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CHAPTER 1

Executive Summary

The goal of this milestone was the imlementation optimizations and features phase of 3-D FFTs in the
FFT-ECP project. The target architectures are large-scale distributed GPU-accelerated platforms.

In this milestone we describe the implmentation optimizations, features, and performance of the 3-D
FFTs that we developed for heterogeneous systems with GPUs. Speci�cally, this milestone delivered on
the following sub-tasks:

• Extend FFT-ECP to support various precisions, including real, and investigate the feasibility of
mixed precision FFT solvers;

• Develop support for �exible data layouts and enable the new library to handle data conversion/-
communication on the backend in an optimized and dynamic adaptive fashion based on the
communication cost model analyzed in the previous milestone;

• Optimize the distributed 3-D FFT-ECP solver to enable multiple FFTs per MPI process (with
accelerators) and multiple GPUs per node.

A main part of this milestone were the performance optimizations and the additions of features that
targeted ECP applications need.

The artifacts delivered include the performance optimizations and features added to the solvers, and a
tuned FFT-ECP so�ware, freely available on the FFT-ECP’s Git repository hosted on Bitbucket, https:
//bitbucket.org/icl/heffte/. This is the �rst so�ware release under the FFT-ECP project. Released is a new
FFT library, called heFFTe version 0.1 (Highly E�cient FFTs for Exascale).

See also the FFT-ECP website, http://icl.utk.edu/fft/ for more details on the FFT-ECP project.
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CHAPTER 2

Background

The Fast Fourier Transform (FFT) is in the so�ware stack for almost all ECP applications. This in-
cludes applications and simulations in molecular dynamics, spectrum estimation, fast convolution and
correlation, signal modulation and many wireless multimedia applications.

The distributed 3-D FFT is one of the most important kernels needed for particle applications [6],
particularly in Molecular Dynamics (MD) computations, e.g., as in the LAMMPS ECP apps project [3],
and Nbody simulations, e.g., as in the HACC ECP apps project [1]. Other ECP particle apps of need for
FFTs include ECP ExaAM and WarpX. Looking into the Spack package manager dependencies, we found
that 60 scienti�c so�ware packages depend on and use FFTs.

State-of-the-art FFT libraries like FFTW are no longer actively developed for emerging platforms. To
address this de�ciency, the FFT-ECP project, initiated as a new ECP e�ort targeting FFTs [2], aims to
provide a sustainable 3-D FFT library for Exascale platforms.

The approach in FFT-ECP includes leveraging existing FFT capabilities, such as third-party 1-D FFTs
from vendors or open-source libraries. This is also the approach in the SWFFT [7] and FFTMPI [5] FFT
libraries, which are currently used in the HACC and the LAMMPS ECP apps projects, respectively.
FFTMPI and SWFFT have very good weak and strong scalability on CPU-based systems. The goal of the
ECP-FFT project for this period was the imlementation optimizations and features phase of 3-D FFTs.
The supported features cover the FFTMPI and SWFFT functionalities for 3-D FFTs on GPU-accelerated
Exascale platforms. The so�ware is released under the heFFTe version 0.1 library, freely available on
the FFT-ECP’s Git repository hosted on Bitbucket, https://bitbucket.org/icl/heffte/.
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CHAPTER 3

FFT optimizations for GPUs

3.1 Target architecture

We are packaging the work under the FFT-ECP project [8, 12] into a new FFT library, called heFFTe. The
heFFTe library aspires to be a new and sustainable high-performance FFT library for exascale platforms
that leverages the large investments in FFT so�ware by the broader HPC community. Indeed, there are
many FFT libraries. Analysis and performance comparisons of major FFTs on current architectures are
available in [11]. The results [11] motivated basing the FFT-ECP heFFTe design on FFTMPI [5], a CPU
FFT library developed by Sandia National Laboratory (SNL). In this milestone we describe the latest
optimizations and features added in porting the FFT-ECP heFFTe computations to graphics processing
units (GPUs), as well as accelerating the MPI communications using GPUDirect technologies. Figure 3.1
illustrates the main target architecture for this period—the Summit supercomputer at Oak Ridge National
Laboratory (ORNL). Shown are the node architecture and connectivity. The goal is to develop FFT
optimizations and FFT versions that reduce, as well as optimize, communication on all connectivity and
memory hierarchy levels:

1. Leverage the GPU’s 900 GB/s bandwidth;

2. Reduce global inter-node communications, and

3. Employ GPUDirect technologies as well as MPI optimizations to e�ciently communicate both
intra-node (through the 50 GB/s NVLinks) and inter-node (through the 2× 12.5 GB/s In�niBand).

We note that Summit has fat nodes – capable of reaching a peak performance of 42 TeraFlop/s in
double precision arithmetic – but only 25 GB/s unidirectional bandwith (up to 50 GB/s bidirectional) for
internodal communications. This is the main bottleneck for FFTs as FFTs are memory bound – for �ops
for data of size N are only about 5Nlog2N .
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3.2. OVERALL DESIGN AND OPTIMIZATIONS CHAPTER 3. FFT OPTIMIZATIONS FORGPUS

Figure 3.1: Summit node architecture and connectivity.

3.2 Overall design and optimizations

FFT-ECP is based on FFTMPI and follows the same algorithmic patterns (see Figure 3.2). Data transposi-
tions create contiguous vectors (pencils) in the x, y, and z directions, and call an external FFT library for
the 1-D FFT calculations on the corresponding pencils. One of the most important features of FFTMPI
is the �exibility of input and output data layout. That �exibility is kept in FFT-ECP. The algorithm
works as follows: given a 3-D tensor A = {ai,j,k} distributed on P processors, the �rst step is to make
the data belonging to the �rst dimension available on the same processor (i.e., ∀j0, k0,∃ process Pl s.t.
ai,j0,k0

∈ Pl for ∀i) so that the computation of the �rst dimension can start on Pl. A�er it is �nished, data
is transposed again and 1-D FFTs are computed along the second dimension, and the same goes for the
last one. Then, if necessary, a �nal step of communication is performed to build the output layout.

To get as close as possible to the theoretical maximum performance, we design the FFT-ECP heFFTe
library to be computed entirely on the GPUs and the GPUs to communicate directly to GPUs, i.e.,
removing any CPU-to-GPU data movements. Thus, we rely on CUDA-aware MPI implementations
that avoid staging communications through the CPU host memory. Instead, CUDA-aware MPIs use
GPUDirect technologies (for direct P2P communications between GPUs on a node and RDMA for direct
communication between GPUs on di�erent nodes, avoiding host memory) to provide high-bandwidth,
low-latency communications with NVIDIA GPUs.

The FFT-ECP design also relies on 1-D FFTs from vendors or open source FFT libraries. On NVIDIA
GPUs we use the cuFFT library [4].
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3.3. FFT-ECP PERFORMANCE AND LIMITATIONS CHAPTER 3. FFT OPTIMIZATIONS FORGPUS

Figure 3.2: FFT-ECP framework design with �exible API

3.3 FFT-ECP performance and limitations

A typical pro�le of running 3-D FFTs on multi-core CPUs (e.g., Summit) is given on Figure 3.3, Le�.
The times reported (in seconds) are for double complex arithmetic performing Forward FFT, starting
from brick distribution and ending with the same brick distribution over the processes. The local
FFT operations (within an MPI process) are memory bound and take about 50% of the time, in this
case. Included are local packing, unpacking, and 1-D FFTs (using any CPU FFT library that gives best
performance, e.g., Intel MKL FFT, FFTW, or any other). The other 50% are in MPI communications.

Packing     0.91%

Unpacking 0.72%

FFT computation       1.03 %

MPI communication  97.34%
Packing     9.65%

Unpacking 29.13%

FFT computation       11.77%

MPI communication  49.45%

CPU GPU 

0.72s 

0.14s 

0.43s 

0.17s 

0.71s 

0.017s 

0.74s 

Accelerate 
 
 

local operations 
using GPUs  

43 x   

Figure 3.3: Pro�le of a 3-D FFT of size 10243 on 4 CPU nodes—using 128 MPI processes, i.e., 32 MPIs per
node, 16 MPIs per socket (Le�) vs. 4 GPU nodes—using 24 MPI processes, i.e., 6 MPIs per node, 3 MPI
per socket, 1 GPUs per MPI (Right)

Note that the local computations are memory bound and can therefore bene�t from the GPUs’ high
bandwidth (900 GB/s). To leverage this, we ported all operations to the GPU: packing and unpacking using
the fast matrix transpositions available in MAGMA [10], and the 1-D FFTs using cuFFT [4] from NVIDIA.
This accelerated the local operations 43×, in this case. The GPU pro�le of running the same problem on
four nodes with six V100 GPUs each is shown on Figure 3.3, Right. The local 1-D FFTs, packing data, and
unpacking now takes only about 2.5% of the total execution time. MPI communications remained about
the same, using CUDA-Aware MPI from IBM (Spectrum MPI) doing GPUDirect communication. The
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3.4. COMMUNICATION REDUCTION IN FFTS CHAPTER 3. FFT OPTIMIZATIONS FORGPUS
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Figure 3.4: Bandwidth Benchmark for di�erent types of p2p with message size = 40MB

results show that the maximum acceleration in cases like this is achieved, and is about 2×.

Multiple other versions were also developed to support di�erent features, including user interfaces, e.g.,
data starting from the CPU memory, GPU memory, di�erent data distributions, etc. In general, any
version that involves movement of data to the CPU memory was signi�cantly slower due to the costly
data movements through the 50 GB/s NVLinks vs. the 900 GB/s GPU bandwidth.

3.4 Communication reduction in FFTs

The current bottleneck in FFTs are MPI communications. As illustrated on Figure 3.3, Right, MPI
communications take more than 97% of the total time.

To optimize communications, we developed benchmarks and tested di�erent technologies for transfer-
ring data. Figure 3.4 summarizes the comparison for GPUDirect Peer to Peer (P2P) communications.
The comparisons are when a GPU communicates with GPUs on the same socket, cross socket GPUs,
unidirectional and bidirectional, and using Nvidia GPUDirect technologies in single process versus
CUDA-aware MPI communications from di�erent MPI processes. This helped identify drawbacks, sum-
marized in the conclusions, as some of these communications are far away from the theoretical peaks.
Similar benchmarks and studies were performed on All2All communications. The best performing
versions were selected to achieve the results in Figure 3.3, Right, and in general for the tuning of the
FFT-ECP library.

We achieved the best performance with a combination of P2P Spectrum MPI communications for FFTs
on up to four Summit nodes, and Spectrum MPI All2All for more than four Summit nodes. This is
illustrated on Figure 5.2. Note that the code also has very good, strong scalability. The computations
are in double complex arithmetic and the gigaFLOP/s rate reported assumes 5N3log2N

3 �oating-point
operations (FLOPs), where N is the size for the N3 3-D FFT performed. This computation also starts from
bricks and ends up with the same brick distribution over the MPI processes (on the GPUs’ memories).
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3.4. COMMUNICATION REDUCTION IN FFTS CHAPTER 3. FFT OPTIMIZATIONS FORGPUS
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Figure 3.5: Strong scalability on 3D FFTs of size 10243, comparing the use of All2All vs. P2P MPI
communications using CUDA 9.1 and Spectrum MPI 10.2.

To further reduce communications, we explored algorithmic 3-D FFT variations that can reduce com-
munications. In particular, we looked into ways to reduce the stages of communication. For example,
this can be done with so called slab decompositions, where a process will get the data needed for two
directions of 1-D FFTs, thus avoiding the step of communications between the two. This can save between
25% and 50% of the total time.

This can be further extended, for example, by testing whether all the data �ts in the memory of a single
GPU, and if that is the case, we can send all the data to a single GPU, do the 3-D transform without
any communication and send it back to build the output data layout requested by the the user. Other
extensions are to do this agglomeration to a single node, or a subset of the compute resources.

Figure 3.6 illustrates the e�ect of using slab decompositions to reduce communications, and hence to
increase performance. The starting splitting is based on bricks, so the pencil decomposition results in
four communication stages: transpose in x, transpose in y, transpose in z, and move back to the original
brick decomposition. The slab decomposition on the other hand results in only three stages: move to
x-y slabs, transpose in z, and move back to the original brick decomposition. This is a theoretical 25%
reduction in communications that results in a corresponding 25% increase in performance. For 8 and 16
nodes, speedup is 35% and 32%, respectively, and goes down as the number of nodes used grows. The
e�ect becomes negative at 128 nodes due to lack of parallelism (at 128 the number of MPIs/GPUs used is
768).

Note the results in Figures 5.2 and 3.6 di�er by up to 20% performance degradation when CUDA and
MPI were updated on Summit. With the new MPI we also do not see the positive e�ect of selecting
proper GPU network a�nities as we used to when using Spectrum MPI 10.2 [12]. GPU a�nity was an
important tuning parameter.
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CHAPTER 4

Accelerating ECP applications with FFT-ECP

In this milestone we focused on molecular dynamics applications. We take LAMMPS [3] as a representa-
tive applications library, since it is well documented and is part of ECP, to illustrate the possible gains by
using the FFT-ECP development.

The KSPACE package from LAMMPS is the one that makes the call for FFT computations. It provides
a variety of long-range Coulombic solvers, as well as pair styles which compute the corresponding
short-range pairwise Coulombic interactions. Its kspace style pppm command performs 3d FFTs to
compute the energy of a molecular system.

Figure 4.1 shows the results of a classic benchmark where LAMMPS calls its built-in FFTMPI library
(CPU code), Le�, and when it uses our heFFTe library (CPU-GPU code), Right. The results show that FFT
is accelerated two times, while the speedup for the entire application can be 1.5×.

LAMMPS is used in the EXAALT ECP application project. This is an example of accelerating an ECP
application relatively easy thanks to the compatibility of the FFT API used (by design).

9
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Figure 4.1: Rhodopsin protein benchmark for the LAMMPS package on 2 nodes and 4 MPI ranks per
node, on a 128x128x128 FFT grid. On the le� we show the time chart by using LAMMPS with FFTMPI,
and on the right we observe the gains in performance when LAMMPS uses FFTECP.
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CHAPTER 5

The heFFTe version 0.1 release

We released the ECP-FFT FFT library, heFFTe version 0.1. Figure 5.1 shows the heFFTe so�ware stack.
As illustrated, heFFTe relies on MPI, OpenMP for multithreading, CUDA and HIP for GPU acceleration,

Figure 5.1: heFFTe so�ware stack.
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CHAPTER 5. THE HEFFTE VERSION 0.1 RELEASE

and existing FFT capabilities, including �MPI, SWFFT, 1-D FFTs from vendors or open sorce e�orts,
etc. For NVIDIA GPUs, heFFTe uses the CUDA runtime, the cuFFT library, MAGMA and hand-coded
CUDA kernels. For AMD, the plan is to use the HIP equivalents, and for Intel we count on the availability
of similar solutions. The MPI implementations are expected to be accelerator-aware.

heFFTe supports di�erent precisions and uses MAGMA to accelerate various linear algebra and auxiliary
kernels. This includes matrix transpositions, data reshu�es for packing/unpacking of data for MPI
communications, and casting routines for the development of mixed-precision algorithms. In addition
to various precisions, heFFTe supports the following features:

• All options from �MPI and SWFFT;

• Input data can be bricks or pencils;

• Output data can be bricks or pencils;

• All operations are done on GPUs;

• Communications use CUDA-Aware MPI with GPU-Direct communication technologies.

The current bottlenecks were described in the previous sections. New developments to overcome these
bottlenecks include:

• Algorithmic and optimizations work for reduced communication;

• Application-speci�c FFT optimizations;

• Mixed-precision algorithms;

• Data compression for reduced communications (including lossy).

heFFTe has very good strong scalability, which is essential in order to scale the solution time down of
relatively small problems by increasing the amount of computational resources used. We ran scalability
tests on up to 512 nodes (3,072 V100 GPUs) on Summit for 3-D FFT problems of size 10243. Results
are summarized in Figure 5.2. Note that even with that amount of GPUs used heFFTe scales very
well, while the corresponding CPU solutions reaches the limits of its strong scalability and even shows
some slowdown. The GFlop/s reported are for double complex precision calculations, starting from
bricks/cubes data distribution and ending with the original bricks/cubes data distribution. Flops are
counted as 15 ∗ 10243 ∗ log21024.

12
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Figure 5.2: Strong scalability and performance comparison of 3-D FFTs of size 10243 on up to 512 nodes
of Summit supercomputer: FFTMPI using 40 cores per node and heFFTe using 6 V100 GPUs per node.
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CHAPTER 6

Conclusions and future work directions

In this milestone, we imlementated optimizations and multiple features of 3-D FFTs in the FFT-ECP
project. The target architectures are large-scale distributed GPU-accelerated platforms. We released
heFFTe version 0.1 that incorporates the new developments.

The heFFTe library has achieved signi�cant acceleration of 3-D FFTs using GPUs. Results show very
good scalability, including strong scalability, due to highly optimized and reduced MPI communications.
Locally, on a GPU, we have accelerated the FFT operations about 40× compared to the multi-core
CPU counterpart (using V100 GPUs vs. Power9 CPUs on the Summit supercomputer at ORNL). This
acceleration uses the high bandwidth that GPUs provide (up to 900 GB/s). At this stage, the FFT
computation is dominated (97% and above) by MPI communications, so any further improvement in the
overall speed will come from the development of CUDA-aware MPI optimizations.

Figure 3.4 shows that there are areas that need improvement, especially in the cross-socket GPU Direct
communications for both uni- and bi-directional communications. Furthermore, there is performance
degradation between MPI Spectrum versions 10.2 and 10.3. Performance loss of 20%, as illustrated in
Figures 5.2 and 3.6, is signi�cant and needs to be addressed.

Current performance can be best described by the bandwidth achieved through a node. For example,
performance on a 10243 3-D FFT is about 400 gigaFLOP/s on 8 nodes. One can compute that data is
sent from the node at a 21.8 GB/s rate: the formula is Bytes sent (= 16× 10243/8) over the time to send
(= 0.98× (5× 1.0243 × log2(1024

3)/400)/4, where 4 represents the four stages used). Note that the node
also receives about the same amount of data at the same time, so the bi-directional bandwidth achieved
is 43.6 GB/s out of 50 GB/s, which is 87.2% of the roo�ine peak.

Future work will concentrate on MPI optimizations for strong scaling on many nodes, optimizations for
a single node for cross-socket communications, and algorithmic optimizations based on slab partitions,
or other reductions of the computational resources used that can lead to reduced communications.
More versions and support for di�erent FFT features are being added in FFT-ECP. Application-speci�c
optimizations and use of mixed-precision calculations [9] that can result in additional acceleration due
to reduced communications are also of interest.
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