
12

Implementing Matrix Inversions

Jakub Kurzak
Mark Gates
Ali Charara
Asim YarKhan
Jack Dongarra

Innovative Computing Laboratory

August 13, 2019

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes
06-2019 first publication

07-2019 technical editing

08-2019 performance charts updated with ScaLAPACK performance numbers

@techreport{kurzak2019implementing,
author={Kurzak, Jakub and Gates, Mark and Charara, Ali and

YarKhan, Asim and Dongarra, Jack},
title={{SLATE} Working Note 12: Implementing Matrix Inversions},
institution={Innovative Computing Laboratory, University of Tennessee},
year={2019},
month={June},
number={ICL-UT-19-04},
note={revision 07-2019}

}

i

Contents

Contents ii

List of Figures iii

1 Design of SLATE 1

2 Implementation of Inversions 5
2.1 Cholesky-Based Inversion . 6
2.2 LU-Based Inversion . 8

3 Performance of Inversions 11
3.1 Environment . 11
3.2 Performance . 12

4 Function Signatures 14

Bibliography 15

ii

List of Figures

1.1 SLATE in the ECP software stack. 2

2.1 Stages of lower-triangular Cholesky-based inversion. 6
2.2 Operations of the Cholesky factorization. 6
2.3 Operations of triangular inversion. 6
2.4 Operations of in-place triangular multiplication. 7
2.5 The first two stages of LU-based inversion. 8
2.6 Operations of the LU factorization. 8
2.7 The last stage of LU-based inversion. 9
2.8 Operations of the last stage of LU-based inversion. 9

3.1 Performance of Cholesky-based inversion. 12
3.2 Performance of LU-based inversion. 12

iii

CHAPTER 1

Design of SLATE

So�ware for Linear Algebra Targeting Exascale (SLATE) 1 is being developed as part of the
Exascale Computing Project (ECP) 2, which is a joint project of the U.S. Department of Energy’s
O�ce of Science and National Nuclear Security Administration (NNSA). SLATE will deliver
fundamental dense linear algebra capabilities for current and upcoming distributed-memory
systems, including GPU-accelerated systems as well as more traditional multi core–only sys-
tems. SLATE will provide coverage of existing ScaLAPACK functionality, including parallel
implementations of Basic Linear Algebra Subroutines (BLAS), linear systems solvers, least
squares solvers, and singular value and eigenvalue solvers. In this respect, SLATE will serve as
a replacement for ScaLAPACK, which, a�er two decades of operation, cannot be adequately
retro�tted for modern, GPU-accelerated architectures. Figure 1.1 shows SLATE’s position in
the ECP so�ware stack. SLATE will accomplish its goals by using modern techniques like tiled
matrix storage, task-based dynamic scheduling, and communication-avoiding algorithms, along
with a modern C++ framework, brie�y discussed in the following paragraphs.

Tiled Matrix Layout: The newmatrix storage introduced in SLATE is one of its most impactful
features. In this respect, SLATE represents a radical departure from other distributed
linear algebra so�ware such as ScaLAPACK or Elemental, where the local matrix occupies
a contiguous memory region on each process. In contrast, tiles are �rst class objects
in SLATE that can be individually allocated and passed to low-level tile routines. In
SLATE, the matrix consists of a collection of individual tiles with no correlation between
their positions in the matrix and their memory locations. At the same time, SLATE also
supports tiles pointing to data in a traditional ScaLAPACKmatrix layout, thereby easing
an application’s transition from ScaLAPACK to SLATE.

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1

http://icl.utk.edu/slate/
https://www.exascaleproject.org

CHAPTER 1. DESIGN OF SLATE

Figure 1.1: SLATE in the ECP so�ware stack.

Object-Oriented Design: The design of SLATE revolves around the Tile class and the Matrix
class hierarchy. The Tile class is intended as a simple class for maintaining the properties
of individual tiles and implementing core serial tile operations, such as tile BLAS, while
the Matrix class hierarchy maintains the state of distributed matrices throughout the
execution of parallel matrix algorithms in a distributed-memory environment. Currently,
the classes are structured as follows:

BaseMatrix is an abstract base class for all matrices.

Matrix represents a generalm× nmatrix.

BaseTrapezoidMatrix is an abstract base class for all upper-trapezoid or lower-
trapezoid,m× nmatrices. For upper matrices, tiles A(i, j) are stored for i ≤ j.
For lower matrices, tiles A(i, j) are stored for i ≥ j.

TrapezoidMatrix represents an upper-trapezoid or a lower-trapezoid,m× n
matrix. The opposite triangle is implicitly zero.

TriangularMatrix represents an upper-triangular or a lower-triangular,
n× nmatrix.

SymmetricMatrix represents a symmetric, n×nmatrix, with only the upper or
lower triangle stored. The opposite triangle is implicitly known by symmetry
(Aj,i = Ai,j).

HermitianMatrix represents a Hermitian, n× nmatrix, with only the upper or
lower triangle stored. The opposite triangle is implicitly known by symmetry
(Aj,i = Āi,j).

Handling of side, uplo, trans: The classical BLAS takes parameters such as side, uplo, trans
(named “op” in SLATE), and diag to specify operation variants. Traditionally, this has
meant that implementations have numerous cases. The reference BLAS has nine cases
in zgemm and eight cases in ztrmm (times several sub-cases). ScaLAPACK and PLASMA
likewise have eight cases in ztrmm. In contrast, by storing both uplo and op within the
matrix object itself, and supporting inexpensive shallow copy transposition, SLATE can
implement just one or two cases and map all the other cases to that implementation
by appropriate transpositions. For instance, SLATE only implements one case for gemm
(NoTrans, NoTrans) and handles all other cases by swapping indices of tiles and setting
trans appropriately for the underlying tile operations.

2

CHAPTER 1. DESIGN OF SLATE

Dynamic Scheduling: Data�ow scheduling (omp task depend) is used to execute a task graph
with nodes corresponding to large blocks of the matrix. Dependencies are tracked using
dummy vectors, where each element represents a block of the matrix, rather than the
matrix data itself. For multi-core execution, each large block is dispatched to multiple
cores—using either nested tasking (omp task) or batched BLAS. For GPU execution, calls
to batched BLAS are used speci�cally to deliver fast processing of matrix blocks that are
represented as large collections of tiles.

Templating of Execution Targets: Parallelism is expressed in SLATE’s computational routines.
Each computational routine solves a sub-problem, such as computing an LU factorization
(getrf) or solving a linear system given an LU factorization (getrs). In SLATE, these rou-
tines are templated for di�erent targets (CPU orGPU), with the code typically independent
of the target. The user can choose among various target implementations:

Target::HostTask means multithreaded execution by a set of OpenMP tasks.

Target::HostNest means multithreaded execution by a nested “parallel for” loop.

Target::HostBatch means multithreaded execution by calling a batched BLAS routine.

Target::Devices means (multi-)GPU execution using calls to batched BLAS.

MPI Communication: Communication in SLATE relies on explicit data�ow information.
When a tile is needed for computation, it is broadcast to all the processes where it is
required. Rather than explicitly listing MPI ranks, the broadcast is expressed in terms of
the destination (sub)matrix to be updated. This way, SLATE’s messaging layer is oblivious
to the mapping of tiles to processes. Also, multiple broadcasts are aggregated to allow for
pipelining of MPI messages with transfers between the host and the devices. Since the set
of processes involved in a broadcast is determined dynamically, the use of MPI collectives
is not ideal, as it would require setting up a new subcommunicator for each broadcast.
Instead, SLATE uses point-to-point MPI communication following a hypercube pattern
to broadcast the data.

Node-Level Coherency: For o�oad to GPU accelerators, SLATE implements a memory con-
sistency model, inspired by the MOSI cache coherency protocol [1, 2], on a tile-by-tile
basis. For read-only access, tiles are mirrored in the memories of, possibly multiple, GPU
devices and deleted when no longer needed. For write access, tiles are migrated to the
GPU memory and returned to the CPU memory a�erwards if needed. A tile’s instance
can be in one of three states: Modi�ed, Shared, or Invalid. Additional �ag OnHold can be set
along any state, as follows:

Modi�ed (M) indicates that the tile’s data is modi�ed. Other instances should be Invalid.
The instance cannot be purged.

Shared (S) indicates that the tile’s data is up-to-date. Other instances may be Shared or
Invalid. The instance may be purged unless it is on hold.

Invalid (I) indicates that the tile’s data is obsolete. Other instances may beModi�ed, Shared,
or Invalid. The instance may be purged unless it is on hold.

OnHold (O) is a �ag orthogonal to the other three states that indicates a hold is set on
the tile instance, and the instance cannot be purged until the hold is released.

3

CHAPTER 1. DESIGN OF SLATE

Templating of Precisions: SLATE handles multiple precisions by C++ templating, so there is
only one precision-independent version of the code, which is then instantiated for the
desired precisions. Operations are de�ned so that they can be applied consistently across
all precisions. SLATE’s BLAS++ component provides overloaded, precision-independent
wrappers for all underlying, node-level BLAS, and SLATE’s PBLAS are built on top of
these. Currently, the SLATE library has explicit instantiations of the four main data
types: float, double, std::complex<float>, and std::complex<double>. The SLATE code
should be able to accommodate other data types, such as half, double-double, or quad
precision, given appropriate underlying node-level BLAS.

4

CHAPTER 2

Implementation of Inversions

In linear algebra, it is ill-advised to invert a matrix in order to solve a system of linear equations,
Ax = B. Instead, the matrix is factored into a product of a lower-triangular matrix and an
upper-triangular matrix, and the system is solved using a forward substitution and a backward
substitution. However, explicit construction of the inverseA−1 is an important tool in probability
theory and statistics with practical applications in computational chemistry andmaterial science.

One of the fundamental concepts in statistics is that of the covariance matrix. A covariance
matrix, also known as an auto-covariance matrix, a dispersion matrix, a variance matrix, or a
variance–covariance matrix, is a matrix where the element in the i, j position is the covariance
between the i-th and j-th elements of a random vector. Intuitively, the covariance matrix
generalizes the notion of variance to multiple dimensions. In statistics, precision is the reciprocal
of the variance, and the precision matrix (also known as a concentration matrix) is the matrix
inverse of the covariance matrix. The precision matrix is a measure of how tightly clustered
the variables are around the mean (the diagonal elements) and the extent to which they do not
co-vary with the other variables (the o�-diagonal elements).

The numerical stability of matrix inversion algorithms was analyzed by Du Croz and Higham
[3]. Quintana et al. [4] and Bientinesi et al. [5] discussed parallel implementations of ma-
trix inversions for shared-memory and distributed-memory computers. Agullo et al. [6] and
Bouwmeester and Langou [7] discussed data�ow scheduling of Cholesky-basedmatrix inversion
algorithms with emphasis on the analysis of the critical path. Dongarra et al. [8] presented a
similar study for LU-based inversion.

5

2.1. CHOLESKY-BASED INVERSION CHAPTER 2. IMPLEMENTATION OF INVERSIONS

2.1 Cholesky-Based Inversion

Inversion of a symmetric positive–de�nite matrix is done in place with the result overriding the
original matrix. The operation proceeds in three stages, as shown on Figure 3.1. First, the matrix
is factored into a product of a lower-triangular matrix and its conjugate transpose, A = LLH .
Then, the inverse of L is computed and subsequently multiplied by its transpose.

gemm

gemm gemm

potrf

herk

herk

herk

tr
sm

tr
sm

tr
sm

gemm gemm

gemm gemm

trsm trsm

trsm
trsm

trtri

gemm

gemmgemm

trtrm

herk

herk

herk

herk

trmm trmm trmm

Figure 2.1: Stages of lower-triangular Cholesky-based inversion.

The �rst stage of the inversion is the Cholesky factorization of the input matrix (Figure 2.2).
Step (1) computes the Cholesky factorization (potrf) of the diagonal tile, step (2) applies the
triangular solve (trsm) to the tiles below, and step (3) applies updates to the trailing submatrix.
Step (3) is a syrk/herk operation, which internally translates to syrk/herk on the diagonal tiles
and gemm on the o�-diagonal tiles. The right-looking Cholesky factorization is a very e�cient
operation, as it exposes a large number of gemm calls and enables the application of lookahead.

(1) Ak,k = LLT

(2) Ak+1:nt−1,k = Ak+1:nt−1,k/Ak,k

(3) Ak+1:nt−1,k+1:nt−1 = Ak+1:nt−1,k+1:nt−1 −Ak+1:nt−1,k ∗AH
k+1:nt−1,k

Figure 2.2: Operations of the Cholesky factorization.

The second stage is the triangular inversion of the L factor (Figure 2.3). Step (1) applies the
triangular solve (trsm) to the leading column of tiles, step (2) updates the rectangular o�-diagonal
block with the product of the leading column of tiles and the trailing row of tiles (gemm), step (3)
applies triangular solve (trsm) to the trailing row, and step (4) inverts the diagonal tile (trtri).
The triangular inversion is also a very e�cient operation, as it also exposes a large number of
gemm calls and enables the application of lookahead.

(1) Ak+1:nt−1,k = Ak+1:nt−1,k/Ak,k

(2) Ak+1:nt−1,0:k−1 = Ak+1:nt−1,0:k−1 + Ak+1:nt−1,k ∗Ak,0:k−1

(3) solve Ak,k ∗Ak,0:k−1 = Ak,0:k−1

(4) Ak,k = A−H
k,k

Figure 2.3: Operations of triangular inversion.

6

2.1. CHOLESKY-BASED INVERSION CHAPTER 2. IMPLEMENTATION OF INVERSIONS

The third stage is the in-place multiplication of a triangular matrix by its transpose. Step (1)
is a syrk/herk operation, which translates to syrk/herk on the diagonal tiles and gemm on the
o�-diagonal tiles, step (2) is a multiplication of the leading row of tiles by the triangular tile on
the diagonal (trmm), and step (3) is a multiplication of the diagonal tile by its transpose. This
operation is called lauum in LAPACK but was renamed as trtrm in SLATE. This stage is not as
e�cient as the other stages. Although it also exposes a large number of gemm calls, lookahead is
not possible due to the write a�er read dependency on the leading row.

(1) A0:k−1,0:k−1 = A0:k−1,0:k−1 + AH
k,0:k−1 ∗Ak,0:k−1

(2) Ak,0:k−1 = Ak,0:k−1 ∗AH
k,k

(3) Ak,k = AH
k,k ∗Ak,k

Figure 2.4: Operations of in-place triangular multiplication.

The last stage is the only operation that schedules poorly. It could be dramatically improved
if implemented out-of-place, as shown by Bouwmeester and Langou [7]. However, as shown
in the same article, there is a better alternative. In fact, the three stages can be pipelined very
well. As potrfmoves to the right, trtri can proceed to the le�, while trtrm can ascend from
the top. In that case, trtrm can start executing almost immediately and execute in parallel with
the other two stages.

This pipelining occurs naturally if the computation is expressed as a direct acyclic graph (DAG),
which is the case in the PLASMA library. It is, however, not the case in SLATE, which does
not rely on dynamic scheduling to the extent that PLASMA does. Currently, the stages are
implemented as three separate routines and not pipelined. The fully pipelined version of the
Cholesky-bases inversion will be the target of future e�orts.

7

2.2. LU-BASED INVERSION CHAPTER 2. IMPLEMENTATION OF INVERSIONS

2.2 LU-Based Inversion

In LAPACK and ScaLAPACK, the LU-based inversion follows the same principle of executing
in-place (i.e., overriding the input matrix with the inverse). The same approach was taken in
SLATE to produce the CPU implementation. However, the in-place algorithm turned out to be
di�cult to GPU accelerate, and an out-of-place routine was implemented for GPUs. Here we
describe the canonical, in-place code �rst.

The in-place, LU-based inversion proceeds in three main stages and is followed by column
pivoting at the end. The �rst stage is computing the LU factorization with partial (row) pivoting
of the input matrix, A = PLU , and the second stage is computing the triangular inverse of
U (Figure 2.5). The triangular inverse operation is identical to the one described previously
in the Cholesky section, except here it is executed on the upper-triangular matrix U , not the
lower-triangular matrix, L. In SLATE, both are implemented by the same piece of code by the
using techniques described in Chapter 1.

gemm

gemm gemm

ge
tr
f

trsm trsm trsm

gemm

gemm gemm

gemm gemm gemm

gemm

gemm gemm

gemm

trsmtrsm

tr
sm

trtri
tr
sm

Figure 2.5: The �rst two stages of LU-based inversion.

The �rst stage of the inversion is the LU factorization of the input matrix (Figure 2.6). Step (1)
computes the LU factorization (getrf) of a column (panel) of tiles. Step (2) applies the resulting
row permutations to the trailing submatrix. Step (3) applies the permutations to the le� of the
panel (currently postponed to the end of the factorization). Step (4) performs the triangular
solve (trsm) on the top row, and step (5) updates the block below with the product (gemm) of
the panel column (minus the diagonal block) and the top row. The LU factorization exposes a
large number of gemm calls and would be a very e�cient workload if it was not for the impact of
pivoting. In reality, LU factorization performs poorly due to the cost of row swaps, which are
very ine�cient in a GPU-accelerated, distributed-memory environment.

(1) Ak:nt−1,k = PLU

(2) Ak:nt−1,k+1:nt−1 = P ∗Ak:nt−1,k+1:nt−1

(3) Ak:nt−1,0:k−1 = P ∗Ak:nt−1,0:k−1

(4) solve Ak,kAk,k+1:nt−1 = Ak,k+1:nt−1

(5) Ak+1:nt−1,k+1:nt−1 = Ak+1:nt−1,k+1:nt−1 −A(k + 1 : nt− 1, k) ∗A(k, k + 1 : nt− 1)

Figure 2.6: Operations of the LU factorization.

8

2.2. LU-BASED INVERSION CHAPTER 2. IMPLEMENTATION OF INVERSIONS

The third stage is the backward substitution (Figures 2.8 and 3.2). In this stage, the matrix
is swept from right to le�. Step (1) copies a (lower-trapezoid) column k of the matrix L to a
workspace and zeroes its original location. Then, step (2) multiplies (gemm) the matrix A to the
right of k by the rectangular part of the workspace and accumulates the result in the column
k of A. Finally, step (3) performs a triangular solve (trsm) in the trapezoid column k of L by
applying the diagonal triangle to the tiles below.

W2

W2

W1

W2

W1

gemm

gemm

gemm

gemm

gemm

W2

×

tr
sm

tr
sm

Figure 2.7: The last stage of LU-based inversion.

While the stage of backward substitution exposes a large number of gemm calls, it su�ers from
two critical performance issues. First, it sweeps from le� to right and has a read a�er write
dependency on the leading column, which prevents lookahead. Second, the output of the gemm
operation is a tall and skinnymatrix, which makes this operation more di�cult to parallelize
(e�cient implementation requires computation of partial sums followed by a reduction).

(1) Lk,k →W1

Lk,k = 0
Lk+1:Ant−1,k →W2

Lk+1:Ant−1,k = 0

(2) A:,k = A:,k −A:,k+1:nt−1 ∗W
(3) Ak+1:nt−1,k = Ak+1:nt−1,k/Ak,k

Figure 2.8: Operations of the last stage of LU-based inversion.

The in-place, LU-based inversion is also hindered by two more serious performance issues.
First, because the last stage (backward substitution) sweeps thematrix from right to le�, it cannot
be pipelined with the previous stages (as discussed by Dongarra et al. [8]). Second, column
pivoting is required at the end. The problem is that column pivoting can only be done e�ciently
in column-major layout—especially when GPUs are involved. At the same time, the �rst stage
(LU factorization) performs row pivoting, which requires a row-major layout for e�ciency. So,
we can only—e�ciently—do one or the other, or we can apply layout translation in between,
none of which are good options.

9

2.2. LU-BASED INVERSION CHAPTER 2. IMPLEMENTATION OF INVERSIONS

All of these challenges make the in-place, LU-based inversion a bad candidate for GPU accelera-
tion. With little hope of getting this implementation accelerated, we provided a straightforward
out-of-place implementation. The routine has an additional parameter for passing a separate
output matrix for storing the result. Thanks to overloading, the routine has the same name
(getrf), and only the signature is di�erent (Chapter 4).

In the out-of-place implementation, the outputmatrix is simply initialized with the identity, and
the forward and backward substitutions are done by applying row pivoting and two subsequent
triangular solves (trsm). There are two performance bene�ts. First, triangular solves are intensive
in gemm calls and o�oad well to accelerators. Second, both the factorization and the forward
substitution apply row pivoting, so both operations can be done e�ciently a�er the matrix is
translated to rowmajor.

The downside is the increased number of �oating-point operations. The cost of the in-place
inversion (the getri routine) is 4/3N3, while the cost of two triangular solves is 2N3. At this
time, though, it still seems to be the only feasible way to GPU accelerate the operation.

10

CHAPTER 3

Performance of Inversions

3.1 Environment

Performance numbers were collected using the Summit system 1,2 at the Oak Ridge Leadership
Computing Facility (OLCF). Summit is equipped with IBM POWER9 processors and NVIDIA
V100 (Volta) GPUs. Each of Summit’s nodes contains two POWER9 CPUs (with 22 cores each)
and six V100 GPUs. Each node has 512 GB of DDR4 memory, and each GPU has 16 GB of
HBM2 memory. NVLink 2.0 provides all-to-all 100 GB/s connections for one CPU and three
GPUs (i.e., one CPU is connected to three GPUs with 100 GB/s bandwidth each, and each GPU
is connected to the other two with 100 GB/s bandwidth each). The two CPUs are connected
with a 64 GB/s X Bus. Each node has a Mellanox enhanced-data rate (EDR) In�niBand network
interface controller (NIC) that supports 100 Gbps of bi-directional tra�c.

The so�ware environment used for the experiments included:

• GNU Compiler Collection (GCC) 6.4.0,
• CUDA 10.1.105,
• Engineering Scienti�c Subroutine Library (ESSL) 6.1.0,
• Spectrum MPI 10.3.0.0,
• Netlib LAPACK 3.8.0, and
• Netlib ScaLAPACK 2.0.2.

1https://www.olcf.ornl.gov/summit/
2https://en.wikichip.org/wiki/supercomputers/olcf-4

11

https://www.olcf.ornl.gov/summit/
https://en.wikichip.org/wiki/supercomputers/olcf-4

3.2. PERFORMANCE CHAPTER 3. PERFORMANCE OF INVERSIONS

3.2 Performance

All runs were performed using 16 nodes of the Summit system, which provide 16 nodes ×
2 sockets × 22 cores = 704 IBM POWER9 cores and 16 nodes × 4 devices = 96 NVIDIA V100
accelerators. The runs were done using one process per CPU socket. I.e., one process had 22
cores and 3 devices at its disposal.

Figure 3.1 shows the performance of the Cholesky-based inversion (the in-place implementa-
tion). In CPU-only runs, SLATE is ∼20% faster than ScaLAPACK for matrices of size 150,000.
GPU-accelerated SLATE has ∼9× performance advantage over unaccelerated ScaLAPACK for
matrices of size 350, 000.

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

SIZE

0 20000 40000 60000 80000 100000 120000 140000 160000

SLATE
ScaLAPACK

Cholesky-based matrix inversion (dpotrf+dpotri)
16 nodes × 2 sockets × 22 cores = 704 cores (IBM POWER9)

GF
LO

PS

0

10000

20000

30000

40000

50000

60000

70000

80000

SIZE

0 50000 100000 150000 200000 250000 300000 350000

SLATE
ScaLAPACK

Cholesky-based matrix inversion (dpotrf+dpotri)
16 nodes × 6 devices = 96 devices (NVIDIA V100)

Figure 3.1: Performance of Cholesky-based inversion.

Figure 3.2 shows the performance of the LU-based inversion (the out-of-place implementation).
In CPU-only runs, SLATE is ∼30% slower than ScaLAPACK for matrices of size 150,000. GPU-
accelerated SLATE has ∼3.7× performance advantage over unaccelerated ScaLAPACK for
matrices of size 350, 000.

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

SIZE

0 20000 40000 60000 80000 100000 120000 140000 160000

SLATE
ScaLAPACK

LU-based matrix inversion (dgetrf+dgetri)
16 nodes × 2 sockets × 22 cores = 704 cores (IBM POWER9)

GF
LO

PS

0

5000

10000

15000

20000

25000

30000

35000

SIZE

0 50000 100000 150000 200000 250000 300000 350000

SLATE
ScaLAPACK

LU-based matrix inversion (dgetrf+dgetri)
16 nodes × 6 devices = 96 devices (NVIDIA V100)

Figure 3.2: Performance of LU-based inversion.

12

3.2. PERFORMANCE CHAPTER 3. PERFORMANCE OF INVERSIONS

The Cholesky-based inversion performs substantially better than the LU-based inversion. The
CPU code achieves a bigger fraction of the peak CPU performance, and the GPU code provides
substantial acceleration. Further performance improvement is possible by pipelining the three
stages of the workload: the Cholesky factorization (potrf), the triangular inversion (trtri), and
the triangular matrix multiplication (trtrm).

The LU-based inversion performsmuch worse. The CPU code achieves a smaller fraction of the
CPU peak, and the bene�t of acceleration is also smaller. The LU factorization su�ers a from
the overhead of row pivoting, and the out-of-place implementation performs substantially
more �oating-point operations. Further performance improvement is possible by optimizing
the process of pivoting and by pipelining the factorization and the triangular inversion.

13

CHAPTER 4

Function Signatures

The Cholesky-based inversion is accomplished by calling the potrf routine and then the potri
routine. The routines’ signatures are as follows.

template <typename scalar_t >
void potrf(HermitianMatrix <scalar_t >& A,

const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void potri(HermitianMatrix <scalar_t >& A,

const std::map <Option , Value >& opts = std::map <Option , Value >());

The LU-based inversion is accomplished by calling the getrf routine and then one of the getri
routines—either in-place (CPU-only) or out-of-place (CPU or GPU). The routines’ signatures
are as follows.

template <typename scalar_t >
void getrf(Matrix <scalar_t >& A, Pivots& pivots ,

const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void getri(Matrix <scalar_t >& A, Pivots& pivots ,

const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void getri(Matrix <scalar_t >& A, Pivots& pivots ,

Matrix <scalar_t >& B,
const std::map <Option , Value >& opts = std::map <Option , Value >());

14

Bibliography

[1] Paul Sweazey and Alan Jay Smith. A class of compatible cache consistencyprotocols and their
support by the IEEE futurebus. ACM SIGARCH Computer Architecture News, 14(2):414–423,
1986.

[2] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A primer on memory consistency and
cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212, 2011.

[3] Jeremy J. Du Croz and Nicholas J. Higham. Stability of methods for matrix inversion. IMA
Journal of Numerical Analysis, 12(1):1–19, 1992.

[4] Enrique S Quintana, Gregorio Quintana, Xiaobai Sun, and Robert van de Geijn. A note on
parallel matrix inversion. SIAM Journal on Scienti�c Computing, 22(5):1762–1771, 2001.

[5] Paolo Bientinesi, Brian Gunter, and Robert A Geijn. Families of algorithms related to the
inversion of a symmetric positive de�nite matrix. ACM Transactions onMathematical So�ware
(TOMS), 35(1):3, 2008.

[6] Emmanuel Agullo, Henricus Bouwmeester, Jack Dongarra, Jakub Kurzak, Julien Langou,
and Lee Rosenberg. Towards an e�cient tile matrix inversion of symmetric positive de�nite
matrices onmulticore architectures. In InternationalConference onHighPerformance Computing
for Computational Science, pages 129–138. Springer, 2010.

[7] Henricus Bouwmeester and Julien Langou. A critical path approach to analyzing parallelism
of algorithmic variants. Application to Cholesky inversion. arXiv preprint arXiv:1010.2000,
2010.

[8] Jack Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek. High performance
matrix inversion based on LU factorization for multicore architectures. In Proceedings of the
2011 ACM international workshop on Many task computing on grids and supercomputers, pages
33–42. ACM, 2011.

15

	Contents
	List of Figures
	Design of SLATE
	Implementation of Inversions
	Cholesky-Based Inversion
	LU-Based Inversion

	Performance of Inversions
	Environment
	Performance

	Function Signatures
	Bibliography

