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CHAPTER 1

Introduction

So�ware for Linear Algebra Targeting Exascale (SLATE) 1 [1] is being developed as part of
the Exascale Computing Project (ECP) 2, which is a joint project of the U.S. Department of
Energy’s O�ce of Science and National Nuclear Security Administration (NNSA). The purpose
of SLATE is to serve as a replacement for ScaLAPACK for the upcoming pre-exascale and
exascale DOE machines. SLATE will accomplish this objective by leveraging recent progress in
parallel programming models and by strongly focusing on supporting hardware accelerators.

This report focuses on the set of SLATE routines that solve least squares problems. Speci�cally,
initial performance numbers are reported, alongside ScaLAPACK performance numbers, on
the SummitDev machine at the Oak Ridge Leadership Computing Facility (OLCF). More details
about the design of the SLATE so�ware infrastructure can be found in the report by Kurzak
et al. [1].

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org
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CHAPTER 2

Implementation

The principles of the SLATE so�ware framework were laid out in SLATE Working Note 3 1 [1].
SLATE’s design relies on the following principles:

• The matrix is represented as a set of individual tiles with no constraints on their locations
in memory with respect to one another. Any tile can reside anywhere in memory and
have any stride. Notably, a SLATE matrix can be created from a LAPACK matrix or a
ScaLAPACK matrix without making a copy of the data.

• Node-level scheduling relies on nested Open Multi Processing (OpenMP) tasking, with the
top level responsible for resolving data dependencies and the bottom level responsible for
deploying large numbers of independent tasks to multi-core processors and accelerator
devices.

• Batch BLAS is used extensively for maximum node-level performance. Most routines
spend the majority of their execution in the call to batch gemm.

• The Message Passing Interface (MPI) is used for message passing with emphasis on collec-
tive communication, with the majority of communication being cast as broadcasts.

Also, the use of a runtime scheduling system, such as the Parallel Runtime Scheduling and
Execution Controller (PaRSEC) 2 [2] or Legion 3,4 [3], is currently under investigation.

1http://www.icl.utk.edu/publications/swan-003
2http://icl.utk.edu/parsec/
3http://legion.stanford.edu
4 http://www.lanl.gov/projects/programming-models/legion.php
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2.1. PARALLELIZATION CHAPTER 2. IMPLEMENTATION

2.1 Parallelization

SLATE least squares solvers are marked by much higher complexity than (Sca)LAPACK due to
a totally di�erent representation of the matrix. Consider the following factors:

• SLATE matrix is a “loose” collection of tiles, i.e., there are no constraints on the memory
location of any tile with respect to the other tiles. Notably, however, a ScaLAPACK matrix
can still be mapped to a SLATE matrix without making a copy of the data.

• SLATE matrix can be partitioned to distributed memory nodes in any possible way, i.e.,
no assumptions are made about the placement of any tiles with respect to the other tiles.
The same applies to the partitioning of tiles within each node to multiple accelerators.

• In principle, SLATE can support non-uniform tile sizes within the same matrix, although
this mode of operation has not been well tested, as currently supporting the standard 2D
block cyclic partitioning, for compatibility with ScaLAPACK, is the top priority.

Householder re�ections can be used to calculate QR decompositions by re�ecting �rst one
column of a matrix onto a multiple of a standard basis vector, calculating the transformation
matrix, multiplying it with the original matrix and then recursing down the (i, i) minors of that
product. The standard procedure of LAPACK and ScaLAPACK is to replace each eliminated
column with the coe�cients of the Householder re�ector. LAPACK and ScaLAPACK also apply
the technique of algorithmic blocking, i.e., alternating steps of factoring a small set of columns
(the panel) and applying the resulting transformations to the trailing submatrix.

update

panel

panel

panel
update

update

Figure 2.1: QR factorization with lookahead
of one.

The basic mechanics of the CAQR factorization in
SLATE are shown on Figure 2.1. Like most routines
in SLATE, the implementation relies on nested
OpenMP tasking, where the top level is responsi-
ble for scheduling large-grained, inter-dependent
tasks, and the nested level is responsible for dis-
patching large numbers of �ne-grained, indepen-
dent tasks. In the case of GPU acceleration, the
nested level is implemented using calls to batch
BLAS, to exploit the e�ciency of processing large
numbers of tiles in a call to a single GPU kernel.

Similarly to other routines, the CAQR factorization
in SLATE applies the technique of lookahead [4–6],
where one or more columns, immediately follow-
ing the panel, are prioritized for faster process-
ing, to allow for speedier advancement along the
critical path. Lookahead provides large perfor-
mance improvements, as it allows for overlapping
the panel factorization, which is usually ine�cient,
with updating of the trailing submatrix, which is
usually very e�cient and can be GPU accelerated.
Usually, the lookahead of one results in a large
performance gain, while bigger values deliver di-
minishing returns.
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 factorizations of local subpanels
distributed

panel rank 0

rank 1

rank 2

reduction of distributed R factors

geqrt

geqrt

geqrt

ttqrt

ttqrt

Figure 2.2: CAQR panel factorization.

SLATE implements the communication avoiding QR popularized by Demmel [7]. Figure 2.2
shows the basic premise of that algorithm. Here the panel is distributed in a block cyclic
fashion to multiple MPI ranks. First, each rank applies the standard QR factorization to a panel
consisting of its local tiles (equivalent of the LAPACK geqrt routine). This step requires no
communication and eliminates all entries except for the upper triangular part of the top tile in
each rank. The follow-up step applies a binary tree of pairwise reductions of the remaining
triangles (equivalent of the LAPACK ttqrt routine). At the end, the upper triangular part of
the topmost tile contains the R factor of the QR factorization, and the eliminated entries are
replaced with coe�cients of the Householder re�ectors used in the elimination process. This is
a di�erent set of re�ectors than the one produced by the standard QR algorithm of LAPACK
and ScaLAPACK. Although, an algorithm exists for reconstructing the standard re�ectors from
the CAQR re�ectors [8].

Within each rank, the standard QR factorization is applied to the local panel, i.e., the subset
of tiles from the global panel that are mapped to that rank. The local panel factorization in
SLATE relies on multithreading and internal blocking for maximum multi-core performance.
Figure 2.4 shows the basic premise of the implementation. The tiles are assigned to threads
in a round robin fashion, and the assignment is persistent, which allows for a high degree of
cache reuse throughout the panel factorization. Also, the routine is internally blocked, i.e., the
factorization of a panel of width nb proceeds in steps of much smaller width ib. While typical
values of nb are 192, 256, etc., typical values of ib are 8, 16, etc. The ib factorization contains
mostly BLAS 1 and 2 operations, but can bene�t to some extend from cache residency, while the
nb factorization contains mostly BLAS 3 operations and can also bene�t from cache residency.
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. . .
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Figure 2.3: Local panel factorization
in CAQR.

At each step of the ib panel factorization, a stripe of
Householder re�ectors is computed (V ), along with a
small triangular part of the R factor (R11), and a small
triangular part of the T factor (T21). All this work is done
one column at a time. What follows is application of
the V re�ectors to the right, which includes updating
the remaining A22 submatrix, and computing of a new
horizontal stripe of the R factor (R12). Most of this work
is done using BLAS 3 operations and uses the newly
computed set of T factors (T21). At each step, also a
vertical stripe of T factors is computed (T11), resulting
from combining past transformations with the trans-
formations of the current ib panel. This is also done
mostly using BLAS 3 operations (gemm and trmm). This
way, at the end of the nb panel factorization, a full T fac-
tor is produced, which allows for e�cient application
of the update to the trailing submatrix.

Updating of the trailing submatrix consists of two stages
(the right side of Figure 2.4). The �rst one applies the
transformations from the local panel factorizations and
is equivalent to the LAPACK unmqr function. The neces-
sary communication involves broadcast of the panel to
the right. This includes the Householder re�ectors and
the corresponding T factors. The second stage applies
a sequence of transformations resulting from the steps
of the tree reduction, and is equivalent to a sequence of calls to the LAPACK ttmqr routine.
This requires both horizontal broadcasts and point-to-point communication exchanging data
between the sets of a�ected rows.

geqrt
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Figure 2.4: Trailing submatrix update in CAQR.
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2.2 Least squares solver

The QR and LQ factorizations are used to solve the problem

op(A)X = B (2.1)

where op(A) = A or AH is m × n, X is n × nrhs, and B is m × nrhs. The various cases below
are implement in SLATE in the gels routine.

If m > n, Equation (2.1) is over-determined and typically inconsistent (has no exact solution),
so is solved in the least squares sense: �nd X that minimizes the residual,

‖op(A)X −B‖2 . (2.2)

For op(A) = A, this can be solved via a QR factorization of A, yielding X = R−1QHB. In SLATE,
this is implemented using geqrf to factor A = QR, unmqr to multiply W = QHB, then trsm
to solve X = R−1W . For op(A) = AH , it can be solved via an LQ factorization of A, yielding
X = L−H(QB). This case is not yet implemented in SLATE.

If m < n, Equation (2.1) is under-determined and typically has an in�nite number of solutions,
so the solution X with minimum norm is sought. For op(A) = AH , this can be solved via a QR
factorization, yielding X = Q(R−HB). In SLATE, this is implemented using geqrf to factor
A = QR, trsm to solve W = R−HB, then unmqr to multiply X = QW . For op(A) = A, it can be
solved via an LQ factorization of A, yielding X = QH(L−1B). This case is not yet implemented
in SLATE.

If A is rank de�cient, the above QR technique will fail because the triangular matrix R will
be singular. In that case, other techniques such as rank-revealing QR or the singular value
decomposition (SVD) are applicable. These techniques will be addressed by future SLATE
developments.

2.3 Deep Tile Transposition

As evident from Section 2.2, the over- and under-determined problems can both be solved by
either QR or LQ. In fact, QR and LQ are simply conjugate-transposes of each other:

(QR)H = RHQH = LQ̂.

The QR factorization forms Householder re�ectors to eliminate each column below the diagonal,
hence accesses data column-wise, while the LQ factorization applies Householder re�ectors to
eliminate each row right of the diagonal, hence accesses data row-wise. Since SLATE by default
stores data in column-major order, accessing data row-wise in LQ would be ine�cient. Also,
writing an LQ routine that is basically identical to the QR routine but applied row-wise would
introduce undesired code duplication.

Instead, to compute an LQ factorization we employ transposition and compute the QR factor-
ization of AH , then transpose the resulting QR back to obtain LQ̂. For most purposes, SLATE
uses a shallow transposition, which merely marks a matrix and its tiles as transposed, without

6
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physically transposing data in memory. The underlying BLAS routines (gemm, etc.) take the
transposition �ag and apply it during the computation. However, in LQ, this shallow transpose
would still leave ine�cient row-wise access to column-major data. Instead, we employ a deep
transpose that physically transposes the tiles in memory.

Each tile is transposed independently. Square tiles can always be transposed in place. Rect-
angular tiles, which occur on the border of the matrix, must be contiguous, not strided, to be
transposed in place. If data starts in ScaLAPACK format, we handle making just the border
tiles contiguous in the Matrix fromScaLAPACK constructor, and copying the border tiles back
to ScaLAPACK format via toScaLAPACK. As with the shallow transpose, accessing tiles swaps
indices, so accessing tile AH(i, j) returns tile A(j, i).

When shallow and deep transpose are combined, it leads to several mixed states, such as (AT )t,
where capital T represents deep transpose and t represents shallow transpose. Mixing a shallow
transpose and shallow conjugate-transpose is prohibited, since BLAS does not support it, but
otherwise all combinations are allowed. The complete state transitions are shown in Figures 2.5
to 2.8. There are multiple representations of the same logical matrix:

no transpose: A, (AT )t, and (AH)h (light grey states)

conjugate: A∗, (AH)t, and (AT )h (dark grey states)

transpose: At, AT , and A∗h (blue states)

conjugate-transpose: Ah, AH , and A∗t (orange states)

2.4 Handling of Multiple Precisions

SLATE handles multiple precisions by C++ templating, so there is only one precision-
independent version of the code, which is then instantiated for the desired precisions. SLATE’s
LAPACK++ component [9] provides overloaded, precision-independent wrappers for all the
underlying LAPACK routines, which SLATE’s least squares solvers are built on top of. For
instance, lapack::tpqrt in LAPACK++ maps to stpqrt, dtpqrt, ctpqrt, or ztpqrt LAPACK rou-
tines, depending on the precision of its arguments.

Where a data type is always real, blas::real_type<scalar_t> is a C++ type trait to provide the
real type associated with the type scalar_t, so blas::real_type< std::complex<double> > is
double. Since norms of complex matrices are real values, this is used across the norms routines.

Currently, the SLATE library has explicit instantiations of the four main data types: float,
double, std::complex<float>, and std::complex<double>. The SLATE norms code should be
able to accommodate other data types, such as quad precision, given appropriate implementa-
tions of the elemental operations.

7
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CHAPTER 3

Experiments

3.1 Environment

Performance numbers were collected using the SummitDev system 1 at the OLCF, which is
intended to mimic the OLCF’s next supercomputer, Summit. SummitDev is based on IBM
POWER8 processors and NVIDIA P100 (Pascal) accelerators, and is one generation behind
Summit, which will be based on IBM POWER9 processors and NVIDIA V100 (Volta) accelerators.

The SummitDev system contains three racks, each with eighteen IBM POWER8 S822LC nodes,
for a total of ��y-four nodes. Each node contains two POWER8 CPUs, ten cores each, and four
P100 GPUs. Each node has 256 GB of DDR4 memory. Each GPU has 16 GB of HBM2 memory.
The GPUs are connected by NVLink 1.0 at 80 GB/s. The nodes are connected with a fat-tree
enhanced data rate (EDR) In�niBand.

The so�ware environment used for the experiments included GNU Compiler Collection
(GCC) 7.1.0, CUDA 9.0.69, Engineering Scienti�c Subroutine Library (ESSL) 5.5.0, Spec-
trum MPI 10.1.0.4, Netlib LAPACK 3.6.1, and Netlib ScaLAPACK 2.0.2—i.e., the output of
module list included:

gcc /7.1.0
cuda /9.0.69
essl /5.5.0 -20161110
spectrum -mpi /10.1.0.4 -20170915
netlib -lapack /3.6.1
netlib -scalapack /2.0.2

1https://www.olcf.ornl.gov/kb articles/summitdev-quickstart/
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3.2 Performance

All runs were performed using sixteen nodes of the SummitDev system, which provides
16 nodes × 2 sockets × 10 cores = 320 IBM POWER8 cores and 16 nodes × 4 devices = 64
NVIDIA P100 accelerators. SLATE was run with one process per node, while ScaLAPACK
was run with one process per core, which is still the prevailing method of getting the best
performance from ScaLAPACK. Only rudimentary performance tuning was done in both cases.

Figure 3.1 shows the CPU performance of ScaLAPACK and SLATE for the dgeqrf routine (QR
factorization) and the dgels routine (least squares solve). The horizontal axis shows the problem
size with m = n for the QR factorization and m = n = nrhs for the least squares solve. Figure 3.2
shows the comparison of ScaLAPACK’s CPU performance to SLATE’s GPU performance.

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

SIZE (m = n)

0 20000 40000 60000 80000 100000 120000 140000

SLATE
ScaLAPACK

QR factorization for general matrices (dgeqrf)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

SIZE (m = n = nhrs)

0 20000 40000 60000 80000 100000 120000 140000

SLATE
ScaLAPACK

least squares solve (dgels)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

Figure 3.1: CPU performance of dgeqrf (le�) and dgels (right).
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Figure 3.2: CPU performance of ScaLAPACK vs GPU performance of SLATE.

The CPU performance of SLATE’s dgeqrf is slightly lower than ScaLAPACK’s, while the CPU
performance of SLATE’s dgels is slightly higher than ScaLAPACK’s. Overall, for CPU runs,
SLATE delivers very similar performance to ScaLAPACK.
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GPU performance of SLATE is superior to CPU performance of ScaLAPACK, with up to 2.5×
speedup for dgeqrf and up to 5× speedup for dgels. This, however, is nowhere near the expected
order of magnitude speedup and clearly more performance engineering is needed.
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CHAPTER 4

Summary

Implementation of least squares solvers in SLATE faced multiple challenges. Development
of multithreaded panel factorization, implementation of tree reductions, and introduction of
deep transposition of tiles were all non-trivial tasks.

SLATE’s so�ware infrastructure provided the �exibility to accommodate the necessary changes,
and the resulting routines provide competitive CPU performance and moderate GPU accelera-
tion. More performance engineering is needed for maximum GPU utilization.

13



Bibliography

[1] Jakub Kurzak, Panruo Wu, Mark Gates, Ichitaro Yamazaki, Piotr Luszczek, Gerald Ragghianti,
and Jack Dongarra. SLATE working note 3: Designing SLATE: So�ware for linear algebra
targeting exascale. Technical Report ICL-UT-17-06, Innovative Computing Laboratory,
University of Tennessee, September 2017. revision 09-2017.

[2] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Hérault,
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