
8

Linear Systems Performance Report

Jakub Kurzak
Mark Gates
Ichitaro Yamazaki
Ali Charara
Asim YarKhan
Jamie Finney
Gerald Ragghianti
Piotr Luszczek
Jack Dongarra

Innovative Computing Laboratory

October 1, 2018

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear
Security Administration) responsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering and early testbed platforms,
in support of the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes
09-2018 first publication

@techreport{kurzak2018linear,
author={Kurzak, Jakub and Gates, Mark and Yamazaki, Ichitaro and

Charara, Ali and YarKhan, Asim and Finney, Jamie and
Ragghianti, Gerald and Luszczek, Piotr and Dongarra, Jack},

title={{SLATE} Working Note 8: Linear Systems Performance Report},
institution={Innovative Computing Laboratory, University of Tennessee},
year={2018},
month={September},
number={ICL-UT-XX-XX},
note={revision 09-2018}

}

i

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1

2 Implementation 2
2.1 Parallelization . 3

2.1.1 LLT . 3
2.1.2 LU . 4
2.1.3 LDLT . 5

3 Experiments 6
3.1 Environment . 6
3.2 Performance . 7

3.2.1 LLT . 7
3.2.2 LU . 7
3.2.3 LDLT . 8

4 Summary 9

Bibliography 10

Appendices 12

A Function Signatures 13

B Implementation Snippets 15

ii

C MPI Thread Safety Considerations 17
C.1 MPI Implementations . 17
C.2 Multithreading Tests . 18
C.3 Testing Methodology . 18

iii

List of Figures

2.1 Cholesky factorization with lookahead of one. 3
2.2 LU factorization with lookahead of one. 4
2.3 Left-looking tiled Aasen’s algorithm. 5

3.1 Performance of dpotrf. 7
3.2 Performance of dgetrf. 8
3.3 Performance of dsytrf. 8

iv

List of Tables

C.1 MPI thread safety testing results. 19

v

CHAPTER 1

Introduction

So�ware for Linear Algebra Targeting Exascale (SLATE) 1 [1] is being developed as part of the
Exascale Computing Project (ECP) 2, which is a collaborative e�ort between two US Depart-
ment of Energy (DOE) organizations, the O�ce of Science and the National Nuclear Security
Administration (NNSA). The purpose of SLATE is to serve as a replacement for ScaLAPACK for
the upcoming pre-exascale and exascale DOE machines. SLATE will accomplish this objective
by leveraging recent progress in parallel programming models and by strongly focusing on
supporting hardware accelerators.

This report focuses on the set of SLATE routines that solve linear systems of equations. Speci�-
cally, initial performance numbers are reported, alongside ScaLAPACK performance numbers,
on the SummitDev machine at the Oak Ridge Leadership Computing Facility (OLCF). More
details about the design of the SLATE so�ware infrastructure can be found in the report by
Kurzak et al. [1].

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1

http://icl.utk.edu/slate/
https://www.exascaleproject.org

CHAPTER 2

Implementation

The principles of the SLATE so�ware framework were laid out in SLATE Working Note 3 1 [1].
SLATE’s design relies on the following principles:

• The matrix is represented as a set of individual tiles with no constraints on their locations
in memory with respect to one another. Any tile can reside anywhere in memory and
have any stride. Notably, a SLATE matrix can be created from a LAPACK matrix or a
ScaLAPACK matrix without making a copy of the data.

• Node-level scheduling relies on nested Open Multi Processing (OpenMP) tasking, with the
top level responsible for resolving data dependencies and the bottom level responsible for
deploying large numbers of independent tasks to multi-core processors and accelerator
devices.

• Batch BLAS is used extensively for maximum node-level performance. Most routines
spend the majority of their execution in the call to batch gemm.

• The Message Passing Interface (MPI) is used for message passing with emphasis on collec-
tive communication, with the majority of communication being cast as broadcasts.

Also, the use of a runtime scheduling system, such as the Parallel Runtime Scheduling and
Execution Controller (PaRSEC) 2 [2] or Legion 3,4 [3], is currently under investigation.

1http://www.icl.utk.edu/publications/swan-003
2http://icl.utk.edu/parsec/
3http://legion.stanford.edu
4 http://www.lanl.gov/projects/programming-models/legion.php

2

http://www.icl.utk.edu/publications/swan-003
http://icl.utk.edu/parsec/
http://legion.stanford.edu
http://www.lanl.gov/projects/programming-models/legion.php

2.1. PARALLELIZATION CHAPTER 2. IMPLEMENTATION

2.1 Parallelization

SLATE linear solvers are marked by much higher complexity than (Sca)LAPACK due to a totally
di�erent representation of the matrix. Consider the following factors:

• SLATE matrix is a “loose” collection of tiles, i.e., there are no constraints on the memory
location of any tile with respect to the other tiles. Notably, however, a ScaLAPACK matrix
can still be mapped to a SLATE matrix without making a copy of the data.

• SLATE matrix can be partitioned to distributed memory nodes in any possible way, i.e.,
no assumptions are made about the placement of any tiles with respect to the other tiles.
The same applies to the partitioning of tiles within each node to multiple accelerators.

• In principle, SLATE can support non-uniform tile sizes within the same matrix, although
this mode of operation has not been well tested, as currently supporting the standard 2D
block cyclic partitioning, for compatilibity with ScaLAPACK, is the top priority.

The following subsections describe the current set of linear solvers in SLATE, in the order of
increasing implementation complexity: LLT, LU, and LDLT.

2.1.1 LLT

SLATE provides routines for solving linear systems of equations, where the coe�cient ma-
trix is symmetric (Hermitian) positive de�nite. These routines compute the factorization
A = LLT (A = LLH) using the Cholesky decomposition, and follow with the steps of forward
and backward substitution. The routines are mathematically equivalent to their ScaLAPACK
counterparts [4].

Figure 2.1: Cholesky factorization
with lookahead of one.

Figure 2.1 shows the basic mechanics of the Cholesky fac-
torization in SLATE. Like most routines in SLATE, the im-
plementation relies on nested tasking using the OpenMP
standard, with the top level responsible for scheduling a
small number of coarse grained, inter-dependent tasks, and
the nested level responsible for dispatching large numbers
of �ne grained, independent tasks. In the case of GPU accel-
eration, the nested level is implemented using calls to batch
BLAS routines, to exploit the e�ciency of processing large
numbers of tiles in one call to a GPU kernel.

The Cholesky factorization in SLATE applies the technique
of lookahead, where one or more columns, immediately fol-
lowing the panel, are prioritized for faster processing, to al-
low for speedier advancement along the critical path. Looka-
head provides large performance improvements, as it allows
for overlapping the panel factorization, which is usually in-
e�cient, with updating of the trailing submatrix, which is
usually very e�cient and can be GPU accelerated. Usually,
the lookahead of one results in a large performance gain,
while bigger values deliver diminishing returns.

3

2.1. PARALLELIZATION CHAPTER 2. IMPLEMENTATION

2.1.2 LU

SLATE provides routines for solving linear systems of equations, where the coe�cient matrix is
a general (nonsymmetric) matrix. These routines compute the factorization PA = LU using the
process of Gaussian elimination with partial (row) pivoting, and follow with the steps of forward
and backward substitution. The routines are mathematically equivalent to their ScaLAPACK
counterparts [4].

Figure 2.2: LU factorization with
lookahead of one.

Figure 2.2 shows the basic mechanics of the LU factorization
in SLATE. While the parallelization is based on the same
principles as the Cholesky factorization, the implementa-
tion is signi�cantly more challenging, due to the application
of row pivoting. The primary consequence of row pivoting is
a fairly complex, and heavily synchronous, panel factoriza-
tion procedure. The secondary e�ect is the communication
overhead of swapping rows to the le� and to the right of the
panel. Further complication is introduced by GPU accelera-
tion, which requires layout translation, as the row swapping
operation is extremely ine�cient in column major.

The critical component of the LU factorization is the step of
factoring the panel, which in SLATE is an arbitrary selection
of tiles from one column of the matrix. This operation is on
the critical path of the algorithms and has to be optimized
to the maximum. Resorting to a simple, memory-bound
implementation, could have profound consequences for
performance. The current implementation of the LU panel
factorization in SLATE derives from the technique of Paral-
lel Cache Assignment (PCA) by Castaldo et al. [5], and the work
on parallel panel factorization by Dongarra et al. [6].

The LU panel factorization in SLATE relies on internal blocking and persistent assignment of
tiles to threads within each MPI process. Unlike past implementations, it is not recursive, as
plain recursion proved inferior to blocking. Memory residency provides some level of cache
reuse, while blocking provides some level of compute intensity. The resulting implementation
is no longer memory bound, and scales well with the number of processes and the number of
threads in each process. The procedure is heavily synchronous and relies on MPI collective
communication, to exchange pivot information, and on thread barriers for intra-node synchro-
nization. An MPI sub-communicator is created for each set of processes participating in each
panel factorization.

Finally, the LU factorization in SLATE introduces the complication of multiple OpenMP
tasks issuing, possibly concurrently, independent communications. Speci�cally, the collective
communication of the panel factorization may coincide with sends and receives of multiple
simultaneous row swaps. This requires that the underlaying MPI implementation is thread
safe, and supports the MPI_THREAD_MULTIPLE mode, i.e., multiple threads simultaneously issuing
MPI communications (further discussed in Appendix C). It also requires that the di�erent
communications be distinguished by di�erent MPI tags.

4

2.1. PARALLELIZATION CHAPTER 2. IMPLEMENTATION

2.1.3 LDLT

SLATE provides routines for solving linear systems of equations, where the coe�cient matrix
is symmetric (Hermitian) inde�nite, based on a two-stage decomposition of the matrix. The
�rst stage uses the tiled Aasen’s algorithm [7] to compute the factorization PAP T = LDLT

(PAPH = LDLH) where D is a symmetric band matrix (with the bandwidth equal to the tile
size). The second stage then computes the LU factorization of the band matrix with partial (row)
pivoting. The solution is then computed by the forward and backward substitutions. ScaLAPACK
currently does not provide a symmetric inde�nite solver, but our solver is mathematically
equivalent to the LAPACK and PLASMA counterparts for shared memory CPUs [8, 9]. Our
current SLATE distributed memory implementation extends the OpenMP implementation of
PLASMA.

(a) Le�-looking update & LU panel

(b) Symmetric pivoting.

Figure 2.3: Le�-looking tiled
Aasen’s algorithm.

The three main phases of the Aasen’s algorithm are: 1) the
le�-looking block update of the panel, 2) the LU factoriza-
tion of the panel, and 3) the symmetric pivoting of the trail-
ing submatrix, each of which presents challenges in term of
parallel scalability. In addition, each of these phases cannot
be overlapped with other main computational tasks. Hence,
the parallelism needs to be exploited within each phase. For
instance, at the �rst phase, the right-looking algorithm can
update multiple tiles of the panel in parallel, but the gemm op-
erations in the same row update the same tile of the panel,
and they have the write con�ict. In our implementation,
each of the processes locally computes the partial updates,
which are then accumulated into the panel using a single
all-reduce operation. Though workspace may be used to
further increase the scalability of the le�-looking algorithm,
compared with the right-looking algorithm, each process
has a limitted thread parallelism to exploit (limited by the
number of local block rows).

At the second phase, the panel is factorized using the LU
panel factorization routine from Section 2.1.2. Unfortu-
nately, the task dependencies of the Aasen’s algorithm pre-
vents us from overlapping the panel factorization with other
computational tasks. Hence, during the panel factorization,
the parallelism is limited by the number of tiles in the panel.
Finally, compared with the partial pivoting, the symmetric
pivoting introduces signi�cantly more irregular data com-
munication patterns (e.g., when the lower triangular part of
the matrix is stored, the columns in the upper triangular
part are stored as the transpose of the corresponding rows
in the lower triangular part).

For computing the LU factorization of the band matrix at the second stage of the factorization,
we extended the LU factorization of Section 2.1.2 such that only the operations with non-empty
blocks are computed.

5

CHAPTER 3

Experiments

3.1 Environment

Performance numbers were collected using the SummitDev system 1 at the OLCF, which is
intended to mimic the OLCF’s next supercomputer, Summit. SummitDev is based on IBM
POWER8 processors and NVIDIA P100 (Pascal) accelerators, and is one generation behind
Summit, which will be based on IBM POWER9 processors and NVIDIA V100 (Volta) accelerators.

The SummitDev system contains three racks, each with eighteen IBM POWER8 S822LC nodes,
for a total of ��y-four nodes. Each node contains two POWER8 CPUs, ten cores each, and four
P100 GPUs. Each node has 256 GB of DDR4 memory. Each GPU has 16 GB of HBM2 memory.
The GPUs are connected by NVLink 1.0 at 80 GB/s. The nodes are connected with a fat-tree
enhanced data rate (EDR) In�niBand.

The so�ware environment used for the experiments included GNU Compiler Collection
(GCC) 7.1.0, CUDA 9.0.69, Engineering Scienti�c Subroutine Library (ESSL) 5.5.0, Spec-
trum MPI 10.1.0.4, Netlib LAPACK 3.6.1, and Netlib ScaLAPACK 2.0.2—i.e., the output of
module list included:

gcc /7.1.0
cuda /9.0.69
essl /5.5.0 -20161110
spectrum -mpi /10.1.0.4 -20170915
netlib -lapack /3.6.1
netlib -scalapack /2.0.2

1https://www.olcf.ornl.gov/kb articles/summitdev-quickstart/

6

https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/

3.2. PERFORMANCE CHAPTER 3. EXPERIMENTS

3.2 Performance

All runs were performed using sixteen nodes of the SummitDev system, which provides
16 nodes × 2 sockets × 10 cores = 320 IBM POWER8 cores and 16 nodes × 4 devices = 64
NVIDIA P100 accelerators. SLATE was run with one process per node, while ScaLAPACK
was run with one process per core, which is still the prevailing method of getting the best
performance from ScaLAPACK. Only rudimentary performance tuning was done in both cases.

3.2.1 LLT

Figure 3.2 shows the performance of the Cholesky factorization. The Cholesky factorization
in SLATE delivers very good performance. SLATE implementation delivers better CPU per-
formance than ScaLAPACK and the GPU acceleration provides further improvement by an
order of magnitude. This is thanks to the factorization being a fairly simple workload with no
complex operations and with straightforward communication patterns.

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

SIZE

0 20000 40000 60000 80000 100000

SLATE
ScaLAPACK

LLT factorization for symmetric positive definite matrices (dpotrf)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

10000

20000

30000

40000

50000

60000

70000

SIZE

0 100000 200000 300000 400000 500000

SLATE
ScaLAPACK

LLT factorization for symmetric positive definite matrices (dpotrf)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.1: Performance of dpotrf without acceleration (le�) and with acceleration (right).

3.2.2 LU

Figure 3.2 shows the performance of the LU factorization. At this point, SLATE implementation
delivers lower CPU performance than ScaLAPACK, and acceleration provides only moderate
advantage, This is despite employing state-of-the-art solutions, such as the multithreaded and
cache-e�cient panel factorization and the technique of lookahead. Judging from the traces,
the main reason seems to be the cost of swapping rows in the process of pivoting. This will
require further investigation, both into the inner workings of SLATE and the mechanics of the
underlaying MPI implementations.

7

3.2. PERFORMANCE CHAPTER 3. EXPERIMENTS

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

SIZE

0 20000 40000 60000 80000 100000

SLATE
ScaLAPACK

LU factorization for general matrices (dgetrf)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

2000

4000

6000

8000

10000

12000

SIZE

0 50000 100000 150000 200000 250000 300000

SLATE
ScaLAPACK

LU factorization for general matrices (dgetrf)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.2: Performance of dgetrf without acceleration (le�) and with acceleration (right).

3.2.3 LDLT

Figure 3.3 shows the performance of the Aasen’s LDLT factorization. Since ScaLAPACK does
not provide a symmetric inde�nite factorization, there is no ScaLAPACK performance cuver
here. Also, the GPU performance line is missing, as the algorithm turned out to be un�t for
acceleration.

GF
LO

PS

0

100

200

300

400

500

600

SIZE

0 20000 40000 60000 80000 100000

SLATE

LDLT factorization for symmetric indefinite matrices (dsytrf)
8 nodes × 2 sockets × 10 cores = 160 cores (IBM POWER8)

Figure 3.3: Performance of dsytrf without ac-
celeration.

Despite its communication avoiding proper-
ties [7], the Aasen’s algorithm turned out to
be ill suited for a distributed memory imple-
mentation and basically impossible to GPU ac-
celerate. Because of symmetric pivoting, the
Aasen’s algorithm is inherently le�-looking.
This makes it harder to implement the main
gemm operation, and makes it impossible to
overlap the panel factorization with other
parts of the algorithm. Finally, swapping both
rows and columns, in the course of symmetric
pivoting, is fairly complex and ine�cient, and
ultimately prevents GPU acceleration, as rows
can only be swapped e�ciently in row-major
and columns in column-major. Swapping row
in column-major or columns in row-major
creates the worst possible memory access pat-
tern, ultimately nullifying any potential gains
from GPU acceleration.

An alternative to the Aasen’s LDLT algorithms is clearly needed, to solve symmetric inde�nite
problems at large scale and with GPU acceleration. One viable option may be the solver
proposed by Becker and Baboulin [10, 11], which avoids pivoting by applying random butter�y
transformations (RBT) and iterative re�nement.

8

CHAPTER 4

Summary

9

Bibliography

[1] Jakub Kurzak, Panruo Wu, Mark Gates, Ichitaro Yamazaki, Piotr Luszczek, Gerald Ragghi-
anti, and Jack Dongarra. SLATE working note 3: Designing SLATE: So�ware for linear
algebra targeting exascale. Technical Report ICL-UT-17-06, Innovative Computing Labo-
ratory, University of Tennessee, September 2017. revision 09-2017.

[2] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Hérault,
and Jack J Dongarra. PaRSEC: Exploiting heterogeneity to enhance scalability. Computing
in Science & Engineering, 15(6):36–45, 2013.

[3] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing locality
and independence with logical regions. In Proceedings of the international conference on high
performance computing, networking, storage and analysis, page 66. IEEE Computer Society
Press, 2012.

[4] Jaeyoung Choi, Jack Dongarra, Susan Ostrouchov, Antoine Petitet, David Walker, and
Clint Whaley. Design and implementation of the ScaLAPACK LU, QR, and Cholesky
factorization routines. Scienti�c Programming, 5(3):173–184, 1996.

[5] Anthony Castaldo and Clint Whaley. Scaling LAPACK panel operations using parallel cache
assignment. In ACM Sigplan Notices, volume 45, pages 223–232. ACM, 2010.

[6] Jack Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek. Achieving numerical
accuracy and high performance using recursive tile LU factorization with partial pivoting.
Concurrency and Computation: Practice and Experience, 26(7):1408–1431, 2014.

[7] Grey Ballard, Dulceneia Becker, James Demmel, Jack Dongarra, Alex Druinsky, Inon
Peled, Oded Schwartz, Sivan Toledo, and Ichitaro Yamazaki. Communication-avoiding
symmetric-inde�nite factorization. SIAM Journal on Matrix Analysis and Applications, 35(4):
1364–1406, 2014.

10

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Ichitaro Yamazaki and Jack Dongarra. LAPACK working note 294: Aasen’s symmetric
inde�nite linear solvers in LAPACK. Technical Report ICL-UT-17-13, Innovative Computing
Laboratory, University of Tennessee, Decembter 2017.

[9] Ichitaro Yamazaki, Jakub Kurzak, Panruo Wu, Mawussi Zounon, and Jack Dongarra. Sym-
metric inde�nite linear solver using OpenMP task on multicore architecture. IEEE Trans-
actions on Parallel and Distributed Systems, 2018.

[10] Dulceneia Becker, Marc Baboulin, and Jack Dongarra. Reducing the amount of pivoting in
symmetric inde�nite systems. In International Conference on Parallel Processing and Applied
Mathematics, pages 133–142. Springer, 2011.

[11] Marc Baboulin, Dulceneia Becker, and Jack Dongarra. A parallel tiled solver for dense
symmetric inde�nite systems on multicore architectures. In Parallel & Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International, pages 14–24. IEEE, 2012.

[12] Rajeev Thakur and William Gropp. Test suite for evaluating performance of multithreaded
MPI communication. Parallel Computing, 35(12):608–617, 2009.

11

Appendices

12

APPENDIX A

Function Signatures

SLATE follows the (Sca)LAPACK convention of allowing to factor the coe�cient matrix once,
and applying the factorization multiple times to di�erent sets of right-hand side vectors. Same
as (Sca)LAPACK, SLATE provides three routines for each linear solver:

• a [po|ge|he]sv routine that factors the coe�cient matrix and applies the forward and
backward substitution to solve the system of linear equations,

• a [po|ge|he]trf routine that only factors the coe�cient matrix, and requires a follow up
call to the [po|ge|he]trs routine,

• a [po|ge|he]trs routine that only applies the forward and backward substitution, using a
previously factored matrix.

The signatures of the functions for solving symmetric positive de�nite systems of equations,
using the Cholesky factorization, are as follows:

template <typename scalar_t >
void posv(HermitianMatrix <scalar_t >& A,

Matrix <scalar_t >& B,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void potrf(HermitianMatrix <scalar_t >& A,

const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void potrs(HermitianMatrix <scalar_t >& A,

Matrix <scalar_t >& B,
const std::map <Option , Value >& opts = std::map <Option , Value >());

13

APPENDIX A. FUNCTION SIGNATURES

The signatures of the functions for solving general (nonsymmetric) systems of equations, using
Gaussian elimination with partial pivoting, are as follows:

template <typename scalar_t >
void gesv(Matrix <scalar_t >& A, Pivots& pivots ,

Matrix <scalar_t >& B,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void getrf(Matrix <scalar_t >& A, Pivots& pivots ,

const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void getrs(Matrix <scalar_t >& A, Pivots& pivots ,

Matrix <scalar_t >& B,
const std::map <Option , Value >& opts = std::map <Option , Value >());

The signatures of the functions for solving symmetric inde�nite systems of equations, using
Aasen’s LDLT factorizatin, are as follows:

template <typename scalar_t >
void hesv(HermitianMatrix <scalar_t >& A, Pivots& pivots ,

BandMatrix <scalar_t >& T, Pivots& pivots2 ,
Matrix <scalar_t >& B,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void hetrf(HermitianMatrix <scalar_t >& A, Pivots& pivots ,

BandMatrix <scalar_t >& T, Pivots& pivots2 ,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void hetrs(HermitianMatrix <scalar_t >& A, Pivots& pivots ,

BandMatrix <scalar_t >& T, Pivots& pivots2 ,
Matrix <scalar_t >& B,
const std::map <Option , Value >& opts = std::map <Option , Value >());

The Aasen’s LDLT algorithm requires the solution of a general band system of linear equations,
using the band rendition of the Gaussian elimination with partial pivoting. Since a standalone
band solver is a useful tool, the following routines were also made available to the users:

template <typename scalar_t >
void gbsv(BandMatrix <scalar_t >& A, Pivots& pivots ,

Matrix <scalar_t >& B,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void gbtrf(BandMatrix <scalar_t >& A, Pivots& pivots ,

const std::map <Option , Value >& opts = std::map <Option , Value >());

template <typename scalar_t >
void gbtrs(BandMatrix <scalar_t >& A, Pivots& pivots ,

Matrix <scalar_t >& B,
const std::map <Option , Value >& opts = std::map <Option , Value >());

14

APPENDIX B

Implementation Snippets

The following code snippet shows the body of the top-level routine implementing the Cholesky
factorization, which is the simplest of the three factorizations. The Gaussian elimination routine
is signi�cantly more complex, and the Aasen’s LDLT routine is the most complex of all three.
The main loop of the Cholesky routine contains three blocks of code:

Panel factorization contains factorization of the diagonal block, broadcast of the diagonal
block down the column below, triangular solves below the diagonal block, and broadcast
of the panel across the trailing submatrix.

Lookahead update contains Hermitian rank-k updates to the diagonal blocks of the lookahead
columns of the trailing submatrix, and gemm updates to the rest of the blocks.

Trailing update contains Hermitian rank-k updates to the diagonal blocks of the trailing sub-
matrix, and gemm updates to the rest of the of the blocks.

15

APPENDIX B. IMPLEMENTATION SNIPPETS

1 #pragma omp parallel
2 #pragma omp master
3 for (int64_t k = 0; k < A_nt; ++k) {
4 // panel , high priority
5 #pragma omp task depend(inout:column[k]) priority (1)
6 {
7 // factor A(k, k)
8 internal ::potrf <Target ::HostTask >(A.sub(k, k), 1);
9
10 // send A(k, k) down col A(k+1:nt -1, k)
11 if (k+1 <= A_nt -1)
12 A.tileBcast(k, k, A.sub(k+1, A_nt -1, k, k));
13
14 // A(k+1:nt -1, k) * A(k, k)ˆ{-H}
15 if (k+1 <= A_nt -1) {
16 auto Akk = A.sub(k, k);
17 auto Tkk = TriangularMatrix <scalar_t >(Diag::NonUnit , Akk);
18 internal ::trsm <Target ::HostTask >(
19 Side::Right ,
20 scalar_t (1.0), conj_transpose(Tkk),
21 A.sub(k+1, A_nt -1, k, k), 1);
22 }
23
24 BcastList bcast_list_A;
25 for (int64_t i = k+1; i < A_nt; ++i) {
26 // send A(i, k) across row A(i, k+1:i) and down col A(i:nt -1, i)
27 bcast_list_A.push_back ({i, k, {A.sub(i, i, k+1, i),
28 A.sub(i, A_nt -1, i, i)}});
29 }
30 A.template listBcast(bcast_list_A);
31 }
32 // update lookahead column(s), high priority
33 for (int64_t j = k+1; j < k+1+ lookahead && j < A_nt; ++j) {
34 #pragma omp task depend(in:column[k]) \
35 depend(inout:column[j]) priority (1)
36 {
37 // A(j, j) -= A(j, k) * A(j, k)ˆH
38 internal ::herk <Target ::HostTask >(
39 real_t (-1.0), A.sub(j, j, k, k),
40 real_t(1.0), A.sub(j, j), 1);
41
42 // A(j+1:nt -1, j) -= A(j+1:nt -1, k) * A(j, k)ˆH
43 if (j+1 <= A_nt -1) {
44 auto Ajk = A.sub(j, j, k, k);
45 internal ::gemm <Target ::HostTask >(
46 scalar_t (-1.0), A.sub(j+1, A_nt -1, k, k),
47 conj_transpose(Ajk),
48 scalar_t (1.0), A.sub(j+1, A_nt -1, j, j), 1);
49 }
50 }
51 }
52 // update trailing submatrix , normal priority
53 if (k+1+ lookahead < A_nt) {
54 #pragma omp task depend(in:column[k]) \
55 depend(inout:column[k+1+ lookahead]) \
56 depend(inout:column[A_nt -1])
57 {
58 // A(kl+1:nt -1, kl+1:nt -1) -=
59 // A(kl+1:nt -1, k) * A(kl+1:nt -1, k)ˆH
60 // where kl = k + lookahead
61 internal ::herk <target >(
62 real_t (-1.0), A.sub(k+1+ lookahead , A_nt -1, k, k),
63 real_t(1.0), A.sub(k+1+ lookahead , A_nt -1));
64 }
65 }
66 }

16

APPENDIX C

MPI Thread Safety Considerations

Distributed memory processing in SLATE is based on MPI, while node-level parallelism relies
on OpenMP. It was not until now, tough, that we faced the problem of thread safety of MPI.
The LU and LDLT factorizations, presented int his report, actually require support for the
strongest thread safety mode of MPI, where multiple threads can issue MPI calls simultaneously,
as explained in Section 2.1.2.

The MPI speci�cation outlines four modes of thread safety in version 2 of the MPI standard 1:
single, funneled, serialized, and multiple. Of these, we are speci�cally interested in the strong
concurrency protections and �exibility provided by MPI_THREAD_MULTIPLE option (MTM), and
we will evaluate this thread safety level in four popular MPI implementations: Intel MPI 2,
OpenMPI 3, MVAPICH 4, and IBM Spectrum MPI 5.

C.1 MPI Implementations

Intel MPI has provided MTM support since version 3.0 6. We will evaluate version 2018. The
user should link the Intel MPI library with the -lmt_mpi linking option and can optionally
provide the environment variables I_MPI_PIN_DOMAIN and KMP_AFFINITY to control process and
thread a�nity 7.

1http://micro.ustc.edu.cn/Linux/MPI/mpi-20.pdf
2https://software.intel.com/en-us/mpi-library
3https://www.open-mpi.org/
4http://mvapich.cse.ohio-state.edu/
5https://www.ibm.com/us-en/marketplace/spectrum-mpi
6https://software.intel.com/en-us/articles/intel-mpi-library-for-linux-main-features-faq
7https://software.intel.com/en-us/articles/hybrid-applications-intelmpi-openmp

17

http://micro.ustc.edu.cn/Linux/MPI/mpi-20.pdf
https://software.intel.com/en-us/mpi-library
https://www.open-mpi.org/
http://mvapich.cse.ohio-state.edu/
https://www.ibm.com/us-en/marketplace/spectrum-mpi
https://software.intel.com/en-us/articles/intel-mpi-library-for-linux-main-features-faq
https://software.intel.com/en-us/articles/hybrid-applications-intelmpi-openmp

C.2. MULTITHREADING TESTS APPENDIX C. MPI THREAD SAFETY CONSIDERATIONS

OpenMPI provides MTM support since release version 2.0 8, and this support is enabled by
default since version 3.0. We test both versions 2.1.1 and 3.0.0 in this investigation.

MVAPICH (based on MPICH) has provided MTM support since release version 2.0 9, and we
will test version 2.3. Use of MTM support in MVAPICH requires setting of the environment
variable MV2_ENABLE_AFFINITY=0 at runtime.

IBM Spectrum MPI provides MTM support since version 10.1 10, and we evalutaed version
10.2.0.0. As IBM Spectrum MPI is based on the OpenMPI 3.x release, no additional con�guration
is required for MTM support.

C.2 Multithreading Tests

We are interested in veri�cation of the correctness and stability of the MTM support in each
MPI implementation by use of direct tests of MTM functionality as described by Thakur and
Gropp [12] using the provided source code 11. We evaluate each MPI implementation using
these tests:

(1) Concurrent latency

(2) Concurrent bandwidth

(3) Message rate

(4) Concurrent short-long messages

(5) Computation and communication overlap

(6) Concurrent collectives

(7) Concurrent collectives and computation

C.3 TestingMethodology and Results

We compile the threading test code against each MPI implementation and run each test on either
two or three compute nodes (as required by the speci�c test) using the Slurm job scheduler 12

srun process launcher. We de�ne a test as “passed” if the test code builds and runs against the
given MPI implementation with correct output (independent of code performance).

Table C.1 summaries the testing results. The �ve MPI versions passed all test with the exception
of test #5 (Computation and communication overlap) which caused an apparent deadlock in
Intel MPI and MVAPICH. This will require further investigation to determine the cause of this
failure.

8https://www.open-mpi.org/doc/v2.0/man3/MPI Init thread.3.php
9http://mvapich.cse.ohio-state.edu/features/

10https://www.ibm.com/support/knowledgecenter/en/SSZTET 10.1/smpi02/smpi02 features threadsafety.html
11http://www.mcs.anl.gov/∼thakur/thread-tests/
12https://slurm.schedmd.com/

18

https://www.open-mpi.org/doc/v2.0/man3/MPI_Init_thread.3.php
http://mvapich.cse.ohio-state.edu/features/
https://www.ibm.com/support/knowledgecenter/en/SSZTET_10.1/smpi02/smpi02_features_threadsafety.html
http://www.mcs.anl.gov/~thakur/thread-tests/
https://slurm.schedmd.com/

C.3. TESTINGMETHODOLOGY APPENDIX C. MPI THREAD SAFETY CONSIDERATIONS

Table C.1: MPI thread safety testing results.

MPI implementation Version tested Test notes

Intel MPI 2018 Failed test #5
OpenMPI 2.1.1 All tests passed
OpenMPI 3.0.0 All tests passed
MVAPICH 2.3 Failed test #5
IBM Spectrum MPI 10.2.0.0 All tests passed

19

	Contents
	List of Figures
	List of Tables
	Introduction
	Implementation
	Parallelization
	LLT
	LU
	LDLT

	Experiments
	Environment
	Performance
	LLT
	LU
	LDLT

	Summary
	Bibliography
	Appendices
	Function Signatures
	Implementation Snippets
	MPI Thread Safety Considerations
	MPI Implementations
	Multithreading Tests
	Testing Methodology

