algebra Targeting Exascale
(SLATE) project, which is a radical departure from the established

1https://www.olcf.ornl.gov/summit/
2https://hpc.llnl.gov/hardware/platforms/sierra
3https://www.nextplatform.com/2017/11/14/looking-ahead-intels-secret-exascale-
architecture/
4https://www.nextplatform.com/2018/03/19/argonne-hints-at-future-architecture-of-
aurora-exascale-system/
5https://en.wikichip.org/wiki/supercomputers/summit
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conventions, most notably from the legacy matrix layout of ScaLA-
PACK. Moreover, as far as we know, we produced a unique imple-
mentation of the QR panel factorization, which combines internal
blocking, cache residency, and multithreading.

2 BACKGROUND
2.1 Least Squares
The linear least squares solver is one of the main tools of linear
regression, which is widely used in many disciplines of science and
technology. It ranks as one of the most important tools in behavioral
and biological sciences—bioinformatics, �nance, economics, envi-
ronmental science, etc. Linear regression also plays an important
role in arti�cial intelligence, where the linear regression algorithm
is one of the fundamental supervised machine learning algorithms
due to its relative simplicity and well-known properties.

The linear least squares problem is the problem of �nding an
approximate solution to an overdetermined system of equations
Ax = b, a system where the number of equations is larger than the
number of unknowns, such that kb �Ax k2 is minimized. It is most
commonly solved using QR factorization, which is a decomposition
of a matrix A into a product A = QR of an orthogonal matrix Q

and an upper triangular matrix R. There are several methods for
computing the QR decomposition, such as by means of the Gram-
Schmidt process, Householder transformations, or Givens rotations,
each one with a number of advantages and disadvantages. This
work relies on the use of Householder re�ections, which is the
solution adopted by the LAPACK [3] and ScaLAPACK [7] software
packages.

A related problem is the one of solving an underdetermined
system of equations, i.e., a system where the number of equations
is smaller than the number of unknowns. While, in this case, many
solutions exist, we can pick the one with the smallest kx k2. This
problem can be solved by using the LQ factorization, which is a
decomposition of a matrix A into a product A = LQ of a lower
triangular matrix L and an orthogonal matrix Q . The Householder
procedure for �nding the LQ decomposition is basically identical
to the QR procedure.

2.2 SLATE Project
SLATE6 is being developed as part of the Exascale Computing
Project (ECP),7 which is a collaborative e�ort between two US
Department of Energy (DOE) organizations, the O�ce of Science
and the National Nuclear Security Administration (NNSA). The
objective of SLATE is to provide fundamental dense linear alge-
bra capabilities to the US Department of Energy and to the high-
performance computing (HPC) community at large.

The ultimate objective of SLATE is to replace the ScaLAPACK
library, which has become the industry standard for dense linear
algebra operations in distributed-memory environments. However,
after two decades of operation, ScaLAPACK is past the end of its life
cycle and overdue for a replacement, as it can hardly be retro�tted
to support hardware accelerators, which are an integral part of
today’s HPC hardware infrastructure.

6http://icl.utk.edu/slate/
7https://www.exascaleproject.org

For context, ScaLAPACK was �rst released in 1995, some 24
years ago. In the past two decades, HPC has witnessed tectonic
shifts in the hardware technology, followed by paradigm shifts in
the software technology, and a plethora of algorithmic innovations
in scienti�c computing. At the same time, no viable replacement
for ScaLAPACK emerged. SLATE is meant to be this replacement,
boasting superior performance and scalability in the modern, het-
erogeneous, distributed-memory environments of HPC.

Primarily, SLATE aims to extract the full performance potential
and maximum scalability from modern, many-node HPC machines
with large numbers of cores and multiple hardware accelerators
per node. For typical dense linear algebra workloads, this means
getting close to the theoretical peak performance and scaling to
the full size of the machine (i.e., thousands to tens of thousands of
nodes). This is to be accomplished in a portable manner by relying
on standards like MPI and OpenMP.

SLATE functionalities will �rst be delivered to the ECP applica-
tions that most urgently require SLATE capabilities (e.g., EXascale
Atomistics with Accuracy, Length, and Time [EXAALT], NorthWest
computational Chemistry for Exascale [NWChemEx], Quantum
Monte Carlo PACKage [QMCPACK], General Atomic and Molec-
ular Electronic Structure System [GAMESS], CANcer Distributed
Learning Environment [CANDLE]) and to other software libraries
that rely on underlying dense linear algebra services (e.g., Factor-
ization Based Sparse Solvers and Preconditioners [FBSS]). SLATE
will not only �ll the void left by ScaLAPACK’s inability to utilize
hardware accelerators, but will also ease the di�culties associated
with ScaLAPACK’s legacy matrix layout and Fortran API. Figure 1
shows SLATE in the ECP software stack.

3 RELATEDWORK
Over the past two decades, optimization of QR factorization re-
ceived a lot of attention. From the standpoint of this article, the
most important directions included: e�orts to improve the serial
performance through better cache utilization [6, 15, 16, 24], work
on minimizing communication in distributed-memory environ-
ments [5, 12], research on e�cient scheduling and critical path
minimization [8, 13], and solutions to the problem of multithread-
ing of the memory-bound operations [10].

Fast serial implementation of the QR factorization is the founda-
tion for all other optimizations. Seminal work in this area was done
by Bischof, Schreiber, and Van Loan, who introduced theWY rep-
resentation for products of Householder re�ectors [6, 24], an idea
which became the cornerstone of the QR routines in LAPACK and
ScaLAPACK [11]. A closely related development is the introduction
of recursive QR factorization by Elmroth and Gustavson [15, 16].

The seminal work on avoiding communication in the QR fac-
torization was done by Demmel et al. [12], and later generalized
to other dense linear algebra algorithms. The article by Ballard
et al. [5] is a compendium of knowledge on the topic. The imple-
mentation presented in this article is primarily based on Demmel’s
original idea of splitting the panel factorization into multiple pieces
and following up with a tree reduction. A related development is the
study of di�erent reduction patterns and their corresponding criti-
cal paths. Notable contributions include the work by Bouwmeester
et al. [8] and Dongarra et al. [13].
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Figure 1: SLATE in the ECP software stack.

A signi�cant amount of e�ort has been put towards addressing
the ine�ciencies of the operation know as the panel factorization,
i.e., factorization of a single stripe of the input matrix in order to ac-
cumulate multiple transformations and apply them using e�cient,
Level 3 BLAS operations to the remaining submatrix. Castaldo et
al. [10] proposed the technique of parallel cache assignment for pre-
serving cache e�ciency while applying multithreading. Dongarra
et al. [14] used a similar technique, while also applying recursion,
to the panel factorization in the Gaussian elimination.

Other relevant developments include work on the tile QR fac-
torization [8, 9], which reduces the matrix tile by tile and leads to
very e�cient, highly pipelined multi-core implementations. How-
ever, while relevant, the tile QR is not directly related to this work.
Though it is attractive from the standpoint of strong scaling, the
algorithm has not been chosen for SLATE, as its asymptotic per-
formance is handicapped by complex kernels, i.e., it cannot easily
leverage the performance of the batched gemm kernel [23].

4 IMPLEMENTATION
4.1 Matrix Storage
The matrix storage in SLATE is a radical departure from the con-
ventions of LAPACK and ScaLAPACK. Unlike the legacy packages,
which store the matrix contiguously, by columns, SLATE stores
the matrix as a collection of individual tiles. This o�ers numerous
advantages, e.g.,:

• The same structure can be used for holding many di�er-
ent matrix types,8 e.g., general, symmetric, triangular, band,
symmetric band, etc. No memory is wasted for storing parts
of the matrix that hold no useful data, e.g., the upper trian-
gle of a lower triangular matrix. There is no need for using
complex matrix layouts, such as the Recursive Packed For-
mat (RPF) [1, 2, 18] in order to save space.

• The matrix can be easily converted, in parallel, from one lay-
out to another with O(P) memory overhead, where P is the
number of processors (cores/threads) used. Possible conver-
sions include: changing the layout of tiles from columnmajor

8http://www.netlib.org/lapack/lug/node24.html

to row major, “packing” of tiles for e�cient execution of the
gemm operation,9 low-rank compression of tiles, re-tiling of
the matrix (changing the tile size), etc. Notably, transposi-
tion of the matrix can be accomplished by transposition of
each tile and remapping of the indices. There is no need
for complex in-place layout translation and transposition
algorithms [19].

• Tiles can easily be moved or copied among di�erent mem-
ory spaces. Both inter-node communication and intra-node
communication is vastly simpli�ed. Tiles can easily and e�-
ciently be transferred between nodes using MPI. Tiles can
be easily moved in and out of faster memory, such as the
MCDRAM in the Xeon Phi processors. Tiles can also be
copied to one or more device memories in the case of GPU
acceleration.

In practical terms, the SLATE matrix is implemented by the
std::map container from the standard C++ library, i.e.:

std::map< std::tuple< int64_t, int64_t, int >,
Tile<scalar_t>* >

The key is a triplet consisting of the (i, j) position of the tile in the
matrix and the device number where the tile is located. The value
is a pointer to an object of a lightweight class that stores the tile’s
data and its properties.

In addition to facilitating the storage of di�erent types of matri-
ces, this structure also readily accommodates partitioning of the
matrix to the nodes of a distributed-memory system. Tile indexing
is global, and each node stores only its local subset of tiles. Mapping
of tiles to nodes is de�ned by a C++ lambda function, and set to
2D block cyclic mapping by default. Remote access is realized by
mirroring remote tiles in the local matrix for the duration of the
operation. In that respect, SLATE follows the single program, mul-
tiple data (SPMD) programming style and mimics the partitioned
global address space (PGAS) programming model. SLATE also has
the potential to support matrices with non-uniform tile sizes in the
future.

9https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm
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4.2 Matrix Class Hierarchy
SLATE has thematrix classes below. The SLATE routines require the
correct matrix types for their arguments, but inexpensive shallow
copy conversions exist between the various matrix types. For in-
stance, a general Matrix can be converted to a TriangularMatrix
for doing a triangular solve (trsm).

BaseMatrix Abstract base class for all matrices.
Matrix General,m ⇥ n matrix.
BaseTrapezoidMatrix Abstract base class for all upper or

lower trapezoid storage,m ⇥ n matrices. For upper, tiles
A(i, j) for i  j are stored; for lower, tiles A(i, j) for i � j

are stored.
TrapezoidMatrix Upper or lower trapezoid,m⇥nmatrix;

the opposite triangle is implicitly zero.
TriangularMatrix Upper or lower triangular, n⇥n ma-

trix.
SymmetricMatrix Symmetric, n⇥n matrix, stored by its

upper or lower triangle; the opposite triangle is implic-
itly known by symmetry (Aj,i = Ai, j ).

HermitianMatrix Hermitian, n ⇥ n matrix, stored by its
upper or lower triangle; the opposite triangle is implic-
itly known by symmetry (Aj,i = Āi, j ).

The BaseMatrix class stores the matrix dimensions; whether
the matrix is upper, lower, or general; whether it is not transposed,
transposed, or conjugate-transposed; how the matrix is distributed;
and the set of tiles.

Copying a matrix object is an inexpensive shallow copy, with
a reference-counted C++ shared pointer to the actual data. Sub-
matrices are also implemented by creating an inexpensive shallow
copy, with the matrix object storing the o�set from the top-left of
the original matrix and the transposition operation with respect to
the original matrix.

4.3 Handling of Multiple Precisions
SLATE handles multiple precisions by C++ templating, so there
is only one precision-independent version of the code, which is
then instantiated for the desired precisions. SLATE’s LAPACK++
component [17] provides overloaded, precision-independent wrap-
pers for all the underlying LAPACK routines, which SLATE’s least
squares routines are built on top of. For instance, lapack::tpqrt in
LAPACK++ maps to stpqrt, dtpqrt, ctpqrt, or ztpqrt LAPACK
routines, depending on the precision of its arguments.

Where a data type is always real, blas::real_type<scalar_t>
is a C++ type trait to provide the real type associated with the
type scalar_t, so blas::real_type< std::complex<double> >
is double.

Currently, the SLATE library has explicit instantiations of the
four main data types: float, double, std::complex<float>, and
std::complex<double>. In the future, SLATE should be able to
accommodate other data types, such as quad precision, given ap-
propriate implementations of the elemental operations.

4.4 Message Passing Communication
Communication in SLATE relies on explicit data�ow information.
When a tile is needed for computation, it is broadcast to all the
processes where it is required. Rather than explicitly listing MPI

ranks, the broadcast is expressed in terms of the destination tiles to
be updated. The communication function takes a tile’s (i, j) indices
and a sub-matrix that the tile will update; the tile is sent to all
processes owning that sub-matrix. To optimize communication, a
list of communications is created and the MPI is pipelined with
CPU-to-accelerator transfers. As the set of processes involved is
dynamically determined from the sub-matrix, using an MPI broad-
cast would require setting up a new MPI communicator, which is
an expensive global blocking operation. Instead, SLATE uses point-
to-point MPI communication in a hypercube fashion to broadcast
the data.

4.5 Node-Level Memory Consistency
Several solutions are available for dealing with the complexity
of node-level memory architecture involving separate physical
memories ofmultiple hardware accelerators.We investigated CUDA
managed memory, OpenMP directives, and the OpenMP o�oad
API. None of these seemed yet fully capable and portable across a
wide variety of platforms.

Instead, SLATE allocates and manages accelerator memory itself.
To support multiple accelerator devices, SLATE allows for multiple
copies of a tile in di�erent device memories. The initial copy of a
local tile given by the user is marked as origin. This can be either in
host memory or accelerator memory. All other copies are marked as
workspace—either a temporary copy of a remote tile, or a copy of a
local tile on another device. By default, at the end of a computation
SLATE ensures that the origin copy of a tile is up-to-date, and that
workspace tiles have been deleted.

For o�oad to GPU accelerators, SLATE implements a memory
consistency model, inspired by the MOSI cache coherency proto-
col [20, 26], on a tile-by-tile basis. For read only access, tiles are
mirrored in the memories of possibly multiple GPU devices, and
deleted when no longer needed. For write access, tiles are migrated
to the GPU memory and returned to the CPU memory afterwards
if needed. SLATEâĂŹs memory consistency model has three states
plus an orthogonal OnHold �ag:

Modi�ed (M) Tile’s data is modi�ed; other instances are In-
valid; tile cannot be purged.

Shared (S) Tile’s data is up-to-date with other instances; other
instances may be Shared or Invalid; instance may be purged
unless OnHold.

Invalid (I) Tile’s data is invalid.
OnHold (O) Flag to prevent tile from being purged.

The states are managed by a simple API to fetch tiles to the CPU
or accelerator as needed. The OnHold �ag is used to optimize CPU
to accelerator communication. Normally, at the end of an operation,
workspace tiles are deleted from GPU devices to limit the required
workspace memory. However, if we know that a tile will soon be
used again by another operation, placing it on hold will prevent it
from being purged, eliminating the subsequent re-fetching of data
to the accelerator. This happens, for instance, in applying a block
Householder re�ector, I �VTV

H , where the tiles in V are used in
two gemm operations.

120



Least Squares Solvers for Distributed-Memory Machines with GPU Accelerators ICS’19, June 2019, Phoenix, AZ, USA

4.6 QR Factorization
Householder re�ections can be used to calculate QR decomposi-
tions by re�ecting �rst one column of a matrix onto a multiple
of a standard basis vector, calculating the transformation matrix,
multiplying it with the original matrix and then recursing down the
(i, i) minors of that product. The standard procedure of LAPACK
and ScaLAPACK is to replace each eliminated column with the
coe�cients of the Householder re�ector. LAPACK and ScaLAPACK
also apply the technique of algorithmic blocking, i.e., alternating
steps of factoring a small set of columns (the panel) and applying
the resulting transformations to the trailing submatrix.

The basic mechanics of the communication-avoiding QR (CAQR)
factorization in SLATE are shown on Figure 2. Like most routines
in SLATE, the implementation relies on nested OpenMP tasking,
where the top level is responsible for scheduling large-grained,
interdependent tasks, and the nested level is responsible for dis-
patching large numbers of �ne-grained, independent tasks. In the
case of GPU acceleration, the nested level is implemented using
calls to batched BLAS, to exploit the e�ciency of processing large
numbers of tiles in a call to a single GPU kernel.

Similarly to other routines, the CAQR factorization in SLATE
applies the technique of lookahead [21, 22, 25], where one or more
columns, immediately following the panel, are prioritized for faster
processing to allow for speedier advancement along the critical
path. Lookahead provides large performance improvements, as it
allows for overlapping the panel factorization, which is usually
ine�cient, with updating of the trailing submatrix, which is usually
very e�cient and can be GPU accelerated. Usually, the lookahead of
one results in a large performance gain, while bigger values deliver
diminishing returns.

SLATE implements the communication-avoiding QR popularized
by Demmel [12]. Figure 3 shows the basic premise of that algorithm.
Here the panel is distributed in a block cyclic fashion to multiple
MPI ranks. First, each rank applies the standard QR factorization
to a panel consisting of its local tiles (equivalent of the LAPACK
geqrt routine). This step requires no communication and eliminates
all entries except for the upper triangular part of the top tile in
each rank. The follow-up step applies a binary tree of pairwise
reductions of the remaining triangles (equivalent of the LAPACK
ttqrt routine). At the end, the upper triangular part of the topmost
tile contains the R factor of the QR factorization, and the eliminated
entries are replaced with coe�cients of the Householder re�ectors
used in the elimination process. This is a di�erent set of re�ectors
than the one produced by the standard QR algorithm of LAPACK
and ScaLAPACK. Although, an algorithm exists for reconstructing
the standard re�ectors from the CAQR re�ectors [4].

Within each rank, the standard QR factorization is applied to the
local panel, i.e., the subset of tiles from the global panel, which are
mapped to that rank. The local panel factorization in SLATE relies
on multithreading and internal blocking for maximum multi-core
performance. Figure 4 shows the basic premise of the implemen-
tation. The tiles are assigned to threads in a round-robin fashion,
and the assignment is persistent, which allows for high degree of
cache reuse throughout the panel factorization. Also, the routine
is internally blocked, i.e., the factorization of a panel of width nb

proceeds in steps of much smaller width ib. While typical values

panel

panel

panel

update

update

update

Figure 2: Basicmechanics of QR factorization in SLATEwith
nested parallelism and lookahead.

of nb are 192, 256, etc., typical values of ib are 8, 16, etc. The ib
factorization contains mostly Level 1 and 2 BLAS operations, but
can bene�t to some extent from cache residency, while the nb fac-
torization contains mostly BLAS 3 operations and can also bene�t
from cache residency.

At each step of the ib panel factorization, a stripe of Householder
re�ectors is computed (V ), alongwith a small triangular part of theR
factor (R11), and a small triangular part of theT factor (T21). All this
work is done one column at a time.What follows is application of the
V re�ectors to the right, which includes updating the remainingA22
submatrix, and computing a new horizontal stripe of the R factor
(R12). Most of this work is done using Level 3 BLAS operations
and uses the newly computed set of T factors (T21). At each step,
a vertical stripe of T factors is also computed (T11), resulting from
combining past transformations with the transformations of the
current ib panel. This is also done mostly using Level 3 BLAS
operations (gemm and trmm). This way, at the end of the nb panel
factorization, a full T factor is produced, which allows for e�cient
application of the update to the trailing submatrix.
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 factorizations of local subpanels
distributed

panel rank 0

rank 1

rank 2

reduction of distributed R factors

Figure 3: Stages of the panel factorization in the CAQR algorithm.

Updating of the trailing submatrix consists of two stages (Fig-
ure 5). The �rst applies the transformations from the local panel
factorizations and is equivalent to the LAPACK unmqr function.
The necessary communication involves broadcast of the panel to
the right. This includes the Householder re�ectors and the corre-
sponding T factors. The second stage applies a sequence of trans-
formations resulting from the steps of the tree reduction, and is
equivalent to a sequence of calls to the LAPACK ttmqr routine.
This requires both horizontal broadcasts and point-to-point com-
munication exchanging data between the sets of a�ected rows.

4.7 Least Squares Solver
The QR and LQ factorizations are used to solve the problem

op(A)X = B (1)

where op(A) = A or AH ism ⇥ n, X is n ⇥ nrhs , and B ism ⇥ nrhs .
The various cases below are implemented in SLATE in the gels
routine.

Ifm > n, eq. (1) is over-determined and typically inconsistent
(has no exact solution), so it is solved in the least squares sense:
�nd X that minimizes the residual,

| |op(A)X � B | |2. (2)

For op(A) = A, this can be solved via a QR factorization of A,
yielding X = R

�1
Q
H
B. In SLATE, this is implemented using geqrf

to factor A = QR, unmqr to multiplyW = QH
B, then trsm to solve

X = R
�1
W . For op(A) = A

H , it can be solved via an LQ factorization
of A, yielding X = L

�H (QB). This case is not yet implemented in
SLATE.

Ifm < n, eq. (1) is under-determined and typically has an in�nite
number of solutions, so the solution X with minimum norm is
sought. For op(A) = A

H , this can be solved via a QR factorization,
yieldingX = Q(R�HB). In SLATE, this is implemented using geqrf

to factorA = QR, trsm to solveW = R
�H

B, then unmqr to multiply
X = QW . For op(A) = A, it can be solved via an LQ factorization
of A, yielding X = QH (L�1B). This case is not yet implemented in
SLATE.

IfA is rank de�cient, the above QR technique will fail because the
triangular matrix R will be singular. In that case, other techniques
such as rank-revealing QR or the singular-value decomposition
(SVD) are applicable. These techniques will be addressed by future
SLATE developments.

4.8 Deep Tile Transposition
As evident from Section 4.7, the over- and under-determined prob-
lems can both be solved by either QR or LQ. In fact, QR and LQ are
simply conjugate-transposes of each other:

(QR)H = R
H
Q
H = LQ̂ .

TheQR factorization formsHouseholder re�ectors to eliminate each
column below the diagonal, thus accessing data column-wise, while
the LQ factorization applies Householder re�ectors to eliminate
each row right of the diagonal, thus accessing data row-wise. Since
SLATE by default stores data in column-major order, accessing data
row-wise in LQ would be ine�cient. Also, writing an LQ routine
that is basically identical to the QR routine but applied row-wise
would introduce undesired code duplication.

Instead, to compute an LQ factorization we employ transposi-
tion and compute the QR factorization of AH , then transpose the
resulting QR back to obtain LQ̂ . For most purposes, SLATE uses a
shallow transposition, which merely marks a matrix and its tiles as
transposed, without physically transposing data in memory. The
underlying BLAS routines (gemm, etc.) take the transposition �ag
and apply it during the computation. However, in LQ, this shallow
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. . .

panel

T factors

R11

R0

R12

V0

T11

V A22

A22

A22

V

V

V0

V0

thread 0

thread 1

thread 2

T0

T21

ib

nb

Figure 4: Local QR panel factorization in SLATE with multi-
threading and internal blocking.

transpose would still leave ine�cient row-wise access to column-
major data. Instead, we employ a deep transpose that physically
transposes the tiles in memory.

Each tile is transposed independently. Square tiles can always be
transposed in place. Rectangular tiles, which occur on the border
of the matrix, must be contiguous, not strided, to be transposed in
place. If data starts in ScaLAPACK format, we handle making just
the border tiles contiguous in the Matrix fromScaLAPACK construc-
tor, and copying the border tiles back to ScaLAPACK format via
toScaLAPACK. As with the shallow transpose, accessing tiles swaps
indices, so accessing tile AH (i, j) returns tile A(j, i).

When shallow and deep transpose are combined, it leads to
several mixed states, such as (AT )t , where capital T represents
deep transpose and t represents shallow transpose. Mixing a shal-
low transpose and shallow conjugate-transpose is prohibited, since
BLAS does not support it, but otherwise all combinations are al-
lowed.

4.9 ScaLAPACK Compatibility
Because many applications have signi�cant existing code bases us-
ing ScaLAPACK, we provide a ScaLAPACK compatibility API. These
routines intercept calls to ScaLAPACK and redirect them to SLATE
calls. This is enabled simply by adjusting the link line of the ap-
plication, putting -lslate_scalapack_api before -lscalapack.
No code modi�cations are required. Any ScaLAPACK calls that
SLATE implements will be intercepted; other calls will continue to
use ScaLAPACK as before.

It should be noted, however, that an optimal con�guration for
ScaLAPACK—typically one MPI process per core—is not optimal for
SLATE, where we’ve found using one MPI process per socket works
better. Also, SLATE typically uses larger tile sizes, particularly when
using accelerators. Instead of nb = 64 used for ScaLAPACK, SLATE
may require nb = 192 or 256 for good e�ciency.

5 PERFORMANCE ANALYSIS
5.1 Setup
Performance numbers were collected using the SummitDev sys-
tem10 at the OLCF, which is intended to mimic the OLCF’s much
larger supercomputer, Summit. SummitDev is based on the IBM
POWER8 processors and the NVIDIA P100 (Pascal) accelerators,
and is one generation behind Summit, which is based on the IBM
POWER9 processors and the NVIDIA V100 (Volta) accelerators.

The SummitDev system contains three racks, each with eighteen
IBM POWER8 S822LC nodes, for a total of �fty-four nodes. Each
node contains two POWER8 CPUs, ten cores each, and four P100
GPUs. Each node has 256 GB of DDR4 memory. Each GPU has
16 GB of HBM2 memory. The GPUs are connected by NVLink 1.0
at 80 GB/s. The nodes are connected with a fat-tree enhanced data
rate (EDR) In�niBand.

The software environment used for the experiments included
GNU Compiler Collection (GCC) 7.1.0, CUDA 9.0.69, Engineering
Scienti�c Subroutine Library (ESSL) 5.5.0, Spectrum MPI 10.1.0.4,
Netlib LAPACK 3.6.1, and Netlib ScaLAPACK 2.0.2.

5.2 Performance
All runs were performed using sixteen nodes of the SummitDev
system, which provides 16 nodes ⇥ 2 sockets ⇥ 10 cores = 320 IBM
POWER8 cores and 16 nodes⇥ 4 devices = 64 NVIDIA P100 accelera-
tors. SLATE was run with one process per node, while ScaLAPACK
was run with one process per core, which is still the prevailing
method of getting the best performance from ScaLAPACK. Only
rudimentary performance tuning was done in both cases.

Figures 6 and 7 show performance comparisons of SLATE and
ScaLAPACK using CPUs only. Figure 6 shows performance of the
QR factorization (dgeqrt) and Figure 7 shows performance of the
least square solver (dgels). All results are in double precision.

Figures 8 and 9 show performance comparisons of SLATE with
GPU acceleration and ScaLAPACK without GPU acceleration. We
are not aware of an e�ective way of GPU accelerating ScaLAPACK.
Figure 8 shows performance of the QR factorization (dgeqrt) and
Figure 9 shows performance of the least square solver (dgels). The
results are also in double precision here.

10https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/
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Figure 5: Diagram of the CAQR factorization in SLATE showing steps of the trailing submatrix update, including the corre-
sponding communication.

At this point, the CPU performance of SLATE is comparable to
ScaLAPACK—slightly lower for the QR factorization alone, slightly
faster for the complete least squares solver. This is an initial imple-
mentation and numerous performance improvement opportunities
exist: faster kernels, improved scheduling, improved communica-
tion. We expect SLATE to eventually surpass ScaLAPACK across
the entire spectrum.

At the same time, SLATE clearly shows the capability of bene�t-
ing from GPU acceleration, although the performance numbers are
not yet as high as expected. Again, multiple optimization opportu-
nities exist. Eventually, an order of magnitude improvement over
CPU performance is expected.

6 SUMMARY
We presented a least squares solver implementation for distributed-
memory systems with GPU accelerators. The code is part of the
SLATE software package, meant to compete with ScaLAPACK and
address ScaLAPACK’s inability to utilize hardware accelerators. For
maximum performance in distributed memory, we applied the com-
munication avoiding QR factorization. For top CPU performance,
we implemented blocked and multithreaded panel factorization.
GPU acceleration was facilitated by the SLATE software infrastruc-
ture, which moves tiles across devices and applies batch matrix
multiplication for maximum GPU performance.

SLATE delivers similar performance to ScaLAPACK when us-
ing CPUs only, and superior performance when using GPU accel-
eration. Many improvement opportunities exist—communication,
scheduling, further o�oading to the GPUs. The main obstacle in
achieving GPU saturation is the unforgiving architecture of the
target hardware—a massive disproportion of GPU power to CPU
power and a huge gap between the computing capabilities of the
nodes and the communication capabilities of the network.
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