
ECP Milestone Report

Evaluation and Design of FFT for Distributed Accelerated Systems

WBS 2.3.3.09, Milestone FFT-ECP ST-MS-10-1216

Stanimire Tomov
Azzam Haidar
Daniel Schultz
Jack Dongarra

Innovative Computing Laboratory, University of Tennessee

October 5, 2018

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative e↵ort of two
U.S. Department of Energy organizations (O�ce of Science and the National Nuclear Security Administration)
responsible for the planning and preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms, in support of the nation’s exascale
computing imperative.

Revision Notes
10-2018 first publication

@techreport{thsd2018ECPFFT,
author={Tomov, Stanimire and Haidar, Azzam and Schultz, Daniel and Dongarra, Jack},
title={{Evaluation and Design of FFT for Distributed Accelerated Systems}},
institution={Innovative Computing Laboratory, University of Tennessee},
year={2018},
month={October},
type={ECP WBS 2.3.3.09 Milestone Report},
number={FFT-ECP ST-MS-10-1216},
note={revision 10-2018}

}

i

Contents

1 Executive Summary 1

2 Background 2

3 Evaluation and Benchmarking of State-of-the-art FFT Libraries 3

3.1 FFTs on single node multicore processors . 3
3.2 FFT building blocks for GPUs . 5
3.3 FFTs for distributed memory systems . 7

4 FFT Libraries in ECP Applications 9

4.1 The FFTMPI Library Used in LAMMPS . 10
4.2 The SWFFT Library Used in HACC . 10
4.3 Performance and Analysis . 10

5 Framework Design for ECP-FFT 15

5.1 Interoperability of Vendor FFTs and FFTs in ECP Applications 15
5.2 Performance Analysis and Model . 16
5.3 Framework Design Highlight . 18

6 Conclusions 19

Acknowledgments 19

Bibliography 20

ii

List of Figures

3.1 Performance of 3D FFTs in MKL and FFTW in double complex arithmetic on two 10-core Intel
Xeon E5-2650 v3 processors (Haswell). Performance numbers assume 5N3

log2N
3 flops for a

3D FFT on a N ⇥N ⇥N tensor. 4
3.2 Performance of 3D FFTs in FFTMPI in double complex arithmetic on two 10-core Intel Xeon

E5-2650 v3 processors (Haswell). Shown is performance of 3D FFT from FFTMPI using 1D
FFTs from MKL vs. FFTW. 5

3.3 Performance of NVIDIA cuFFT in double complex arithmetic on V100 GPU. Shown is perfor-
mance of a batch of 1,000 1D FFTs (Left) and 3D FFT (Right). 5

3.4 Performance of NVIDIA 2D cuFFT vs. 2D FFTs composed of 1D FFT building blocks from
cuFFT (Left) and NVIDIA 3D cuFFT vs. 3D FFTs composed of 1D FFT building blocks from
cuFFT (Right). 6

3.5 Performance of a single 1D MAGMA FFT vs. cuFFT for small size vectors on an NVIDIA V100
GPU using larger size radix and ZGEMM. 6

3.6 Scalability of 3D FFTW on up to 180 MPI ranks (on 9 nodes with 2⇥ 10 cores Intel Intel Xeon
E5-2650 v3 processors (Haswell) in an Infiniband cluster (100G EDR MSB7700/U1 switch). . 7

3.7 Scalability of FFTW and MKL 3D FFT on a cluster with two 10-core Intel Xeon E5-2650 v3
processor (Haswell) nodes connected with Infiniband (100G EDR MSB7700/U1 switch). The
performance shown is in Gflop/s per node (Left). On the Right is MKL performance per node
when using 10 vs. 20 cores on the node. 8

4.1 Scalability of the FFTMPI implementation for 2D square grid when using di↵erent number of
processors. 11

4.2 Scalability of the FFTMPI implementation for 3D square grid when using di↵erent number of
processors. 11

4.3 Scalability of the SWFFT implementation for 3D square grid when using di↵erent number of
processors. 12

4.4 Trace of 2D FFTMPI using MKL on 80 MPI process (Intel Xeon E5-2650 v3 processors Haswell)
for a 2D FFT on a 10K ⇥ 10K grid. 13

4.5 Trace of 3D FFTMPI using MKL on 80 MPI process (Intel Xeon E5-2650 v3 processors Haswell)
for a 3D FFT on a 1K ⇥ 1K ⇥ 1K grid. 13

4.6 Trace of 2D FFTMPI using MKL on 80 MPI process (Intel Xeon E5-2650 v3 processors Haswell)
for a 2D FFT on a 10K ⇥ 10K grid. 14

4.7 Trace of 3D FFTMPI using MKL on 80 MPI process (Intel Xeon E5-2650 v3 processors Haswell)
for a 3D FFT on a 1K ⇥ 1K ⇥ 1K grid. 14

iii

5.1 Time for 2D FFT using 1D cuFFTs on NVIDIA V100 GPU. The NVLINK shows the time to
receive and send the data for the computation through a 32 GB/s connection. Computation
and communication can be overlapped by pipelining the work on the 1D vectors, in which case
the total computation time is given by the NVLINK curve, otherwise is the sum of the two
curves (i.e., about twice slower in this case). 17

5.2 An overall 3D FFT computational pipeline: 1) Need flexible FFT API to take application
specific input and output (bricks/pencils/etc., shown on the left and on right); 2) Need e�cient
packing/unpacking (on a node) and MPI communication routines (shown in the middle); 3)
Need e�cient 1D (or 2D in some cases) FFTs on the node (shown in the middle). 18

iv

List of Tables

4.1 Weak and strong scalability of SWFFT on Summit using only its IBM CPU Power9 processors
(two per node); runs by [2]. Note that in the context of GPUs, one NVIDIA V100 GPU can
solve the strong scalability 3D FFT problem for N=576 at 853 GFlop/s, which is the equivalent
of 128 CPU nodes. 12

5.1 Computational intensity in Flops/Byte for 1D FFTs (vs. GEMM) in double complex arithmetic.
Listed also are the achievable performances for the two operations in Gflop/s on single V100
GPU and a node of 6 V100 GPUs, as on the Summit supercomputer. The multiplication by 4
and division by 4 for GEMM is to take into account that 3 matrices are read and one is written
back to storage. 16

v

CHAPTER 1

Executive Summary

The goal of this milestone was the evaluation and design phase of FFT targeting distributed accelerated
systems. In this milestone we describe the current performance of FFT libraries and propose a design
framework for the FFT-ECP project. Speci�cally, this milestone delivered on the following sub-tasks:

• Evaluation and benchmarking of current/existing FFT libraries from open-source developers and
vendors;

• Evaluation and benchmarking of the FFT code used in other ECP applications, including: LAMMPS
and HACC;

• Study the interoperability between current vendor FFT libraries and the existing FFT library used
in ECP applications, particularly for use in heterogeneous nodes with many accelerators;

• Propose a framework design for FFT-ECP and investigation for possible integration and/or use
of vendor- developed or open-source FFT codes with our 2-D and 3-D FFT-ECP framework that
emphasizes multi-GPU nodes;

• Analysis of the communication/computation cost andmemory overhead for di�erent FFT variants
and provide a study of the behavior on current and future architectures with distributed and
heterogeneous multi-GPU nodes.

1

CHAPTER 2

Background

The Fast Fourier Transform (FFT) is used in many applications such as molecular dynamics, spectrum
estimation, fast convolution and correlation, signal modulation and many wireless multimedia applica-
tions. The distributed 3D FFT is one of themost important kernels involved inMolecular Dynamics (MD)
computations and its performance can a�ect MD scalability at large scale. MD requires to solve 3D FFTs
of medium size (106 � 108 points). The performance of the �rst principles calculations strongly depends
on the performance of the FFT solver that performs many FFTs of size ⇡ 107 points in a calculation that
we call batched FFT. Moreover, many Poisson PDE type of equations arising frommany engineering
areas such as PLASMA simulation, density �eld, etc., need to solve FFT of size above 109. On the DOE
side, we found that more than dozen of ECP applications use FFT in their codes.

However, while needed, state-of-the-art FFT libraries like FFTW are no longer actively developed for
emerging platforms. To address this de�ciency, the ECP ST has initiated two new FFT e�orts [8] – the
FFTX that explores the development of a new FFT so�ware stack, e.g., capable of replacing FFTW, and
the FFT-ECP, subject of this project, that aims to provide a sustainable 3D FFT library built from existing
components. The latter approach has been used to construct ad hoc FFTs in applications, e.g., relying on
third-party 1D FFTs from vendors or open-source libraries. Our goal is to:

• Collect existing FFT capabilities from ECP applications (LAMMPS/FFTMPI and HACC/SWFFT);

• Explore also vendor FFT capabilities to build 3D FFT libraries using node kernels;

• Asses current de�ciencies and how to address them, while leveraging the existing FFT capabilities
to build a sustainable FFT library for Exascale platforms.

The FFT-ECP goals and approach present a high value proposition – the e�ort will not only provide a
new and sustainable high-performance FFT library for Exascale platforms, but also will leverage the
large investments in FFT so�ware by the broader HPC community. Moreover, we will propose and
develop a �exible API to simplify the use of FFT-ECP in applications.

2

CHAPTER 3

Evaluation and Benchmarking of State-of-the-art FFT
Libraries

The current state-of-the-art of FFT libraries does not seem to be scalable to large number of hetero-
geneous nodes or even to one multi-GPU node with high-end GPUs such as the Nvidia V100 GPU.
Furthermore, these libraries require large size FFTs in order to deliver acceptable performance on
one GPU. E�orts to simply enhance classical and existing FFT packages with optimization tools and
techniques such as autotuning and code generation have not been able so far to provide the e�cient,
high-performance FFT library needed and capable of harnessing the power of supercomputers with
heterogeneous GPU-accelerated nodes. Therefore, in this milestone, we �rst studied the existing FFT
capabilities from vendors and open-source libraries, the potential of using them as building blocks, and
assessed their performance gaps in order to develop a GPU-based distributed 3D FFT library that can
deliver high performance on current and future machines.

3.1 FFTs on single node multicore processors

There are many FFTCPU-based nodal libraries, and we evaluated a number of them. These FFT libraries
come from open source e�orts or vendors, and include libraries like AccFFT [4], Cray FFT, FFTW [3],
FFTE [19], Intel MKL [9], IBM, nb3DFFT [5], Parallel FFT, P3DFFT [15], PsFFT, and Spiral [17].

FFTW is widely recognized as one of the most popular and e�cient CPU-based FFT libraries. Therefore,
for the FFT-ECP developments we concentrate on the FFTW library, as well as on vendor implementa-
tions, as they provide in general the best performance. This was also con�rmed by the benchmarks that
we created and ran in order to analyze these libraries. For current multicore nodes, current performance
levels are illustrated in Figure 3.1. Shown is the performance in GFlop/s for 3D FFTs from the MKL FFT
and the FFTW libraries on two 10-core Intel Xeon E5-2650 v3 processors (Haswell).

To compute the G�op/s rate, here and everywhere below, we assume that the �ops for a 3D FFT over

3

3.1. FFTS ON SINGLE NODE MULTICORE PROCESSORSCHAPTER 3. EVALUATION OF FFT LIBRARIES

N ⇥N ⇥N data points are 5N3
log2N

3.

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

100" 200" 360" 500" 600" 720" 900"

MKL""

FFTW"

Matrix size (N x N x N)

G
flo

p/
s

Figure 3.1: Performance of 3D FFTs in MKL and FFTW in double complex arithmetic on two 10-core
Intel Xeon E5-2650 v3 processors (Haswell). Performance numbers assume 5N3

log2N
3 �ops for a 3D

FFT on a N ⇥N ⇥N tensor.

We note that this is the best performance obtained among the di�erent libraries. In this case MKL is
slightly faster and performancemayoscillate based on the di�erent sizes tested. FFTWis very competitive
and gives somehow smoother performance across the di�erent sizes. Both libraries have a performance
of about 25 GFlop/s (in double complex arithmetic) on average, with MKL reaching up to 38 GFlop/s
and FFTW up to 27 GFlop/s.

The FFTMPI [16] and SWFFT [18] FFT libraries are of particular interest because FFT-ECP will follow their
approach. The libraries are further discussed in Section 4. Here we only mention that these libraries use
the nodal 1D FFT capabilities of libraries like MKL and FFTW to represent multidimensional FFTs. For
example, a 3D FFT will be a batch of 1D FFTs in the x direction, followed by batches of 1D FFTs in the
y, and z directions, where the order of the directions does not matter. We can run these libraries on a
single node and results of doing this are illustrated in Figure 3.2. Shown is the performance of FFTMPI
for 3D FFT using MKL and FFTW3, respectively.

We note that although FFTMPI is based on the 1D FFTs fromMKL and FFTW, the nodal performance
of FFTMPI is lower than the standalone MKL or FFTW from Figure 3.1. Namely, performance here is
about 14 GFlop/s vs. 25 GFlop/s in the standalone libraries case. While some slowdown is expected
as the FFTMPI design and optimizations target di�erent problems (than running on a single node), the
experiment still point out that although the libraries use the same building blocks, further optimizations
matter and can have signi�cant impact on performance.

4

3.2. FFT BUILDING BLOCKS FORGPUS CHAPTER 3. EVALUATION OF FFT LIBRARIES

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

20"

100" 200" 360" 500" 600" 720" 900"

,MPI"(MKL)"

,MPI"(FFTW3)"

Matrix size (N x N x N)

G
flo

p/
s

Figure 3.2: Performance of 3D FFTs in FFTMPI in double complex arithmetic on two 10-core Intel Xeon
E5-2650 v3 processors (Haswell). Shown is performance of 3D FFT from FFTMPI using 1D FFTs from
MKL vs. FFTW.

3.2 FFT building blocks for GPUs

The best performing FFT library for GPUs is Nvidia’s cuFFT [14] library. The performance of cuFFT on
a V100 GPU is illustrated in Figure 3.3 – on the Le� is performance of batched 1D FFTs that is the main
building block in our approach, and on the Right is a 3D FFT.

G
flo

p/
s

Vector size (N)

0"

200"

400"

600"

800"

1000"

10
00
"

30
00
"

50
00
"

70
00
"

90
00
"

11
00
0"

13
00
0"

15
00
0"

2x"1D"cuFFT"1D
cuFFTs G

flo
p/

s

Matrix size (N x N x N)

0"
100"
200"
300"
400"
500"
600"
700"

10
0"

20
0"

30
0"

40
0"

50
0"

60
0"

3D"cuFFT"

Figure 3.3: Performance of NVIDIA cuFFT in double complex arithmetic on V100 GPU. Shown is
performance of a batch of 1,000 1D FFTs (Le�) and 3D FFT (Right).

Note that the performance is signi�cantly higher (about 20⇥) than what we get on multicore CPUs, where
the GPU and the two CPUs have about the same power draw. The Summit supercomputer at ORNL
features six V100 GPUs per node, thus leaving the possibility that a library could potentially extract
about 3,000 GFlop/s per node in doing FFTs (vs. the ⇡ 25 GFlop/s extracted from just a multicore node).
However, our analysis and performance modeling shows that the scalability performance per node is
much lower (which we discuss in detail later).

5

3.2. FFT BUILDING BLOCKS FORGPUS CHAPTER 3. EVALUATION OF FFT LIBRARIES

To further evaluate the FFT-ECP approach on single GPU, we developed a number of 2D and 3D FFT
versions made out of 1D FFT building blocks (from cuFFT). The pefromance is illustrated on Figure 3.4.

G
flo

p/
s

Matrix size (N x N)

0"
100"
200"
300"
400"
500"
600"
700"

10
00
"

30
00
"

50
00
"

70
00
"

90
00
"

11
00
0"

13
00
0"

15
00
0"

2D"cuFFT"

2D"using"1D"
cuFFT"

2D"using"
advanced"1D"
cuFFT"

Matrix size (N x N x N)

G
flo

p/
s

0"
100"
200"
300"
400"
500"
600"
700"

10
0"

20
0"

30
0"

40
0"

50
0"

60
0"

3D"cuFFT"

3D"FFT"using"2D
+1D"cuFFT"

3D"FFT"using"
advenced"1D"
cuFFT"

Figure 3.4: Performance of NVIDIA 2D cuFFT vs. 2D FFTs composed of 1D FFT building blocks from
cuFFT (Le�) and NVIDIA 3D cuFFT vs. 3D FFTs composed of 1D FFT building blocks from cuFFT
(Right).

Similarly to the CPU results for MKL/FFTW vs. FFTMPI using MKL/FFTW (in Figure 3.1 vs. Figure 3.2),
the vendor tuning for the entire computation (a 3D FFT) is currently faster than our quickly assembled
codes. Still, they are very close in performance, indicating that further optimizations and tuning can
lead to top performance (matching NVIDIA’s FFT), and that we can very e�ciently combine current
building blocks in constructing multidimensional FFTs.

The red curves in Figure 3.4 use matrix transposition kernels from MAGMA [20, 21] to align the data so
that the 1D FFTs are always performed on data with stride one (entries that are consecutive in memory).
The purple curve indicates a version that uses the cufftPlanMany plan interface from cuFFT. This option
allows one to specify proper strides for the elements in the 1D FFTs, and thus to avoid the use of explicit
transposition kernels. While this is easier to code (when available; as in cuFFT), we see that performance
is not always better.

G
flo

p/
s

0.1$

1$

10$

100$

10
24
$
40
96
$

16
38
4$

32
76
8$

11
05
92
$

26
21
44
$

MAGMADNN$

CUFFT$

 Size N (for one 1D-FFT)

Figure 3.5: Performance of a single 1D MAGMA FFT vs. cuFFT for small size vectors on an NVIDIA
V100 GPU using larger size radix and ZGEMM.

6

3.3. FFTS FORDISTRIBUTED MEMORY SYSTEMS CHAPTER 3. EVALUATION OF FFT LIBRARIES

Finally, although the focus of the FFT-ECP is not on nodal performance, we explored the possibility
of accelerating 1D FFTs by stopping the recursion in Cooley-Tukey type of FFT algorithms to a larger
radix, e.g., 32, and perform the 1D FFTs on vectors of size 32 using GEMM. We did an implementation
in MAGMADNN [13] and Figure 3.5 shows that acceleration vs. cuFFT is possible on GPUs (up to certain
small sizes) using this type of acceleration. This optimization technique can have implications and use
for tuning the strong scalability of FFTs.

3.3 FFTs for distributed memory systems

Well optimized FFT implementations are known to have excellent weak scalability (i.e., perfect, until the
cross-sectional bandwidth of the nodes involved scales linearly) and good strong scalability on distributed
multicore systems. We developed benchmarks and shell scripts that run them for various sizes, number
of nodes, con�gurations options, etc., collect the output and extract performance numbers to be easily
plotted and analyzed. We plan to use these developments in automated tuning infrastructure tools to be
developed for the FFT-ECP optimization and tuning.

Figure 3.6 shows the scalability of 3D FFTs from FFTW on a small cluster using up to 180 MPI ranks on
9 nodes with 2⇥ 10 cores Intel Xeon E5-2650 v3 processors (Haswell) connected with In�niband (100G
EDRMSB7700/U1 switch).

G
flo

p/
s

Matrix size (N x N x N)

0"
20"
40"
60"
80"

100"
120"
140"
160"

36
0"

54
0"

72
0"

90
0"

10
80
"

12
60
"

14
40
"

16
20
"

18
00
"

19
80
"

9x20"
8x20"
7x20"
6x20"
5x20"
4x20"
3x20"
2x20"
1x20"

Figure 3.6: Scalability of 3D FFTW on up to 180 MPI ranks (on 9 nodes with 2 ⇥ 10 cores Intel Intel
Xeon E5-2650 v3 processors (Haswell) in an In�niband cluster (100G EDRMSB7700/U1 switch).

We developed a performance model to guide our future developments and optimizations and show
(later in our report) that performance for the FFT is memory bound. In particular, while the FFT has
weak scaling, we show that based on the interconnect bandwidth, the performance that can be extracted
per node is limited. For example, for a 3D FFT with In�niband (12.5 GB/s; bi-directional throughput 25
GB/s), the performance that can be extracted from a node will be limited to

25 ⇤ 5

32
⇤ log2N G�op/s,

which is about 52 G�op/s for N = 10,000 (and should weak-scale with the number of nodes used). This is
important because up coming systems feature multiple GPUs per node and although a node, e.g., on the

7

3.3. FFTS FORDISTRIBUTED MEMORY SYSTEMS CHAPTER 3. EVALUATION OF FFT LIBRARIES

Summit supercomputer, can reach theoretically up to 3000 GFlop/s in doing local FFTs, only up to 104
GFlop/s will be used in the scalability (as bandwidth on Summit is Dual Rail EDR-IB – up to 50 GB/s
bi-directional throughput).

Thus, obtaining high nodal performance would have very limited e�ect on the overall performance.
Still, the current FFTresults onSummit that useCPUsonlyshowa scalabilityof 9G�op/s pernode [2].
Therefore, the use of GPUs would be able to accelerate it multiple times, while still leaving plenty of
compute power for simultaneous calculations other than the FFT.

Because of the importance of the nodal FFT performance for the overall scalability, as described above,
we show the average per node performance on our Intel cluster. Figure 3.7, Le�, shows that the weak
scalability per node of MKL can get to about 26 GFlop/s. The achievable (measured) bandwidth here is
21.6 GB/s, and therefore, by the above formula, a limit for the performance per node is 37 G�op/s.

G
flo

p/
s

0"

5"

10"

15"

20"

25"

30"

10
0"
20
0"
36
0"
50
0"
60
0"
72
0"
90
0"
18
00
"

MKL"(20)"

FFTW"(20)"

Matrix size (N x N x N)

G
flo

p/
s

Matrix size (N x N x N)

0"

5"

10"

15"

20"

25"

30"

10
0"

20
0"

36
0"

50
0"

60
0"

72
0"

90
0"
18
00
"

MKL"(20)"

MKL"(10)"

Figure 3.7: Scalability of FFTW and MKL 3D FFT on a cluster with two 10-core Intel Xeon E5-2650 v3
processor (Haswell) nodes connected with In�niband (100G EDRMSB7700/U1 switch). The performance
shown is in G�op/s per node (Le�). On the Right is MKL performance per node when using 10 vs. 20
cores on the node.

Figure 3.7, Right shows that one may not need the full power of the node to get to full speed for a 3D
FFT. Indeed, comparing the nodal average performance of MKL 3D FFT when using 10 vs. 20 of the
node’s cores, illustrates that the performance remains about the same. Similarly, to supercomputers
with GPUs, we expect that not all GPUs will be needed to achieve top performance on 3D FFTs.

8

CHAPTER 4

FFT Libraries in ECP Applications

Today’s machines have very complex memory hierarchies and thus data movement, data layout transla-
tion, and communication should be the main focus of any distributed FFT library that aims to improve
the performance of any ECP application that relies on FFT. Vendors and optimized open-source libraries
provide very well optimized and tuned FFT routines for a single node or a single GPU (as shown in
Section 3). Therefore, although any e�ort on optimizing FFT kernels will be helpful, we prefer to target
an approach that uses the available existing kernels and adapts them to build a more general and scalable
3D FFT library.

ECP applications that require FFT-based solvers might su�er from the lack of fast and scalable 3D
FFT routines for distributed-heterogeneous parallel systems as the ones projected for the upcoming
exascale computing systems. Also, ECP applications may not be able to use existing FFT libraries
without application-speci�c adjustments and tuning. For that, one of the main key to succeed with
such project, is not only to study and analyze the current existing FFT libraries but also to study ECP
application needs, study their FFT implementation and provide them with a suitable modular high-
performance implementation that is �exible and easy to use and integrate in their framework. Therefore,
we initiated discussions with ECP applications, and in particular LAMMPS and HACC, got their current
FFT implementations and proceeded with a detailed analysis of each of its function calls. In this Chapter
we provide a summary of our investigation and the lessons learned. The libraries that we analyzed are
the FFTMPI and SWFFT that are used by the LAMMPS and HACC projects, respectively.

The main motivation and concept behind the development of both libraries is to provide �exibility
and control in the grid sizes, the number of processors, and in the data layout that real-life applications
need. Both libraries are based on the same concept and provide very similar �exibility needed by the
corresponding applications. Both take data in pencil or cubic distribution, then reshu�e the data to
perform the FFT and can deliver back the results either pencil or cubic distributions. Communication
can be chosen to be point to point or global. Thus, the code takes the input data and then �rst forms the
pencil data decomposition, a�er which a one-dimensional FFT is taken along the long dimension of the
pencil (see Figure 5.2). For convenience, the same distribution algorithm is employed to carry out the
remaining two transforms by redistributing the domain into pencils along those respective dimensions.

9

4.1. THE FFTMPI LIBRARY USED IN LAMMPS CHAPTER 4. FFT LIBRARIES IN ECP APPLICATIONS

At the end, redistribution is carried out to provide output as speci�ed.

4.1 The FFTMPI Library Used in LAMMPS

FFTMPI is a set of routines to perform 2D and 3D complex-to-complex Fast Fourier Transforms (FFTs)
e�ciently on parallel computers. FFTMPI has been mainly used by the LAMMPS ECP project [11]. The
routines in FFTMPI are designed for distributed-memory parallel machines and use MPI as their message-
passing protocol. Actually, the routines only perform the data movement tasks necessary to compute
multi-dimensional FFTs in parallel; the transforms themselves are computed by on-processor 1D FFT
routines provided by the numerical libraries of themachine vendor or the freely available FFTWpackage.
The data remapping routines can also be called directly by the user (independent of the FFTs) to change
the layout of the application’s 2D or 3D arrays across the processors available.

4.2 The SWFFT Library Used in HACC

SWFFT is the distributed 3D Fast Fourier transform (FFT) used in the HACC [6, 7] code and now available
as a separate library. HACC uses a high-order spectral algorithm to solve the Poisson equation resulting
from a density �eld sourced by a large number of tracer particles. Because HACC o�en runs at the
memory limits of the target system, reducingmemoryoverhead is a high priority for this ECPapplication,
as is good performance, and, obviously, scalability. SWFFT was designed to carry out large-scale FFTs
over a large number of MPI ranks. There are basically two standard strategies for parallelizing FFTs.
Slab-decomposed parallel FFTs which do not scalable to very large number of MPI ranks, and data
partitioning across a two-dimensional subgrid (“pencil” decomposition), which are better suited for a
large number of MPI ranks. SWFFT uses the later. SWFFT assumes that the data is available in a 3-D “cuboid”
domain decomposition and then uses a pencil-decomposition in order to carry out successive 1-D FFTs,
interleaved with global communication. The implementation has acceptable performance, lowmemory
overhead, interleaves communication and computation, and avoids potential communication deadlocks.

4.3 Performance and Analysis

We benchmarked both FFT libraries on distributed CPUs system, where each node consists of two socket
Intel Xeon E5-2650 v3 processors (Haswell). The goal was to study the weak and strong scaling and
provide an analysis of the current performance (e.g., if it is good enough, or if we can improve it), as well
as assess what are the expectations for the FFT-ECP library that we will be developing. We note that both
FFTMPI and SWFFT are CPU libraries and thus do not take advantage of GPUs. However, our proposed
FFT-ECP is going to be distributed CPUs and multi-GPU library.

We illustrate the scalability performance results when varying the grid size and the number of processors
in Figure 4.1 and Figure 4.2 for the FFTMPI library on 2D and 3D grids, respectively and on Figure 4.3
for the SWFFT library for 3D grid. We note that SWFFT does not have a 2D FFT and only uses FFTW3 as
backend for the 1D FFT computations.

From a �rst quick look into the scalability �gures (Figure 4.1, Figure 4.2 and Figure 4.3), we can see that
both libraries scale well on distributed CPU machines. The FFT algorithm is memory bound by itself
and also requires data communication that makes it also network bound.

A strong scalability analysis can be viewed as a vertical line on a particular size where we can see vertically
the speedup that is obtained when increasing the number of processors. For example, on Figure 4.2, the

10

4.3. PERFORMANCE AND ANALYSIS CHAPTER 4. FFT LIBRARIES IN ECP APPLICATIONS

right graph, if we look vertically on a grid of size 1K ⇥ 1K ⇥ 1K , we can �nd that using 40 MPI process,
the FFT run at 28 G�op/s and when using 80 MPI process, it got up to 52 G�op/s and then it can reach
100 G�op/s when using 160 MPI process. We can say that we obtained a nice good strong scalability.

However, based on these observations, on our experience developing HPC libraries and on our analysis
of the FFT algorithm on distributed memory machines, we can say that these current implementations
are bound by data movement (e.g., data copy and communication), and that the computation consists of
a small portion of the total time compared to the data movement.

Also, based on our theoretical model presented in Section 5.2, we can conclude that the obtained
performance are far from the theoretical upper bound which indirectly mean there might be room for
improvement on distributed memory CPU-based systems.

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
size per dimension

0

20

40

60

80

100

120

140

160

180

G
flo

ps

Scalability fftmpi using FFTW3 for 2D square grids

np=20
np=40
np=60
np=80
np=100
np=120
np=140
np=160
np=180

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
size per dimension

0

20

40

60

80

100

120

140

160

180

G
flo

ps

Scalability fftmpi using MKL for 2D square grids

np=20
np=40
np=60
np=80
np=100
np=120
np=140
np=160
np=180

Figure 4.1: Scalability of the FFTMPI implementation for 2D square grid when using di�erent number of
processors.

200 400 600 800 1000 1200 1400 1600 1800 2000
size per dimension

0

20

40

60

80

100

120

140

G
flo

ps

Scalability fftmpi using FFTW3 for 3D square grids

np=20
np=40
np=60
np=80
np=100
np=120
np=140
np=160
np=180

200 400 600 800 1000 1200 1400 1600 1800 2000
size per dimension

0

20

40

60

80

100

120

140

G
flo

ps

Scalability fftmpi using MKL for 3D square grids

np=20
np=40
np=60
np=80
np=100
np=120
np=140
np=160
np=180

Figure 4.2: Scalability of the FFTMPI implementation for 3D square grid when using di�erent number of
processors.

11

4.3. PERFORMANCE AND ANALYSIS CHAPTER 4. FFT LIBRARIES IN ECP APPLICATIONS

200 400 600 800 1000 1200 1400 1600 1800 2000
size per dimension

0

20

40

60

80

100

120

140

G
flo

ps

Scalability swfft using FFTW3 for 3D square grids

np=20
np=40
np=60
np=80
np=100
np=120
np=140
np=160
np=180

Figure 4.3: Scalability of the SWFFT implementation for 3D square grid when using di�erent number of
processors.

Table 4.1 illustrates the weak and strong scalability that SWFFT had obtained on Summit using only its CPUs
in runs by [2]. Summit has two IBM Power9 sockets (each socket having 22 cores with 4 hwthreads/core)
per node. Note that, if we take the strong scalability 3D FFT problem for N=576, and we run it on one
NVIDIA V100 GPU, we can achieve about 853 G�op/s, which is the equivalent to the 128 CPU nodes,
which also means 5,632 Power9 cores.

weak scalability strong scalability, N=576
Nodes N GFlop/s GFlop/s / node GFlop/s GFlop/s / node
2 576 17 8.5 16.8 8.4
4 720 35.6 8.9 32.8 8.2
8 936 71.2 8.9 71.2 8.6
16 1152 126.4 7.9 152 9.5
32 1440 268.8 8.4 288 9.0
64 1872 512 8.0 555 8.5
128 2304 1062 8.3 960 7.5

V100 853

Table 4.1: Weak and strong scalability of SWFFT on Summit using only its IBM CPU Power9 processors
(two per node); runs by [2]. Note that in the context of GPUs, one NVIDIA V100 GPU can solve the strong
scalability 3D FFT problem for N=576 at 853 GFlop/s, which is the equivalent of 128 CPU nodes.

In order to verify our analysis, we decided to dive into the FFT implementation and get a detailed
analysis of its computational and communication portions. For that we instrumented the code to
generate performance traces and we present in Figure 4.4 and Figure 4.5 these traces of the execution
time for the FFTMPI library. We show the timing of each function call on each MPI process for a run on
80 MPI processes for a 2D FFT of size 10K ⇥ 10K in the 2D-trace-run on Figure 4.4 and for a grid of
size 1K ⇥ 1K ⇥ 1K for the 3D-trace-run on Figure 4.5. As it can be seen from the �gures, a large portion

12

4.3. PERFORMANCE AND ANALYSIS CHAPTER 4. FFT LIBRARIES IN ECP APPLICATIONS

of the time is spent in the data movement (meaning local data copy within the same MPI process and
MPI communication between the MPI ranks – these are the blue and cyan colors, respectively), while a
small portion is spent in the 1D FFT computation (orange and yellow portion). This was expected from
our theoretical analysis and model of the scalability, as previously discussed and presented with further
details in Section 5.2.

Figure 4.4: Trace of 2D FFTMPI usingMKL on 80MPI process (Intel Xeon E5-2650 v3 processors Haswell)
for a 2D FFT on a 10K ⇥ 10K grid.

Figure 4.5: Trace of 3D FFTMPI usingMKL on 80MPI process (Intel Xeon E5-2650 v3 processors Haswell)
for a 3D FFT on a 1K ⇥ 1K ⇥ 1K grid.

In order to understand more deeply the issue, we decided to study the cost of each function call, thus
we instrumented the lowest level of the code and we generated the traces of the lowest function calls
for the same test case as of Figure 4.4 and Figure 4.5. The detailed traces are presented in Figure 4.6
and Figure 4.7. Each function is represented by a color, but we omit the detail of each function as this
will be considered low technical study. However, in the new trace we add the capability to di�erentiate
between the local data copy and the MPI communication function calls. For that, we show in bluish
color the functions related to local data copy, while we illustrate in purplish the MPI communication
functions. This observation correlates perfectly with our analysis and with our FFT-ECP project design
for a distributed FFT library where we highlight the fact that most of the e�ort need to be focused into
the design phase such as to optimize the data movement and try to overlap the data copy with the data
communication, which we believe will be the bottleneck of any distributed memory FFT library.

13

4.3. PERFORMANCE AND ANALYSIS CHAPTER 4. FFT LIBRARIES IN ECP APPLICATIONS

Figure 4.6: Trace of 2D FFTMPI usingMKL on 80MPI process (Intel Xeon E5-2650 v3 processors Haswell)
for a 2D FFT on a 10K ⇥ 10K grid.

Figure 4.7: Trace of 3D FFTMPI usingMKL on 80MPI process (Intel Xeon E5-2650 v3 processors Haswell)
for a 3D FFT on a 1K ⇥ 1K ⇥ 1K grid.

As a consequence, our FFT-ECP implementation design will be based on the theoretical model described
below, on this analysis, and on the benchmarking of MPI communication and memory bandwidth. We
will be developing di�erent technique of communications (e.g., point to point, global, global within a
sub communicator, asynchronous task based communications) The goal is to propose a design that can
overlap and hide the data copy and communication as well as computation while reaching the maximal
possible bandwidth which indirectly means reaching as high as possible to the theoretical performance
upper bound. Note that the �exibility in data input and data output is something highly desired by the
ECP apps and for that we are taking this �exibility into consideration for our FFT-ECP design.

14

CHAPTER 5

Framework Design for ECP-FFT

As discussed so far, the overall objective of the FFT-ECP project is to design and implement a fast
and robust 2-D and 3-D FFT library that targets large-scale heterogeneous systems with multi-core
processors and hardware accelerators and to do so as a co-design activity with other ECP application
developers.

Studying existing vendor and open source optimized FFT’s libraries, the FFT libraries that current ECP
applications use, as well as the ECP application needs in term of data input/output, FFT’s sizes, grid
�exibility and code portability helped us understand current performance and bottlenecks, as well as
current supported hardware and how these libraries are interoperable with each other. It also helped us
on the design process and led us draw the path of our development, as outlined in this section.

5.1 Interoperability of Vendor FFTs and FFTs in ECP Applications

Generally speaking, vendor libraries (like MKL FFT and NVIDIA cuFFT) and open source libraries (like
FFTW, FFTE) can interoperate with FFTs in ECP applications. However, there are challenges that have
brought the need to develop specialized FFTs libraries, like the FFTMPI and SWFFT in LAMMPS and HACC,
respectively. Some of these challanges are summarized and listed as follows:

• Open source libraries and vendor libraries have been mostly focused on nodal performance or
small clusters, and thus lacking in scalability on large-scale supercomputers;

• There is no support for GPUs in the state-of-the-art libraries for distributed systems, and thus no
portability/support for the up coming Exascale platforms;

• Application-speci�c input and output, e.g., arbitrary initial decompositions, is not supported
directly through standard FFT APIs;

• FFTMPI and SWFFT were speci�cally designed to target weak and strong scalability on CPU based

15

5.2. PERFORMANCE ANALYSIS AND MODEL CHAPTER 5. FRAMEWORK DESIGN FOR ECP-FFT

systems, to handle large and small problems, application-speci�c input and output, and reduced
memory requirements.

While there are challenges, as given above, both FFTMPI and SWFFTmanage to use FFTW or MKL for
their 1D FFTs. This is encouraging for the interoperability and especially for adding support for GPUs,
because cuFFT provides FFTW3 interfaces to the cuFFT library (see Section 7 in [14]).

Our next step (milestone) is the design and implementation phase of the FFT-ECP. Our �rst step in that
direction, which we are close to complete, is to use the FFTW3 interface of cuFFT to easily provide GPU
support for FFTMPI and SWFFT.

5.2 Performance Analysis andModel

We developed a performance model to evaluate how well FFTs perform and to guide our up-coming
development and optimization e�orts. A challenge in developing high-performance FFTs is that the FFT
computation does not have high computational intensity (that we de�ne as the Flops/Byte ratio). Indeed,
Table 5.1 shows the FFT’s computational intensity in contrast to the dense matrix-matrix multiplication
in double complex arithmetic (ZGEMM).

Operation GFlop/s GFlop/s Flops Bytes Flops/B
1 V100 GPU 6 V100 GPUs

Batch of B 1D FFTs 600 3,600 5 B N log2 N 16 B N 0.312 log2 N

ZGEMM 6900 41,400 6 N3 16 N2 (*4) 0.375 N (/4)

Table 5.1: Computational intensity in Flops/Byte for 1D FFTs (vs. GEMM) in double complex arithmetic.
Listed also are the achievable performances for the two operations in G�op/s on single V100 GPU and a
node of 6 V100 GPUs, as on the Summit supercomputer. The multiplication by 4 and division by 4 for
GEMM is to take into account that 3 matrices are read and one is written back to storage.

Knowing the Flops/B rate one can directly compute a roo�ine performance model based on the band-
width rate (e.g., in GB/s) that provides the data. For example, the performance PZGEMM for ZGEMM to
read 3 matrices and write back 1 in G�op/s is bounded by:

PZGEMM min

⇢
6900, GB/s

0.375 N

4

�
.

Thus, if we have a PCIe connection of 12 GB/s and want to compute the minimal N that reaches
asymptotic performance (of 6900 GFlop/s in this case), we solve

6900 = 12
0.375 N

4
, or N = 6, 133.

Thismeans, that if we havemanymatrices of sizeN = 6, 133 tomultiply, we can pipeline the computation
and communication so that communication is totally overlapped with computation, i.e., resulting in
an overall top performance of 6900 GFlop/s. This is the basis of blocking in dense linear algebra and
�nding the smallest blocking size that still gives peak performance.

Similarly, we derive that the performance PFFT for a batch of 1D FFTs is bounded by:

PFFT min

⇢
600, GB/s

0.312 log2N

2

�
.

16

5.2. PERFORMANCE ANALYSIS AND MODEL CHAPTER 5. FRAMEWORK DESIGN FOR ECP-FFT

Here we divide by 2 to take into account of once reading the vectors and writing the results back. Note
that here N will be unrealistically high in order to make performance bounded by 600. In other words,
the intensity of the computation does not grow fast enough in order to apply some blocking techniques
like in the dense linear algebra case. In conclusion, performance is always memory bound:

PFFT GB/s

0.312 log2N

2
.

Thus, nodal performance in an In�nibend 100Gb cluster (12.5 GB/s bandwidth, or 25 GB/s for the
bidirectional communications in FFT) with N = 2, 000 (as in Figure 3.6) will be limited by

25 ⇤ 0.312 ⇤ 11/2 = 42.9 G�op/s.

Similarly, nodal performance in Summit, featuring nodal bandwidth of 50 GB/s through Dual Rail
EDR-IB, will be limited by

PFFT 50
0.312 log2N

2
= 7.8 log2N.

For example, if N = 10, 000, nodal performacne will be bound by 104 G�op/s, as also mentioned in
Section 3.3. This means that further optimizations for the nodal FFTs will have limited e�ect on the
overall performance, since 104 GFlop/s will be the maximum that can be extracted from the node (while
currently we can achieve much more – 600 G�op/s from just one GPU). Still, current FFT results on
Summit show scalability of ⇡ 9 G�op/s per node, does leaving a potential for 10⇥ acceleration while still
leaving GPU resources for other computations, as typically needed in applications [2].

To reach close to the roo�ine performance peak for the model presented, �ops must be overlapped with
the communication. Communication alone usually is the larger fraction of the entire computation, as
also illustrated and quanti�ed for some of the runs shown in Section 4. Figure 5.1 shows another example
for time needed for communication vs. time for computation. In this example NVLINKmarks the time

0"

20"

40"

60"

80"

100"

120"

10
00
"

30
00
"

50
00
"

70
00
"

90
00
"

11
00
0"

13
00
0"

15
00
0"

NVLink"data"

2D"using"1D"
cuFFT"

Ti
m

e
(m

s)

Matrix size (N x N)

Figure 5.1: Time for 2D FFT using 1D cuFFTs on NVIDIA V100 GPU. The NVLINK shows the time
to receive and send the data for the computation through a 32 GB/s connection. Computation and
communication can be overlapped by pipelining the work on the 1D vectors, in which case the total
computation time is given by the NVLINK curve, otherwise is the sum of the two curves (i.e., about twice
slower in this case).

to receive and send the data for the local GPU computation through 32 GB/s connection. If the receiving
and sending of the 1D vectors is pipelined, the NVLINK curve gives the total time, otherwise the total
execution time is about twice as long, at least for the speci�cs in this ilustration.

17

5.3. FRAMEWORK DESIGN HIGHLIGHT CHAPTER 5. FRAMEWORK DESIGN FOR ECP-FFT

5.3 Framework Design Highlight

The main components needed for the FFT-ECP design framework are illustrated in Figure 5.2. The
�rst and last step address the need for �exible FFT API to take application speci�c input and output
(bricks/pencils), including arbitrary initial decompositions. The approach that we will persue for this
step is to start from the current FFTMPI and SWFFT implementations and to extend them by providing
e�cient GPU support for their main communication primitives. This includes loading from and storing

Figure 5.2: An overall 3DFFTcomputational pipeline: 1) Need�exible FFTAPI to take application speci�c
input and output (bricks/pencils/etc., shown on the le� and on right); 2) Need e�cient packing/unpacking
(on a node) and MPI communication routines (shown in the middle); 3) Need e�cient 1D (or 2D in some
cases) FFTs on the node (shown in the middle).

to arbitrary tiling of a 3D domain, data transformations from brick-to-pencil, pencil-to-brick, and
pencil-to-pencil. Local packing and unpacking kernels would be accelerated leveraging GPUs’ high
bendwidth and e�cient GPU transposition kernels that are already available in MAGMA [20].

Most of the e�ort for the next phase need to be focused on optimizing the data movement and try
to overlap the data copy with the data communication, which we believe will be the bottleneck of
any distributed memory FFT library, as illustrated in our performance analysis and model. While
computation will be much smaller fraction of the entire execution and we can do it very e�ciently on
GPUs, as illustrated, we will explore ways to pipeline communications and computations in order to
largely overlap all computations with the communications.

Finally, providing all versions along with their parameterizations and di�erent optimization techniques,
as highlighted throughout the report, will inevitably create a tuning challenge. We have extensive exper-
tize and well proven track record in the development and use of autotuning techniques for important
GPU kernels [1, 10, 12]. The FFT-ECP so�ware will be linked to our autotuning tools, which combined
with our kernels designs and use of various state-of-the-art building blocks will provide performance
portability, so�ware interoperability, and sustainability.

18

CHAPTER 6

Conclusions

In this milestone, we developed benchmarks and so�ware tools to assess current FFT capabilities and
gaps, needed by FFT users in many FFT application areas outside ECP. We also evaluated the current
performance of FFT libraries and proposed a design framework for the FFT-ECP project. Speci�cally,
this milestone delivered on the following sub-tasks:

• Evaluation and benchmarking of current/existing FFT libraries from open-source developers and
vendors;

• Evaluation and benchmarking of the FFT code used in other ECP applications, including: LAMMPS
and HACC;

• Study the interoperability between current vendor FFT libraries and the existing FFT library used
in ECP applications, particularly for use in heterogeneous nodes with many accelerators;

• Propose a framework design for FFT-ECP and investigation for possible integration and/or use
of vendor- developed or open-source FFT codes with our 2-D and 3-D FFT-ECP framework that
emphasizes multi-GPU nodes;

• Analysis of the communication/computation cost andmemory overhead for di�erent FFT variants
and provide a study of the behavior on current and future architectures with distributed and
heterogeneous multi-GPU nodes.

19

Acknowledgments

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a
collaborative e�ort of two DOE organizations (the O�ce of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable exascale ecosystem, including
so�ware, applications, hardware, advanced system engineering, and early testbed platforms, in support
of the nation’s exascale computing imperative.

20

Bibliography

[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Performance, Design,
and Autotuning of Batched GEMM for GPUs. In High Performance Computing - 31st International
Conference, ISC High Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings, pages 21–
38, 2016. doi: 10.1007/978-3-319-41321-1 2.

[2] JD Emberson, N. Frontiere, S. Habib, K. Heitmann, A. Pope, and E. Rangel. Arrival of First Summit
Nodes: HACC Testing on Phase I System. Technical Report MS ECP-ADSE01-40/ExaSky, Exascale
Computing Project (ECP), 2018.

[3] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and Platform
Adaptation”.

[4] Amir Gholami, Judith Hill, Dhairya Malhotra, and George Biros. Acc�: A library for distributed-
memory FFT on CPU and GPU architectures. CoRR, abs/1506.07933, 2015. URL http://arxiv.org/
abs/1506.07933.

[5] Jens Henrik Göbbert, Hristo Iliev, Cedrick Ansorge, and Heinz Pitsch. Overlapping of commu-
nication and computation in nb3d� for 3d fast fourier transformations. In Edoardo Di Napoli,
Marc-André Hermanns, Hristo Iliev, Andreas Lintermann, and Alexander Peyser, editors, High-
Performance Scienti�c Computing, pages 151–159, Cham, 2017. Springer International Publishing. ISBN
978-3-319-53862-4.

[6] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, and Katrin Heitmann.
Hacc: Extreme scaling and performance across diverse architectures. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, pages
6:1–6:10, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2378-9. doi: 10.1145/2503210.2504566.
URL http://doi.acm.org/10.1145/2503210.2504566.

[7] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, Katrin Heitmann,
Kalyan Kumaran, Venkatram Vishwanath, Tom Peterka, Joe Insley, David Daniel, Patricia Fasel, and
Zarija Lukić. Hacc: Extreme scaling and performance across diverse architectures. Commun. ACM,
60(1):97–104, December 2016. ISSN 0001-0782. doi: 10.1145/3015569. URL http://doi.acm.org/10.
1145/3015569.

21

http://arxiv.org/abs/1506.07933
http://arxiv.org/abs/1506.07933
http://doi.acm.org/10.1145/2503210.2504566
http://doi.acm.org/10.1145/3015569
http://doi.acm.org/10.1145/3015569

BIBLIOGRAPHY BIBLIOGRAPHY

[8] M. Heroux, J. Carter, R. Thakur, J. Vetter, L. McInnes, J. Ahrens, and J. Neely. Ecp so�-
ware technology capability assessment report. Technical Report ECP-RPT-ST-0001-2018,
DOE Exascale Computing Project (ECP), July, 2018. URL https://www.exascaleproject.org/
ecp-software-technology-st-capability-assessment-report-car/.

[9] Intel. Intel Math Kernel Library. http://so�ware.intel.com/en-us/articles/intel-mkl/. URL https:
//software.intel.com/en-us/mkl/features/↵t.

[10] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. Autotuning GEMM kernels for the Fermi GPU.
IEEE Transactions on Parallel and Distributed Systems, 23(11):2045–2057, November 2012.

[11] Large-scale Atomic/MolecularMassivelyParallel Simulator. Large-scale atomic/molecularmassively
parallel simulator, 2018. Available at https://lammps.sandia.gov/.

[12] Y. Li, J. Dongarra, and S. Tomov. A note on auto-tuning GEMM for GPUs. In Proceedings of the
2009 International Conference on Computational Science, ICCS’09, Baton Roube, LA, May 25-27 2009.
Springer.

[13] Lucien Ng, Kwai Wong, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Magmadnn � high-
performance data analytics for manycore gpus and cpus, December 2017. URL http://icl.cs.utk.edu/
magma/software/. Magma-DNN, 2017 Summer Research Experiences for Undergraduate (REU),
Knoxville, TN.

[14] CUDANvidia. Cu� library, 2018.

[15] D. Pekurovsky. P3d�: A framework for parallel computations of fourier transforms in three
dimensions. SIAM Journal on Scienti�c Computing, 34(4):C192–C209, 2012. doi: 10.1137/11082748X.
URL https://doi.org/10.1137/11082748X.

[16] Steven Plimpton, Axel Kohlmeyer, Paul Co�man, and Phil Blood. �mpi, a library for performing
2d and 3d �s in parallel. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States), 2018.

[17] Thom Popovici, Tze-Meng Low, and Franz Franchetti. Large bandwidth-e�cient FFTs onmulticore
and multi-socket systems. In IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2018.

[18] DF Richards, O Aziz, Jeanine Cook, Hal Finkel, et al. Quantitative performance assessment of proxy
apps and parents. Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), 2018.

[19] Daisuke Takahashi. F�e: A fast fourier transform package. http://www.�e. jp/, 2005.

[20] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid
gpu accelerated manycore systems. Parellel Comput. Syst. Appl., 36(5-6):232–240, 2010.
DOI: 10.1016/j.parco.2009.12.005.

[21] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra solvers for multicore with GPU
accelerators. In Proc. of the IEEE IPDPS’10, pages 1–8, Atlanta, GA, April 19-23 2010. IEEE Computer
Society. DOI: 10.1109/IPDPSW.2010.5470941.

22

https://www.exascaleproject.org/ecp-software-technology-st-capability-assessment-report-car/
https://www.exascaleproject.org/ecp-software-technology-st-capability-assessment-report-car/
https://software.intel.com/en-us/mkl/features/fft
https://software.intel.com/en-us/mkl/features/fft
https://lammps.sandia.gov/
http://icl.cs.utk.edu/magma/software/
http://icl.cs.utk.edu/magma/software/
https://doi.org/10.1137/11082748X
http://dx.doi.org/10.1016/j.parco.2009.12.005

	Executive Summary
	Background
	Evaluation and Benchmarking of State-of-the-art FFT Libraries
	FFTs on single node multicore processors
	FFT building blocks for GPUs
	FFTs for distributed memory systems

	FFT Libraries in ECP Applications
	The FFTMPI Library Used in LAMMPS
	The SWFFT Library Used in HACC
	Performance and Analysis

	Framework Design for ECP-FFT
	Interoperability of Vendor FFTs and FFTs in ECP Applications
	Performance Analysis and Model
	Framework Design Highlight

	Conclusions
	 Acknowledgments
	 Bibliography

