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CHAPTER 1

Executive Summary

The goal of this milestone was the design and an initial implementation phase of 3-D FFTs in the
FFT-ECP project. The target architectures are large-scale distributed GPU-accelerated platforms.

In this milestone we describe the design and performance of an initial code for 3-D FFTs that we
developed for heterogeneous systems with GPUs. We also describe the roadmap for future work based
on our observations and analysis. Speci�cally, this milestone delivered on the following sub-tasks:

• Investigation and development of di�erent communication schemas (e.g., collective all2all,
group collective). For example, a communication scheme with adaptive local/global all2all
communication and asynchronous dynamic scheduling with priority communication that exhibits
improvement on HPC systems with many GPUs (e.g., nodes on Summit and Sierra);

• A study on the possible use of directed acyclic graphs (DAGs) combined with a task-based runtime
system to schedule the MPI communication and to alleviate the cost of the synchronization
mechanisms required in the FFT code;

• A study (e.g., model) of the correlation between the data distribution (natural, cyclic, slices, cuboid,
and user provided) and the communication cost outlining how each can a�ect the other in an
exascale environment;

• Develop and optimize building block functions needed by the FFT code. This includes the de-
velopment of a modular framework that could be easily integrated into ECP applications. The
kernels to be developed must leverage when possible the Matrix Algebra on GPU and Multicore
Architectures (MAGMA) library, MAGMA optimized building blocks, and expertize to extract
maximum performance from GPUs [1, 3, 9]. All of these kernels are to be designed with distributed,
multi-GPU machines in mind;

• Develop the initial version of the 3-D FFT for heterogeneous, multi-GPU nodes and ECP applica-
tions.
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CHAPTER 2

Background

The Fast Fourier Transform (FFT) is in the so�ware stack for almost all ECP applications. This in-
cludes applications and simulations in molecular dynamics, spectrum estimation, fast convolution and
correlation, signal modulation and many wireless multimedia applications.

The distributed 3-D FFT is one of the most important kernels needed for particle applications [7],
particularly in Molecular Dynamics (MD) computations, e.g., as in the LAMMPS ECP apps project [5],
and Nbody simulations, e.g., as in the HACC ECP apps project [2]. Other ECP particle apps of need for
FFTs include ECP ExaAM and WarpX. Looking into the Spack package manager dependencies, we found
that 60 scienti�c so�ware packages depend on and use FFTs.

State-of-the-art FFT libraries like FFTW are no longer actively developed for emerging platforms . To
address this de�ciency, the FFT-ECP project, initiated as a new ECP e�ort targeting FFTs [4], aims to
provide a sustainable 3-D FFT library for Exascale platforms.

The approach in FFT-ECP includes leveraging existing FFT capabilities, such as third-party 1-D FFTs
from vendors or open-source libraries. This is also the approach in the SWFFT [8] and FFTMPI [6] FFT
libraries, which are currently used in the HACC and the LAMMPS ECP apps projects, respectively. FFTMPI
and SWFFT have very good weak and strong scalability on CPU-based systems. The goal of the ECP-FFT
project for this period was to design and provide initial implementation prototypes covering the FFTMPI
and SWFFT functionalities for 3-D FFTs on GPU-accelerated Exascale platforms.
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CHAPTER 3

FFT communication schemas for large-scale
GPU-accelerated systems

The performance of large-scale 3-D FFTs is mostly memory bound. Indeed, the roo�ine performance
model for 3-D FFT of size N3, running on P nodes with bandwidth per node of 50 GB/s, bounds nodal
performance in double complex arithmetic to

P

P − 1
50

5

32
log2N

GFlop/s [10]. Thus, asymptotically, for large P , we can consider that the nodal performance is bound by
about

7.8 log2N GFlop/s.

For example, if N = 1, 024, we get a limit of 78 GFlop/s per node.

Note that the above bound assumes the theoretical maximum bandwidth possible per node. Figure 3.1
shows the Summit node architecture and connectivity. The maximum bandwidth can be achieved when
the node sends and receives data at full speed, which is two times 12.5 GB/s in one direction, i.e., 50 GB/s
in bidirectional full bandwidth.

To get as close as possible to the theoretical maximum performance, we design the FFT-ECP to be
computed entirely on the GPUs and the GPUs to communicate directly to GPUs, i.e., removing any
CPU-to-GPU data movements. Thus, we rely on CUDA-aware MPI implementations that avoid staging
communications through the CPU host memory. Instead, CUDA-aware MPIs use GPUDirect technolo-
gies (for direct P2P communications between GPUs on a node and RDMA for direct communication
between GPUs on di�erent nodes, avoiding host memory) to provide high-bandwidth, low-latency
communications with NVIDIA GPUs.

Because of the importance of the FFT communications, we provide a review of the CUDA-aware MPI
(Section 3.1) and a study on the current performance of CUDA-aware MPI communications on Summit
(in Section 3.2). Section 3.3 describes the communication schemas in FFT-ECP, as motivated by our
analysis of the FFT communications and CUDA-aware MPI performance.
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3.1. CUDA-AWARE MPI CHAPTER 3. FFT COMMUNICATIONS

Figure 3.1: Summit node architecture and connectivity.

3.1 CUDA-Aware MPI

CUDA-aware MPI implementations are available through open-source MPIs like OpenMPI and MVA-
PICH2, as well as commercial versions such MPIs from CRAY, SGI, and IBM. Our current interest is the
Summit supercomputer. The MPI on Summit is provided by IBM Spectrum MPI. The Spectrum MPI is
based on OpenMPI but also adds some features and improvements, such as advanced a�nity features,
better performance, etc. Figure 3.2 illustrates the GPUDirect technologies for fast intra- and inter-node
GPU communications.

To enable the GPU-aware MPI features, we run with:

jsrun <jsrun-options> --smpiargs="-gpu" ./gpu setter.sh <app>

where gpu setter.sh is given by the following script:

#! /bin/bash
# gpu_setter.sh
# Rudimentary GPU affinity setter for Summit
# >$ jsrun rs_per_host 1 gpu_per_rs 6 <task/cpu option> ./gpu_setter.sh <your app>

# This script assumes your code does not attempt to set its own
# GPU affinity (e.g. with cudaSetDevice). Using this affinity script
# with a code that does its own internal GPU selection probably won't work!

# Compute device number from OpenMPI local rank environment variable
# Keeping in mind Summit has 6 GPUs per node

mydevice=$((${OMPI_COMM_WORLD_LOCAL_RANK} % 6))

4



3.1. CUDA-AWARE MPI CHAPTER 3. FFT COMMUNICATIONS

Figure 3.2: GPUDirect technologies in CUDA-aware MPI for fast intra-node P2P GPU communications
(Top) and for inter-node Remote Direct Memory Access (RDMA) GPU communications (Bottom).

# CUDA_VISIBLE_DEVICES controls both what GPUs are visible to your process
# and the order they appear in. By putting ``mydevice'' first the in list, we
# make sure it shows up as device ``0'' to the process so it's automatically selected.
# The order of the other devices doesn't matter, only that all devices (0-5) are present.

CUDA_VISIBLE_DEVICES=''${mydevice},0,1,2,3,4,5''

# Process with sed to remove the duplicate and reform the list, keeping the order we set

CUDA_VISIBLE_DEVICES=$(sed -r ':a; s/\b([[:alnum:]]+)\b(.*)\b\1\b/\1\2/g; ta;
s/(,,)+/,/g; s/, *$//' <<< $CUDA_VISIBLE_DEVICES)

export CUDA_VISIBLE_DEVICES

# Launch the application we were given
exec ``$@''

As mentioned in the script, using the script assumes the code does not attempt to set its own GPU a�nity,
e.g., with cudaSetDevice.

The IBM Spectrum MPI uses the Parallel Active Messaging Interface (PAMI) to provide reliable massaging
for point-to-point (P2P) and collectives communications in its MPI implementation. When there are
multiple In�niBand adapters per node, as in the case of the Summit notes (see Figure 3.1), adapter
a�nity is enabled by default, which in general leads to better performance when CPU/GPU binding is
enabled. This hints each MPI rank to use the In�niBand adapter that is physically closest to the core/GPU
where the MPI rank is bound. However, the default PAMI settings for Summmit’s multi-host support
on POWER9s, might not be optimal for bandwidth sensitive applications, as we have observed for FFT
computations. Therefore, in addition to the default, we also use the following settings when looking for
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3.2. BENCHMARKING CUDA-AWARE MPI COMMUNICATIONSCHAPTER 3. FFT COMMUNICATIONS

the network a�nity that yields optimal node aggregate bandwidth for FFT:

# Network_v1
export PAMI_IBV_DEVICE_NAME="mlx5_0:1,mlx5_1:1"
export PAMI_IBV_DEVICE_NAME_1="mlx5_2:1,mlx5_3:1"
export PAMI_ENABLE_STRIPING=1

and

# Network_v2
export PAMI_IBV_DEVICE_NAME="mlx5_0:1,mlx5_3:1"
export PAMI_IBV_DEVICE_NAME_1="mlx5_3:1,mlx5_0:1"
export PAMI_ENABLE_STRIPING=1

Subsequently, in this report, we refer to the �rst network as Network v1 and to second as Network v2.
Note that in Summit there are two In�niBand physical ports and four virtual that we specify above –
mlx5 0 and mlx5 1 for socket 0, and mlx5 2 and mlx5 3 for socket 1.

3.2 Benchmarking CUDA-Aware MPI communications

To guide the tuning and assess the current state and possible bottlenecks of the CUDA-aware MPI
implementation on Summit, we developed a number of benchmarks to evaluate the performance of
P2P and All2All communications. Figure 3.3 shows bandwidth for P2P GPU communications within a
node (Le�) and P2P GPU communications on GPUs across Summit nodes (Right).

P2P GPU communication within a Summit node P2P GPU communication across Summit nodes
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Figure 3.3: P2P communications between GPUs on a node (Le�) and P2P communications between
GPUs accross Summit nodes (Right).

Figure 3.4 shows bandwidth for All2All GPU communications within a node (Le�) and All2All GPU
communications on GPUs across Summit nodes (Right). Both benchmarks show runs using default
network a�nity settings.
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3.3. COMMUNICATION SCHEMAS IN FFT-ECP CHAPTER 3. FFT COMMUNICATIONS
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Figure 3.4: All2All communications between GPUs on a node (Le�) and All2All communications
between GPUs accross Summit nodes (Right).

3.3 Communication schemas in FFT-ECP

There are three main strategies for parallelizing 3-D FFTs, which result in three main communication
schemas. Namely, assuming P ranks/processes, the schemas and their corresponding communications
are:

• “Slab”-decomposed FFTs, where each rank sends/receives data with P ranks;

• “Pencil”-decomposed FFTs, where each rank sends/receives data with
√
P ranks;

• “Brick”-decomposed FFTs, where each rank sends/receives data with 3
√
P ranks.

Note that the Slab communication can be expressed as one large All2All, Pencil as
√
P smaller All2Alls

in sub-groups of
√
P ranks, and Brick as 3

√
P 2 All2Alls in sub-groups of 3

√
P ranks.

Furthermore, the All2All communications (in each of the sub-groups) can by themselves be imple-
mented in three di�erent ways. Namely, via P2P communication, All2All, or a combination. All these
combinations give viable solutions that can give best performance results based on architecture, number
of processors P, and FFT sizes. Therefore, they must be developed and we have been implementing
all versions. Each version is further parameterized to prepare the FFT-ECP package for subsequent
autotuning that will determine the best parameters based on empirical tuning.

The Pencil- and Brick-decomposed implementations in FFT-ECP stem from the FFTMPI and SWFFT
packages, respectively.

Table 3.1 shows the theoretical maximum bandwidths for the communications in Summit. The numbers
are derived from the nodal and network speci�cations for Summit, as illustrated in Figure 3.1, and
represent the upper performance limits that we try to achieve in FFT-ECP. Since performance depends
on a number of third party hardware and so�ware technologies, most notably GPUDirect technologies,
network interconnect, and the CUDA-aware MPI implementation, our approach is to also develop
FFT-ECP versions and tune them based on the performance of the third party capabilities currently
available.

The currently achievable bandwidths using the IBM Spectrum MPI are shown on Figures 3.3 and 3.4
for the P2P and All2All communications, respectively. Note that P2P gets relatively close to the peaks

7
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3.3. COMMUNICATION SCHEMAS IN FFT-ECP CHAPTER 3. FFT COMMUNICATIONS

Node count Network Point-to-Point Bidirectional Point-to-Point All-to-All

1

Default 44.6 84 3
Network v1 44.6 84 3
Network v2 44.6 84 3

Theoretical Peak 50 100 100

2

Default 9.7 15.6 4.1
Network v1 10.7 17.1 4.2
Network v2 15.6 26.2 5.1

Theoretical Peak 12.5 (x2 possible) 25 (x2 possible) 25 (x2 possible)

Table 3.1: Achieved vs. theoretical bandwidths in GB/s for P2P and All2All communications between two
GPUs on the same and on di�erent nodes of Summit.

in Table 3.1. Indeed, P2P achieves 45 GB/s between GPUs on a node vs. 50 GB/s theoretical peak, and
11 GB/s between GPUs across Summit nodes vs. 12.5 GB/s theoretical peak using one EDR In�niBand
switch. However, the performance of the All2All in the Spectrum MPI lags behind the theoretical peaks.
All2All implementations must also bene�t from duplexing, so their performance is compared to the
duplex bandwidths, e.g., Figure 3.4 shows bandwidth performance of below 10 GB/s within a node,
while we expect 100 GB/s. This highlights once more the need and importance of developing di�erent
versions to exploit and tune for third party capabilities. The results also show a particular need to further
improve the CUDA-awareness in MPI All2All routines.

We implemented in FFT-ECP the communication schemas and performance optimization options
described. Figure 3.5 illustrates the performance for the P2P, All2All, and combination communication
options in the Pencil-decomposed 3-D FFT in FFT-ECP. The experiments are for strong scalability on
up to 32 Summit nodes (×6 V100 GPUs per node) on a 10243 3-D FFT problem.
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Figure 3.5: Strong scalability performance of FFT-ECP in computing a 3-D FFT on a 10243 grid using
di�erent communication options (P2P, All2All, and and a P2P-All2All combination) on up to 32 Summit

nodes with 6 V100 GPUs per node.
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CHAPTER 4

Scheduling computations and communications in FFT

FFT-ECP splits the FFT computation into tasks (either computation or communication tasks) that get
scheduled for execution on the underlying hardware. The main tasks are illustrated on Figure 4.1. The
Figure also shows the execution trace of a 3-D FFT on 80 MPI processes (in the y-dimension and time
is on the x-axes). In general, the goal of the scheduling is to keep the processors busy all the time, e.g.,
trying to avoid idle time in waiting for data or synchronization.

Application-to-pencil  
transformations 

Local/nodal 
1-D FFTs on pencils 
 

Local packing of data 
for subsequent MPI 

MPI communications Local unpacking of  
MPI data into pencils 

                 Forward 3-D FFT                                   Inverse 3-D FFT  

Figure 4.1: A 3-D FFT execution trace with main FFT components. The trace shown is for 80 MPI
processes on Intel Xeon E5-2650 v3 cluster on a 1K × 1K × 1K grid.

As illustrated, there are no void spaces in the FFT-ECP execution and we can avoid synchronizations and
idle times. Communications can be triggered asynchronously within a sub-group and entirely in parallel
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CHAPTER 4. SCHEDULING COMPUTATIONS AND COMMUNICATIONS IN FFT

between subgroups. Currently, the FFT-ECP scheduling is data driven. The GPU kernels’ execution is
scheduled by CUDA. We also use streams to pipeline kernels, as well as batched kernels and streams to
schedule kernels to run e�ciently in parallel.

Our analysis and experiments also determined that the granularity of the tasks is critically important for
the scheduling to be successful, i.e., leading to high-performance. FFT-ECP controls the tasks’ granularity
at di�erent levels – from high-level algorithmic decisions, e.g., slab vs. pencil vs. brick algorithms, to
parameterizations, di�erent communication mechanisms, blocking, and granularities controlled by
third party tools/libraries.

An example for third party library controlling granularities is the MPI used. MPI splits large messages
and schedules the delivery, but this can have both negative and positive e�ects, and therefore users must
also be able to control it. Indeed, our analysis and experimentation have determined that default splitting
of GPU-to-GPU communications can o�en lead to suboptimal performance. GPU communications
have in general higher (than CPUs) latencies (e.g., see Figures 3.3 and 3.4), and therefore making packages
too small can have negative e�ects. Therefore, to overcome these challenges, FFT-ECP is designed to
consider the tasks’ granularities as tuning parameters. When third party libraries do not allow enough
�exibility to tune, we have also implemented our own MPI versions, e.g., magma Alltoall.

Other MPI functions that we consider for optimizations in FFT-ECP are asynchronous sends and
receives. One model is to post a number of asynchronous receives requests, followed by GPU work and
synchronous or asynchronous sends, and leave it to MPI to schedule the delivery. Figure 4.2 shows an
example where the MPI scheduling can overlap sends and receives, thus bene�ting from duplexing
the communications that we want to achieve, but there are also many cases where the duplexing is not
happening, even when we know that it should be possible.

Overlapping send and receive communications with GPU from another 
socket 

Overlapping send and receive communications with GPU within same socket 
 47GB/s each 

15GB/s each Communications not benefiting from duplexing 
 47GB/s each 

Figure 4.2: MPI scheduling of communications – non-blocking send and receive can be scheduled to
overlap at top speed, thus bene�ting from duplexing, but there are also cases where the scheduling fails

to overlap them.
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CHAPTER 5

Memory models and data distributions

FFT-ECP supports four memory models:

CPU allocated memory In this interface input data is on the CPUs’ memory and FFT-ECP copies it to
GPUs, computes, and brings back the result to CPU memory;

cudaHostRegister-ed memory In this mode CPU allocated memory is registered for GPU use and
FFT-ECP does not have to explicitly copy data between CPU and GPU;

Managed memory This is Uni�ed Memory that can be accessed from the CPU and the GPU. We
developed it for convenience as both CPU and GPU code can work on it;

GPU allocated memory In this model memory is allocated on the GPU, result is written on the GPU
and there are no CPU-GPU data transfers.

The last three memory models work with the same code. Once memory is established on the GPU the
latter three versions have almost the same performance. The support for these three di�erent versions
is justi�ed by the need to have options and to easily interface with di�erent applications. For example,
there are CPU-based computing applications that use CPU FFTs, e.g. FFTW, and the FFT-ECP interface
would allow us to just change the calling functions to seamlessly provide GPU acceleration.

FFT-ECP provides memory allocation function that can allocate one of the speci�ed above memories,
do proper alignment, if speci�ed, etc. A corresponding memory free routine is also provided.

The data distributions supported are inherited from the FFTMPI and SWFFT packages. Thus, FFT-MPI
can be used directly in the ECP HACC and LAMMPS applications, which already use and are integrated
with the FFTMPI and SWFFT FFT libraries, respectively.
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CHAPTER 6

GPU kernels

We developed highly optimized GPU kernels in CUDA that perform the packing and unpacking routines
needed for 3-D FFTs. The 1-D FFTs on the GPUs are computed by cuFFT.

Compared to packing and unpacking on CPUs, the GPU-accelerated code gives about 40× speedup.
Here we compare six V100 GPUs on a node vs. all the cores of the two Power9 CPUs on a Summit node.
An illustration of this for an FFT on 10243 grid, computed on 4 Summit nodes, is given in Table 6.1. The
computation is in double complex arithmetic.

Main 3D FFT kernels Time (ms) Overall time (ms)
GPU CPU GPU CPU

Unpack 2.1 123

286 ms 368 ms
Batched 1D FFTs 1.8 63

Pack 1.8 30
MPI All2All 280 152

Table 6.1: Execution times of 3-D FFTs on four nodes of Summit for N = 1024. Compared are execution
times on 24 V100 GPUs vs. 160 Power9 cores using default network with Pencil-decomposed 3-D FFT.

The packing and unpacking routines are similar to matrix transpositions that we have also highly
optimized and available in the MAGMA library. The unpacking kernel is in general more challenging to
develop with coalescent both read and write. As illustrated in the Table, even the CPU is performing it
much slower than the packing. On GPUs we developed both kernels to be about the same speed. Note
that although the GPU computation, the packing, and the unpacking are all accelerated multiple times,
the overall acceleration in this case is less than 2×. This is further discussed in the next Chapter.
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CHAPTER 7

FFT-ECP prototype for 3-D FFTs on heterogeneous
systems

7.1 Overall design and functionalities

As already discussed, this report described a FFT-ECP prototype that we have developed for distributed
3-D FFTs on GPU-accelerated Exascale platforms. The overall design follows the SWFFT and FFTMPI
designs, on which FFT-ECP is based. The idea also is to leverage existing FFT capabilities, such as third-
party 1-D FFTs from vendors or open-source libraries to quickly provide GPU support in a sustainable
3-D FFT library for Exascale platforms.

While we have ported both SWFFT and FFTMPI to GPUs in di�erent codes, also providing at the
same time multiple extensions, versions, and parametrizations, we are designing the �nal FFT-ECP
so�ware product to provide single library that will be �exible, easy to use, and moreover, provide all the
functionalities that libraries like SWFFT and FFTMPI provide through a consistent user interface.

The current prototype supports Pencil- and Brick-decomposed FFTs. We have also multiple other
versions for single GPUs, as well as multiple GPUs on a single node. All versions are highly parametrized,
supporting di�erent communication strategies based on P2P communications, All2All, or combinations.

Multiple experiments and studies on performance were performed in order to design and tune for
performance the FFT-ECP implementations. Some of these were already discussed. Further results and
current performance numbers are summarized next.

7.2 Performance results on Summit

As discussed in Chapter 6, our GPU kernels accelerate their CPU counterparts by more than 40× on a
Summit node. This is a signi�cant acceleration that makes the FFT computations and local data reshu�es

13
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become only a tiny fraction of the overall execution time. Indeed, this is illustrated on Figure 7.2.
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Figure 7.1: Percent of time spent on MPI communications in FFT on CPUs (Le�) and GPUs (Right). The
FFT computations are for weak scaling going from problem size 7203 on one node to problem size of

23043 on 32 nodes.

Note that for 32 nodes the fast CPUs-based code spends about 50% in MPI communications and 50% in
pack, unpack and 1-D FFTs. As the computation for the latter 50% are reduced 40× on GPUs, the GPUs
now spent only about 2% in pack, unpack and 1-D FFTs and the rest in MPI communications. Thus,
theoretically, this code can be accelerated at most about 2× when using GPUs.

The acceleration that we can achieve using GPUs is illustrated on Figure ??. The results are for strong
scaling on 3-D FFTs of size 10243 on up to 32 nodes of Summit. Both the CPU and GPU codes are highly
optimized and in this case use Pencil-decomposed 3-D FFTs based on the FFTMPI FFT library. The
CPU code uses 40 cores per node (1 core per MPI process), while the GPU code uses 6 V100 GPUs per
node (1 GPU per MPI process).

As discussed above, the GPU code can accelerate the computation at most 2× in this case and indeed,
performance is about 2× better. For small number of nodes the GPUs can be signi�cantly faster.

These results summarize a number of optimizations, as discussed in the report. Originally, the GPU
version was slower. A�er a number of optimizations for both the CPU and GPU versions, the results
show we reach a theoretically justi�ed peak. Clearly, more acceleration will be possible if the 98% spent
in MPI communication can be further accelerated.

The result show that we have very good strong scalability and achieve very good percentage of the
theoretical peak performance. Using 32 nodes, the 10243 FFT is computed in 0.13 seconds in double
complex arithmetic (see Figure 7.3). The communication bandwidth achieved per node is about 25 GB/s.
This is the peak if duplexing is not used and have room for 2× further improvements if one can get full
bene�t from the duplexing.

Figure 7.4 shows the strong scaling performance (in GFlop/s) on 3-D FFTs of size 10243 on up to 32 nodes
of Summit using Brick-decomposed 3-D FFTs based on the SWFFT FFT library. Performance is similar
to the Pencil-decomposed 3-D FFT in terms of absolute values achieved and scalability. This approach
however requires more memory.

Weak scaling, as one can expect from the strong scalability results, are also very good. This is illustrated
on Figure 7.5. The Le� �gure shows the Pencil-decomposed 3-D FFTs, while the Right one shows the
Brick-decomposed 3-D FFTs.
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Figure 7.2: Strong scaling performance (in GFlop/s) on 3-D FFTs of size 10243 on up to 32 nodes of
Summit. Both CPU and GPU codes are highly optimized, using Pencil-decomposed 3-D FFTs based on
the FFTMPI FFT library. The CPU code uses 40 cores per node (1 core per MPI process), while the GPU

code uses 6 V100 GPUs per node (1 GPU per MPI process).
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Figure 7.3: Strong scaling computational time (in seconds) on 3-D FFTs of size 10243 on up to 32 nodes
of Summit. Both CPU and GPU codes are highly optimized, using Pencil-decomposed 3-D FFTs based
on the FFTMPI FFT library. The CPU code uses 40 cores per node (1 core per MPI process), while the

GPU code uses 6 V100 GPUs per node (1 GPU per MPI process).
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Figure 7.4: Strong scaling performance (in GFlop/s) on 3-D FFTs of size 10243 on up to 32 nodes of
Summit. Both CPU and GPU codes are highly optimized, using Brick-decomposed 3-D FFTs based on
the SWFFT FFT library. The CPU code uses 32 cores per node (1 core per MPI process), while the GPU

code uses 6 V100 GPUs per node (1 GPU per MPI process).
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Figure 7.5: Weak scaling performance (in GFlop/s) on 3-D FFTs on up to 32 nodes of Summit. Both CPU
and GPU codes are highly optimized, using Pencil-decomposed 3-D FFTs (Le�) and Brick-decomposed
3-D FFTs (Right). The grid sizes solved are listed on the x-axes, along with the corresponding number of

CPU cores or GPUs used for the scaling.
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CHAPTER 8

Conclusions and future work directions

In this milestone, we designed and developed an initial implementation of 3-D FFTs in the FFT-ECP
project. The target architectures are large-scale distributed GPU-accelerated platforms. We described the
design and performance of the code on large-scale heterogeneous systems with GPUs like the Summit
supercomputer at ORNL. This milestone also delivered on the following sub-tasks:

• Investigation and development of di�erent communication schemas in FFT-ECP;

• A study of scheduling computations and communications in FFT;

• A study on the memory models and data distributions for FFTs;

• Developed and optimized building blocks and GPU kernels for FFTs;

• Delivered an initial version of the 3-D FFT for heterogeneous, multi-GPU nodes and ECP applica-
tions, and provided a study on its performance.

The work also highlighted a number of bottlenecks and opportunities for accelerating the codes. The main
bottleneck currently is in the MPI communications, as everything else is highly optimized to the point
that it takes only about 2-3% of the total execution time, while the rest is in MPI communications. Thus,
further improvement can be achieved by optimizing the communications, e.g., through improvements
in MPI and scheduling of tasks. Also, there are versions for particular sizes (and application needs) that
communicate less, which are all subject of future developments. These are the main targets of the next
milestone – namely, implementation optimization and features phase that aim to provide speci�c ECP
application needs for fast FFTs.
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