
5

Parallel BLAS Performance Report

Jakub Kurzak
Mark Gates
Asim YarKhan
Ichitaro Yamazaki
Panruo Wu
Piotr Luszczek
Jamie Finney
Jack Dongarra

Innovative Computing Laboratory

April 10, 2018

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear
Security Administration) responsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering and early testbed platforms,
in support of the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Revision Notes
03-2018 first publication

04-2018 copy editing

@techreport{kurzak2018parallel,
author={Kurzak, Jakub and Gates, Mark and YarKhan, Asim and

Yamazaki, Ichitaro and Wu, Panruo and Luszczek, Piotr
and Finney, Jamie and Dongarra, Jack},

title={{SLATE} Working Note 5: Parallel {BLAS} Performance Report},
institution={Innovative Computing Laboratory, University of Tennessee},
year={2018},
month={March},
number={ICL-UT-18-01},
note={revision 04-2018}

}

i

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1

2 Implementation 4
2.1 Matrix Class Hierarchy . 5
2.2 Handling of side, uplo, trans . 6

2.2.1 gemm . 6
2.2.2 syrk, syr2k, herk, her2k . 6
2.2.3 symm, hemm . 6
2.2.4 trmm, trsm . 7

2.3 Handling of Multiple Precisions . 7
2.4 Parallelization . 8

2.4.1 gemm and Other Routines . 8
2.4.2 trsm . 9

3 Experiments 10
3.1 Environment . 10
3.2 Performance . 11

3.2.1 PBLAS Routines in Double Precision . 11
3.2.2 Different Cases of DTRMM . 14
3.2.3 GEMM in Different Precisions . 15

3.3 Traces . 16

4 Summary 19

Bibliography 21

ii

Appendices 24

A Function Signatures 25

B Implementation Snippets 27
B.1 gemm . 28
B.2 trsm . 29

iii

List of Figures

2.1 Implementation of gemm as a sequence of outer products. 8
2.2 Steps of trsm with data dependencies (lookahead = 1). 9

3.1 Performance of dgemm. 11
3.2 Performance of dsymm. 12
3.3 Performance of dsyrk. 12
3.4 Performance of dsyr2k. 13
3.5 Performance of dtrmm. 13
3.6 Performance of dtrsm. 14
3.7 Multi-core performance of dtrmm for different cases of side, uplo, transa. 14
3.8 Accelerated performance of dtrmm for different cases of side, uplo, transa. 15
3.9 Performance of gemm for different precisions (single/double, real/complex). 15
3.10 Multi core trace of dgemm with lookahead=0. 17
3.11 Multi core trace of dgemm with lookahead=1. 17
3.12 Multicore trace of dgemm with lookahead=2. 17
3.13 Accelerated trace of dgemm. 18
3.14 Accelerated trace of dgemm — closeup (single node, 3 steps). 18
3.15 Accelerated trace of dgemm — closeup (broadcast of 6 tiles). 18

iv

List of Tables

1.1 Descriptions of Level 3 PBLAS routines. 2
1.2 Operations performed by the Level 3 PBLAS routines. 3
1.3 Number of floating-point operations performed by the Level 3 PBLAS routines. . . . 3

v

CHAPTER 1

Introduction

Parallel Basic Linear Algebra Subprograms (PBLAS) 1 [1, 2] is an implementation of the Basic
Linear Algebra Subprograms (BLAS) 2 [3, 4] intended for distributed-memory machines. PBLAS
provides a computational backbone for the Scalable Linear Algebra PACKage (ScaLAPACK) 3

[5, 6], a distributed-memory implementation of the Linear Algebra PACKage (LAPACK) 4 [7, 8].
PBLAS depends on sequential BLAS operations for local computation and the Basic Linear
Algebra Communication Subprograms (BLACS) 5 [9] for communication between nodes.

So�ware for Linear Algebra Targeting Exascale (SLATE) 6 [10] is being developed as part of the
Exascale Computing Project (ECP) 7, which is a collaborative e�ort between two US Depart-
ment of Energy (DOE) organizations, the O�ce of Science and the National Nuclear Security
Administration (NNSA). The purpose of SLATE is to serve as a replacement for ScaLAPACK for
the upcoming pre-exascale and exascale DOE machines. SLATE will accomplish this objective
by leveraging recent progress in parallel programming models and by strongly focusing on
supporting hardware accelerators.

This report focuses on the SLATE project’s �rst batch of computational routines, which imple-
ment Level 3 PBLAS. Speci�cally, initial SLATE PBLAS performance numbers are reported,
alongside ScaLAPACK performance numbers on the SummitDev machine at the Oak Ridge
Leadership Computing Facility (OLCF). More details about the design of the SLATE so�ware
infrastructure can be found in the report by Kurzak et al. [10].

1http://www.netlib.org/scalapack/pblas qref.html
2http://www.netlib.org/blas/
3http://www.netlib.org/scalapack/
4http://www.netlib.org/lapack/
5http://www.netlib.org/blacs/
6http://icl.utk.edu/slate/
7https://www.exascaleproject.org

1

http://www.netlib.org/scalapack/pblas_qref.html
http://www.netlib.org/blas/
http://www.netlib.org/scalapack/
http://www.netlib.org/lapack/
http://www.netlib.org/blacs/
http://icl.utk.edu/slate/
https://www.exascaleproject.org

CHAPTER 1. INTRODUCTION

Name Description
gemm Computes a matrix-matrix product with general matrices.
symm Computes a matrix-matrix product where one input matrix is symmetric.
hemm Computes a matrix-matrix product where one input matrix is Hermitian.

syrk Performs a symmetric rank-k update.
herk Performs a Hermitian rank-k update.
syr2k Performs a symmetric rank-2k update.
her2k Performs a Hermitian rank-2k update.
trmm Computes a matrix-matrix product where one input matrix is triangular.
trsm Solves a triangular matrix equation.

Table 1.1: Descriptions of Level 3 PBLAS routines.

Table 1.1 lists the Level 3 PBLAS routines and provides their descriptions. Table 1.2 contains
their mathematical de�nitions. Table 1.3 provides the number of �oating-point operations
for each routine. The numbers are for real arithmetic. In complex arithmetic, the number of
�oating-point operations is four times higher. All execution rates reported in Section 3.2 were
calculated using the formulas from Table 1.3.

The ultimate source of information about BLAS is the Basic Linear Algebra Subprograms
Technical (BLAST) Forum Standard. 8 Another recommended read is the article by Blackford
et al. [11]. A reference implementation of BLAS in Fortran is available from Netlib. 9 Also
available from Netlib is a quick reference guide. 10

Unlike dense linear algebra packages developed in Fortran and C, SLATE does not provide
a separate routine for each of the four precisions (single [S], double [D], single complex [C],
double complex [Z]). Instead, SLATE relies on C++ templates and overloading, as described in
Section 3.2.3. Appendix A provides function signatures of all SLATE PBLAS routines.

Another notable di�erence is the lack of the uplo and transparameters in the function signatures.
The information about whether the matrix is upper or lower is a property of the Matrix object.
So is the information about whether transposition needs to be applied when operating on the
matrix, as further explained in Section 2.2.

8http://www.netlib.org/blas/blast-forum/blas-report.pdf
9http://www.netlib.org/blas/blas-3.8.0.tgz

10http://www.netlib.org/blas/blasqr.pdf

2

http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blas-3.8.0.tgz
http://www.netlib.org/blas/blasqr.pdf

CHAPTER 1. INTRODUCTION

Name Operation Matrices
gemm C ← αop(A)op(B) + βC C : m× n, op(A) : m× k
symm C ← αAB + βC or C : m× n, A = AT

C ← αBA+ βC
hemm C ← αAB + βC or C : m× n, A = AH

C ← αBA+ βC
syrk C ← αop(A)op(A)T + βC, C = CT , op(A) : n× k
herk C ← αop(A)op(A)H + βC C = CH , op(A) : n× k,
syr2k C ← αop(A)op(B)T + αop(B)op(A)T + βC C = CT , op(A) : n× k
her2k C ← αop(A)op(B)H + ᾱop(B)op(A)H + βC C = CH , op(A) : n× k
trmm B ← αop(A)B or A triangular, B : m× n

B ← αBop(A)
trsm B ← αop(A)−1B or A triangular, B : m× n

B ← αBop(A)−1

Table 1.2: Operations performed by the Level 3 PBLAS routines. op(X) = X , XT , or XH .

Name Number of Floating Point Operations
gemm 2mnk
symm 2m2n (side=Le�), 2mn2 (side=Right)
syrk kn(n+ 1)

syr2k 2kn2 + n
trmm nm2 (side=Le�), mn2 (side=Right)
trsm nm2 (side=Le�), mn2 (side=Right)

Table 1.3: Number of �oating-point operations performed by the Level 3 PBLAS routines.

3

CHAPTER 2

Implementation

The principles of the SLATE so�ware framework were laid out in SLATE Working Note 3 1 [10].
SLATE’s design relies on the following principles:

• The matrix is represented as a set of individual tiles with no constraints on their locations
in memory with respect to one another. Any tile can reside anywhere in memory and
have any stride. Notably, a SLATE matrix can be created from a LAPACK matrix or a
ScaLAPACK matrix without making a copy of the data.

• Node-level scheduling relies on nested Open Multi Processing (OpenMP) tasking, with the
top level responsible for resolving data dependencies and the bottom level responsible for
deploying large numbers of independent tasks to multi-core processors and accelerator
devices.

• The Message Passing Interface (MPI) is used for message passing with emphasis on collec-
tive communication, with the majority of communication being cast as broadcasts.

• Batch BLAS is used extensively for maximum node-level performance. Most routines
spend the majority of their execution in the call to batch gemm.

Also, the use of a runtime scheduling system, such as the Parallel Runtime Scheduling and
Execution Controller (PaRSEC) 2 [12] or Legion 3,4 [13], is currently under investigation.

1http://www.icl.utk.edu/publications/swan-003
2http://icl.utk.edu/parsec/
3http://legion.stanford.edu
4 http://www.lanl.gov/projects/programming-models/legion.php

4

http://www.icl.utk.edu/publications/swan-003
http://icl.utk.edu/parsec/
http://legion.stanford.edu
http://www.lanl.gov/projects/programming-models/legion.php

2.1. MATRIX CLASS HIERARCHY CHAPTER 2. IMPLEMENTATION

2.1 Matrix Class Hierarchy

SLATE has the matrix classes below. The SLATE BLAS routines require the correct matrix
types for their arguments, but inexpensive shallow copy conversions exist between the various
matrix types. For instance, a general Matrix can be converted to a TriangularMatrix for doing
a triangular solve (trsm).

BaseMatrix Abstract base class for all matrices.

Matrix General, m× n matrix.

BaseTrapezoidMatrix Abstract base class for all upper or lower trapezoid storage, m× n
matrices. For upper, tiles A(i, j) for i ≤ j are stored; for lower, tiles A(i, j) for i ≥ j
are stored.

TrapezoidMatrix Upper or lower trapezoid, m× n matrix; the opposite triangle is
implicitly zero.

TriangularMatrix Upper or lower triangular, n× n matrix.

SymmetricMatrix Symmetric, n× n matrix, stored by its upper or lower triangle;
the opposite triangle is implicitly known by symmetry (Aj,i = Ai,j).

HermitianMatrix Hermitian, n×n matrix, stored by its upper or lower triangle; the
opposite triangle is implicitly known by symmetry (Aj,i = Āi,j).

The BaseMatrix class stores the matrix dimensions; whether the matrix is upper, lower, or
general; whether it is not transposed, transposed, or conjugate-transposed; how the matrix is
distributed; and the set of tiles.

Copying a matrix object is an inexpensive shallow copy, with a reference-counted C++ shared
pointer to the actual data. Sub-matrices are also implemented by creating an inexpensive
shallow copy, with the matrix object storing the o�set from the top-le� of the original matrix
and the transposition operation with respect to the original matrix.

Transpose and conjugate-transpose are supported by creating an inexpensive shallow copy and
changing the transposition operation �ag stored in the new matrix object. For a matrix A that is
possibly a transposed copy of an original matrix A0, the function A.op() returns Op::NoTrans,
Op::Trans, or Op::ConjTrans, indicating whether A is not transposed, transposed, or conjugate-
transposed, respectively. The functions A = transpose(A0) and A = conj_transpose(A0) return
new matrices with the operation �ag modi�ed appropriately. Querying a matrix object takes
the transposition and sub-matrix o�sets into account. For instance, A.mt() is the number of
block rows of op(A0), where op(A0) = A0, AT

0 , or AH
0 . The function A(i, j) returns the i, j-th

tile of op(A0), with the tile’s operation �ag set to match the A matrix.

SLATE supports upper and lower storage with A.uplo() returning Uplo::Upper or Uplo::Lower.
Tiles likewise have a �ag indicating upper or lower storage, accessed by A(i, j).uplo(). For
tiles on the matrix diagonal, the uplo �ag is set to match the matrix, while for o�-diagonal tiles
it is set to Uplo::General.

5

2.2. HANDLING OF SIDE, UPLO, TRANS CHAPTER 2. IMPLEMENTATION

2.2 Handling of side, uplo, trans

The classical BLAS routines take parameters such as side, uplo, trans (named “op” in SLATE),
and diag to specify operation variants. Traditionally, this has meant that implementations
have numerous cases. The reference BLAS has nine cases in zgemm and eight cases in ztrmm
(times several sub-cases). ScaLAPACK and the Parallel Linear Algebra So�ware for Multicore
Architectures (PLASMA) likewise have eight cases in ztrmm.

In SLATE, both uplo and op are stored within the matrix object itself, and it supports inexpensive
shallow copy transposition. This means we can implement just one or two cases and map all
the other cases to that implementation by appropriate transpositions.

2.2.1 gemm

The high-level SLATE gemm implements only one case:

C ← αAB + βC

To obtain other cases, the matrices A or B can be (conjugate) transposed before the call. For
instance:

slate ::gemm(alpha , transpose(A), conj_transpose(B), beta , C);

At the high level, gemm can ignore the operations on A and B. The matrix object, if transposed,
handles swapping indices to obtain the correct tiles during the algorithm. At the low level, the
transposition operation is set on the tiles, and is passed on to the underlying BLAS gemm routine.

2.2.2 syrk, syr2k, herk, her2k

For rank k and rank 2k updates, SLATE implements only one case each:

C ← αAAT + βC syrk,

C ← αAAH + βC herk,

C ← αABT + αBAT + βC syrk,

C ← αABH + ᾱBAH + βC herk,

with the symmetric or Hermitian matrix C stored lower. As with gemm, the A or B matrices can
be (conjugate) transposed beforehand to obtain other cases. To handle upper storage matrices,
SLATE internally (conjugate) transposes C .

2.2.3 symm, hemm

The high-level SLATE symm and hemm implement the two cases where the symmetric or Hermi-
tian matrix A is stored as lower or as upper, and is on the le�,

C ← αAB + βC.

6

2.3. HANDLING OFMULTIPLE PRECISIONS CHAPTER 2. IMPLEMENTATION

To handle when A is on the right,

C ← αBA+ βC,

all three matrices are (conjugate) transposed to convert it to one of the le� cases:

CT ← αATBT + βCT symm,

CH ← ᾱAHBH + β̄CH hemm.

If A was upper, then AT and AH are logically lower (though still physically stored as upper) and
are handled by the le�-lower case; if A was lower, then AT and AH are logically upper and are
handled by the le�-upper case. Since C is now transposed, the tile BLAS gemm must handle a
transposed C, which in relevant cases can be mapped back to regular gemm by re-transposing
the entire gemm equation.

2.2.4 trmm, trsm

Similarly to symm, the high-level SLATE trmm and trsm each implement the two cases where the
triangular matrix A is stored as lower or as upper, and is on the le�,

B ← αAB, trmm,

B ← αA−1B, trsm.

One case uses a forward sweep, from k = 0, . . . ,m − 1, while the other case uses a backward
sweep, from k = m− 1, . . . , 0. As with the symm and hemm, the cases where A is on the right,

B ← αBA, trmm,

B ← αBA−1, trsm,

are handled by (conjugate) transposing the entire equation to reduce it to one of the le� cases.
As with gemm, A can be transposed beforehand.

By using matrix object abstraction to hide transpositions, SLATE is thus able to signi�cantly
reduce the number of cases to implement, resulting in a smaller code base to implement and
maintain.

2.3 Handling of Multiple Precisions

SLATE handles multiple precisions by C++ templating, so there is only one precision-
independent version of the code, which is then instantiated for the desired precisions. SLATE’s
BLAS++ component [14] provides overloaded, precision-independent wrappers for all the under-
lying BLAS routines, which SLATE’s parallel BLAS are built on top of. For instance, blas::gemm
in BLAS++ maps to the classical sgemm, dgemm, cgemm, or zgemm BLAS routines, depending on
the precision of its arguments. For real, symmetric matrices, symmetric and Hermitian ma-
trices are considered interchangeable, so hemm maps to symm, herk to syrk, and her2k to syr2k.

7

2.4. PARALLELIZATION CHAPTER 2. IMPLEMENTATION

This mapping aides in templating higher-level routines, such as Cholesky, which does a herk
(mapped to syrk in real) to update the trailing matrix.

Where a data type is always real, blas::real_type<scalar_t> is a C++ type trait to provide the
real type associated with the type scalar_t, so blas::real_type< std::complex<double> > is
double. This is used, for instance, in herk, where alpha and beta are always real.

Currently, the SLATE library has explicit instantiations of the four main data types: float,
double, std::complex<float>, and std::complex<double>. The SLATE BLAS code should be
able to accommodate other data types, such as quad precision, given appropriate underlying
BLAS routines.

2.4 Parallelization

2.4.1 gemm and Other Routines

All PBLAS routines, except for trsm, are embarrassingly parallel in the sense that each tile of
the output matrix can be computed independently. In SLATE, the operation is broken down
into a sequence of outer products. Figure 2.1 illustrates this concept for gemm. All other routines
follow the same principle. This is necessary in order to put an upper bound on the size of data
bu�ers required for communication of matrices A and B. It also allows for the use of the batch
gemm operation, which does not allow for write dependencies on the output tiles.

C

A

B

Figure 2.1: Implementation of
gemm as a sequence of outer prod-
ucts.

The SLATE implementation consists of a pipelined
loop—which interleaves the steps of communication and
computation—where the lookahead parameter de�nes how
much the communication can get ahead of the computa-
tion. Appendix B.1 shows the pipelined loops of the gemm
implementation. Section 3.3 contains traces illustrating the
e�ects of lookahead.

The communication steps perform broadcasts of tiles of A
and B according to the distribution of the matrix C. The
computation steps perform outer product updates to the
local part of C in each node. In the case of accelerated
execution, the updates are executed as calls to batch gemm
(Target::Devices). In the case of multi-core execution, the
updates can be executed as:

• a set of OpenMP tasks (Target::HostTask),
• a nested parallel for loop (Target::HostNest),
• a call to batch gemm (Target::HostBatch).

It needs to be pointed out that many algorithms have been developed for the e�cient im-
plementations of gemm for distributed-memory machines, Cannon’s algorithm [15] being the
canonical example. Other notable examples include Parallel Universal Matrix Multiplication Al-
gorithms (PUMMA) [16], the Scalable Universal Matrix Multiplication Algorithm (SUMMA) [17],
and A Design and Implementation Methodology for Metaheuristic Algorithms (DIMMA) [18].

8

2.4. PARALLELIZATION CHAPTER 2. IMPLEMENTATION

However, the current emphasis in SLATE is on simplicity and robustness, as well as relying on
e�cient implementation of MPI collective communication. More advanced algorithms are up
for consideration in the future, particularly those that minimize communication [19, 20].

2.4.2 trsm

Unlike the other routines, trsm has data dependencies. Figure 2.2 shows the steps of trsm
(Side::Left, Uplo::Lower, Op::NoTrans) with a 5× 5 tiles matrix A and 5× 2 tiles matrix B, and
lookahead of one. The execution proceeds as follows: At each step, trsm is applied to a row of
tiles of matrixB, followed by gemm for all the tiles below. The application of gemm is split into two
parts—the �rst one involving lookahead rows and the second one involving all the remaining
rows. Completing the �rst lookahead row allows for starting the next step’s trsm.

A B

A B

A B

A B

A B

Figure 2.2: Steps of trsm with data dependencies (lookahead = 1).

Conceptually, the implementation of trsm is not too di�erent from the implementation of the
Cholesky factorization (potrf) presented in the SLATE Working Note 3 [10]. Appendix B.2
shows the Left, Lower, NoTrans part of the implementation. Communication is associated with
the trsm step, and overlapping of communication relies on lookahead. Also, while the large gemm
operation is mapped to the user-speci�ed target, the trsm and the lookahead gemm operations
are always mapped to Target::HostTask in the current implementation.

9

CHAPTER 3

Experiments

3.1 Environment

Performance numbers were collected using the SummitDev system 1 at the OLCF, which is
intended to mimic the OLCF’s next supercomputer, Summit. SummitDev is based on the IBM
POWER8 processors and the NVIDIA P100 (Pascal) accelerators, and is one generation behind
Summit, which will be based on the IBM POWER9 processors and the NVIDIA V100 (Volta)
accelerators.

The SummitDev system contains three racks, each with eighteen IBM POWER8 S822LC nodes,
for a total of ��y-four nodes. Each node contains two POWER8 CPUs, ten cores each, and four
P100 GPUs. Each node has 256 GB of DDR4 memory. Each GPU has 16 GB of HBM2 memory.
The GPUs are connected by NVLink 1.0 at 80 GB/s. The nodes are connected with a fat-tree
enhanced data rate (EDR) In�niBand.

The so�ware environment used for the experiments included GNU Compiler Collection
(GCC) 7.1.0, CUDA 9.0.69, Engineering Scienti�c Subroutine Library (ESSL) 5.5.0, Spec-
trum MPI 10.1.0.4, Netlib LAPACK 3.6.1, and Netlib ScaLAPACK 2.0.2—i.e., the output of
module list included:

gcc /7.1.0
cuda /9.0.69
essl /5.5.0 -20161110
spectrum -mpi /10.1.0.4 -20170915
netlib -lapack /3.6.1
netlib -scalapack /2.0.2

1https://www.olcf.ornl.gov/kb articles/summitdev-quickstart/

10

https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/

3.2. PERFORMANCE CHAPTER 3. EXPERIMENTS

3.2 Performance

In order to avoid excessive numbers of runs while still getting the complete picture, we asses
the performance of SLATE BLAS in the following way. First, in Section 3.2.1, we look at the
performance of all the routines in double precision and compare them to ScaLAPACK. Then,
in Section 3.2.2, we present the performance of trmm in double precision for eight di�erent
cases of side, uplo, and transa (aka op). Finally, in Section 3.2.3 we show the performance of
gemm (NoTrans, NoTrans) for di�erent precisions (single/double, real/complex).

All runs were performed using sixteen nodes of the SummitDev system, which provides
16 nodes × 2 sockets × 10 cores = 320 IBM POWER8 cores and 16 nodes × 4 devices = 64
NVIDIA P100 accelerators. SLATE was run with one process per node, while ScaLAPACK
was run with one process per core, which is still the prevailing method of getting the best
performance from ScaLAPACK. Only rudimentary performance tuning was done in both cases.

3.2.1 PBLAS Routines in Double Precision

Figures 3.1 to 3.6 show the performance of SLATE BLAS with and without acceleration compared
to the performance of ScaLAPACK without acceleration. We are not aware of a viable solution
for ScaLAPACK acceleration. All runs use 16 nodes of the SummiDev system. For the accelerated
runs, this translates to 64 accelerators.

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

SIZE

0 20000 40000 60000 80000 100000

SLATE
ScaLAPACK

matrix-matrix product with general matrices (dgemm)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

SIZE

0 100000 200000 300000

SLATE
ScaLAPACK

matrix-matrix product with general matrices (dgemm)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.1: Performance of dgemm without acceleration (le�) and with acceleration (right).

Figures 3.1 to 3.6 lead to the following observations:

• In the case of multi core runs, SLATE BLAS provides asymptotic performance very similar
to ScaLAPACK. SLATE multi core runs delivered somewhat substandard performance for
smaller matrix sizes, which is especially visible in the dtrsm sweep. This can be attributed
to inadequate tuning for the optimal tile size: while fairly small blocking factors worked
well for ScaLAPACK runs (80, 96, etc.), fairly large tile sizes were used for SLATE (256,
336, etc.). This should be easy to remedy in the future by more carefully tuning for the
optimal tile size.

11

3.2. PERFORMANCE CHAPTER 3. EXPERIMENTS

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

SIZE

0 20000 40000 60000 80000 100000

SLATE
ScaLAPACK

matrix-matrix product where one input matrix is symmetric (dsymm)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

SIZE

0 50000 100000 150000 200000

SLATE
ScaLAPACK

matrix-matrix product where one input matrix is symmetric (dsymm)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.2: Performance of dsymm without acceleration (le�) and with acceleration (right).

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

SIZE

0 20000 40000 60000 80000 100000

SLATE
ScaLAPACK

symmetric rank-k update (dsyrk)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

4000

8000

12000

16000

20000

24000

28000

32000

SIZE

0 40000 80000 120000 160000 200000

SLATE
ScaLAPACK

symmetric rank-k update (dsyrk)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.3: Performance of dsyrk without acceleration (le�) and with acceleration (right).

• SLATE delivers massive performance gains through acceleration. The highest perfor-
mance number was reached for the accelerated sweep of dgemm (Figure 3.1), which reached
170 teraFLOP/s, compared to the top ScaLAPACK dgemm performance of 7.8 teraFLOP/s
(over 20× di�erence). This is of no surprise, as the peak performance of SummitDev’s
multi cores is at the level of 2.5% of SummitDev’s accelerators.

• The syrk and syr2k routines require further attention, as their top accelerated perfor-
mance is signi�cantly lower than the accelerated performance of other routines.

• All accelerated performance curves are basically linear. The reason for this behavior is
very clear, given that the PBLAS performance pro�le follows the Roo�ine model 2 [21]. It
is clear that the performance is nowhere near saturation. For the tested matrix sizes, the
performance is completely bound by communication. This is also of no surprise given
the ratio of SummitDev’s node performance to its communication bandwidth. This is

2https://en.wikipedia.org/wiki/Roofline model

12

https://en.wikipedia.org/wiki/Roofline_model

3.2. PERFORMANCE CHAPTER 3. EXPERIMENTS

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

SIZE

0 20000 40000 60000 80000 100000

SLATE
ScaLAPACK

symmetric rank-2k update (dsyr2k)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

SIZE

0 50000 100000 150000 200000

SLATE
ScaLAPACK

symmetric rank-2k update (dsyr2k)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.4: Performance of dsyr2k without acceleration (le�) and with acceleration (right).

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

SIZE

0 20000 40000 60000 80000 100000

SLATE
ScaLAPACK

matrix-matrix product where one input matrix is triangular (dtrmm)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

SIZE

0 50000 100000 150000 200000

SLATE
ScaLAPACK

matrix-matrix product where one input matrix is triangular (dtrmm)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.5: Performance of dtrmm without acceleration (le�) and with acceleration (right).

further con�rmed by the runs in complex arithmetic, presented in Section 3.2.3, as well
as the traces of accelerated execution, presented in Appendix 3.3.

13

3.2. PERFORMANCE CHAPTER 3. EXPERIMENTS

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

SIZE

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

SLATE
ScaLAPACK

solving triangular matrix equation (dtrsm)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

10000

20000

30000

40000

50000

60000

SIZE

0 40000 80000 120000 160000 200000

SLATE
ScaLAPACK

solving triangular matrix equation (dtrsm)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.6: Performance of dtrsm without acceleration (le�) and with acceleration (right).

3.2.2 Di�erent Cases of DTRMM

Figures 3.7 and 3.8 show the performance of the SLATE dtrmm routine for di�erent cases of side,
uplo, and transa. Figure 3.7 shows multi-core performance and Figure 3.8 shows accelerated
performance. Just as before, all runs use 16 nodes of the SummiDev system.

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

SIZE

0 20000 40000 60000 80000 100000

Left/Lower/NoTrans
Left/Lower/Trans
Left/Upper/NoTrans
Left/Upper/Trans
Right/Lower/NoTrans
Right/Lower/Trans
Right/Upper/NoTrans
Right/Upper/Trans

matrix-matrix product where one input matrix is triangular (dtrmm)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

6800

6900

7000

7100

7200

7300

SIZE

36000 41000 46000 51000 56000

Left/Lower/NoTrans
Left/Lower/Trans
Left/Upper/NoTrans
Left/Upper/Trans
Right/Lower/NoTrans
Right/Lower/Trans
Right/Upper/NoTrans
Right/Upper/Trans

matrix-matrix product where one input matrix is triangular (dtrmm)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

Figure 3.7: Multi-core performance of dtrmm for di�erent cases of side, uplo, transa (complete
sweep on the le�, closeup on the right).

The expectation is that the choice of side, uplo, and transa parameters has very little impact
on performance. As a matter of fact, this turns out to be the case. In the case of multi core runs
(Figure 3.7), there is virtually no di�erence in performance. In the chart on the le�, all curves
basically overlap. The large magni�cation on the right shows all eight curves in the band.

Likewise, parameter choice for the accelerated runs has little impact on performance (Figure 3.8).
Here all lines are contained within two bands, and the magni�cation on the right shows that
the di�erence comes from the choice of the side parameter. The di�erence in performance
between Side::Left and Side::Right is about 10%, which is no cause for concern.

14

3.2. PERFORMANCE CHAPTER 3. EXPERIMENTS

GF
LO

PS

0

10000

20000

30000

40000

50000

60000

SIZE

0 20000 40000 60000 80000 100000 120000 140000

Left/Lower/NoTrans
Left/Lower/Trans
Left/Upper/NoTrans
Left/Upper/Trans
Right/Lower/NoTrans
Right/Lower/Trans
Right/Upper/NoTrans
Right/Upper/Trans

matrix-matrix product where one input matrix is triangular (dtrmm)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

GF
LO

PS

16600

17000

17400

17800

18200

SIZE

40500 41000 41500 42000 42500 43000 43500 44000

Left/Lower/NoTrans
Left/Lower/Trans
Left/Upper/NoTrans
Left/Upper/Trans
Right/Lower/NoTrans
Right/Lower/Trans
Right/Upper/NoTrans
Right/Upper/Trans

matrix-matrix product where one input matrix is triangular (dtrmm)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.8: Accelerated performance of dtrmm for di�erent cases of side, uplo, transa (complete
sweep on the le�, closeup on the right).

3.2.3 GEMM in Di�erent Precisions

The last part of the performance assessment is the impact of di�erent precisions (single/double,
real/complex) on performance. Figure 3.9 shows the performance of the gemm routine in the
four standard precisions (S, C, D, Z) for multi core runs (le� chart) and accelerated runs (right
chart).

GF
LO

PS

0

2000

4000

6000

8000

10000

12000

14000

16000

SIZE

0 30000 60000 90000

single
double
single complex
double complex

matrix-matrix product with general matrices (?gemm)
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

GF
LO

PS

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

SIZE

0 60000 120000 180000

single
double
single complex
double complex

matrix-matrix product with general matrices (?gemm)
16 nodes × 4 devices = 64 devices (NVIDIA P100)

Figure 3.9: Performance of gemm for di�erent precisions (single/double, real/complex).

Here the performance numbers are, again, far from unexpected. In the case of multi core
runs, single precision is about twice as fast as double precision, which comes directly from the
2× factor between the single-precision peak and the double-precision peak of the POWER8
cores. At the same time, complex arithmetic is slightly faster than real arithmetic. This is
because the complex arithmetic is twice as compute-intensive as real arithmetics, which bring
the performance number a notch closer to the hardware peak.

For accelerated runs, shown in the chart on the right, the situation is very di�erent. Here, the

15

3.3. TRACES CHAPTER 3. EXPERIMENTS

performance of single precision is twice the performance of double precision; but also, the
performance of complex arithmetic is twice the performance of real arithmetic. This is because
here the performance has much less to do with the �oating-point peaks and much more to
do with the communication bandwidth. As already mentioned in Section 3.2.1, accelerated
performance is nowhere near the �oating-point peak. Instead, it is completely bound by the
communication bandwidth. As a result, the accelerated performance is directly correlated with
the ratio of computation to communication, which is 2× higher in single precision than in
double precision, and 2× higher in complex arithmetic than in real arithmetic.

3.3 Traces

The traces presented in this section were produced by a small tracing component embedded in
SLATE. Tasks’ start and end times are collected using omp_get_wtime(), and printed at the end
of the run to a Scalable Vector Graphic (SVG) �le. This is a simplistic yet e�ective approach
inherited from the PLASMA and MAGMA projects [22], and the PULSAR project [23].

Figures 3.10, 3.11, and 3.12 show traces of multi core dgemm runs for m = n = k = 5120 and
nb = 256, using eighty IBM POWER8 cores (four nodes of SummitDev). The traces show
execution with lookahead of zero, one and two. The point is to show that lookahead allows
communication and computation to overlap completely. While changing the value from zero
to one provides the biggest improvement, increasing the value to two provides a further small
improvement.

Figure 3.13 shows a trace of an accelerated dgemm run for m = n = k = 102400, nb = 1024, and
lookahead = 1, using sixteen NVIDIA P100 accelerators (four nodes of SummitDev). Figure 3.14
is a closeup showing execution of three steps on a single node, and Figure 3.15 is a closeup
showing communication involved in the broadcast of six tiles. The trace shows that, while
scheduling of tasks to accelerators and overlapping of communication and computation works
as expected, performance is severely handicapped by the inability of the communication
subsystem to keep up with the rate of the accelerators’ �oating-point execution.

16

3.3. TRACES CHAPTER 3. EXPERIMENTS

Figure 3.10: Multi core trace of dgemm with m = n = k = 5120, nb = 256, and lookahead = 0,
using 4 nodes × 2 sockets × 10 cores = 80 cores (IBM POWER8).

Figure 3.11: Multi core trace of dgemm with m = n = k = 5120, nb = 256, and lookahead = 1,
using 4 nodes × 2 sockets × 10 cores = 80 cores (IBM POWER8).

Figure 3.12: Multicore trace of dgemm with m = n = k = 5120, nb = 256, and lookahead = 2,
using 4 nodes × 2 sockets × 10 cores = 80 cores (IBM POWER8).

17

3.3. TRACES CHAPTER 3. EXPERIMENTS

Figure 3.13: Accelerated trace of dgemm withm = n = k = 102400, nb = 1024, and lookahead = 1,
using 4 nodes × 4 devices = 16 devices (NVIDIA P100).

Figure 3.14: Accelerated trace of dgemm — closeup (single node, 3 steps).
Accelerated trace of dgemm — closeup (single node, 3 steps).

Figure 3.15: Accelerated trace of dgemm — closeup (broadcast of 6 tiles).
Accelerated trace of dgemm — closeup (broadcast of 6 tiles).

18

CHAPTER 4

Summary

The lessons learned in the process of developing the SLATE PBLAS routines and the results of
the performance experiments led to the following conclusions:

• Moving from C and Fortran to C++ and designing SLATE from the ground up provides
signi�cant so�ware engineering improvements over ScaLAPACK. Consider that:

– Using C++ templates for handling multiple precisions allows for a single SLATE
routine to replace four ScaLAPACK routines, e.g., slate::gemm replaces ScaLAPACK’s
sgemm, dgemm, cgemm, and zgemm.

– Treating transposition as a matrix property allows for one implementation to address
multiple cases of the input parameters side, uplo, and trans/op. In the case of, for
example, the trmm routine, we can replace eight blocks of code with only two blocks
of code.

– One implementation provides: multi-core capabilities, acceleration capabilities, and
distributed-memory capabilities. Therefore, SLATE is a natural �t for a multi-core
laptop, a desktop with one or more accelerators, or supercomputing systems such as
SummitDev or Summit.

• In terms of multi-core execution, SLATE provides capabilities similar to ScaLAPACK’s.
In most cases, equal or better asymptotic performance is reached. The performance
disadvantage for smaller matrix sizes can most likely be resolved by more careful tuning.

• In terms of accelerated performance, SLATE provides unique capabilities. In short, we
are not aware of a viable alternative. SLATE’s accelerated performance is an order of
magnitude higher than multi-core performance for most of the routines. At the same

19

CHAPTER 4. SUMMARY

time, some of the routines (syrk, syr2k) require further attention, as their performance is
not yet on a par with the others.

20

Bibliography

[1] Jaeyoung Choi, Jack Dongarra, Susan Ostrouchov, Antoine Petitet, David Walker, and
R Clinton Whaley. A proposal for a set of parallel basic linear algebra subprograms. In
International Workshop on Applied Parallel Computing, pages 107–114. Springer, 1995.

[2] J Choiy, J Dongarraz, S Ostrouchovx, A Petitetx, D Walker, and RC Whaleyx. Lapack
working note 100 a proposal for a set of parallel basic linear algebra subprograms. University
of Tennessee, Knoxville, 1995.

[3] Jack J Dongarra, Jermey Du Cruz, Sven Hammarling, and Iain S Du�. Algorithm 679: A
set of level 3 basic linear algebra subprograms: model implementation and test programs.
ACM Transactions on Mathematical So�ware (TOMS), 16(1):18–28, 1990.

[4] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J Hanson. Algorithm
656: an extended set of basic linear algebra subprograms: model implementation and test
programs. ACM Transactions on Mathematical So�ware (TOMS), 14(1):18–32, 1988.

[5] L Susan Blackford, Jaeyoung Choi, Andy Cleary, Eduardo D’Azevedo, James Demmel,
Inderjit Dhillon, Jack Dongarra, Sven Hammarling, Greg Henry, Antoine Petitet, et al.
ScaLAPACK users’ guide. SIAM, 1997.

[6] Jaeyoung Choi, Jack J Dongarra, Roldan Pozo, and David W Walker. Scalapack: A scal-
able linear algebra library for distributed memory concurrent computers. In Frontiers of
Massively Parallel Computation, 1992., Fourth Symposium on the, pages 120–127. IEEE, 1992.

[7] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James Demmel,
Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney,
et al. LAPACK Users’ guide. SIAM, 1999.

[8] Edward Anderson, Zhaojun Bai, Jack Dongarra, Anne Greenbaum, Alan McKenney, Jeremy
Du Croz, Sven Hammarling, James Demmel, C Bischof, and Danny Sorensen. Lapack: A

21

BIBLIOGRAPHY BIBLIOGRAPHY

portable linear algebra library for high-performance computers. In Proceedings of the 1990
ACM/IEEE conference on Supercomputing, pages 2–11. IEEE Computer Society Press, 1990.

[9] Ed Anderson, A Benzoni, J Dongarra, S Moulton, S Ostrouchov, Bernard Tourancheau, and
Robert van de Geijn. Basic linear algebra commnunication subprograms. In Distributed
Memory Computing Conference, 1991. Proceedings., The Sixth, pages 287–290. IEEE, 1991.

[10] Jakub Kurzak, Panruo Wu, Mark Gates, Ichitaro Yamazaki, Piotr Luszczek, Gerald Rag-
ghianti, and Jack Dongarra. SLATE working note 3: Designing SLATE: So�ware for
linear algebra targeting exascale. Technical Report ICL-UT-17-06, Innovative Computing
Laboratory, University of Tennessee, September 2017. revision 09-2017.

[11] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley, James
Demmel, Jack Dongarra, Iain Du�, Sven Hammarling, Greg Henry, et al. An updated set
of basic linear algebra subprograms (blas). ACM Transactions on Mathematical So�ware, 28
(2):135–151, 2002.

[12] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Hérault,
and Jack J Dongarra. Parsec: Exploiting heterogeneity to enhance scalability. Computing in
Science & Engineering, 15(6):36–45, 2013.

[13] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing
locality and independence with logical regions. In Proceedings of the international conference
on high performance computing, networking, storage and analysis, page 66. IEEE Computer
Society Press, 2012.

[14] Mark Gates, Piotr Luszczek, Ahmad Abdelfattah, Jakub Kurzak, Jack Dongarra, Konstantin
Arturov, Cris Cecka, and Chip Freitag. SLATE working note 2: C++ API for BLAS and
LAPACK. Technical Report ICL-UT-17-03, Innovative Computing Laboratory, University
of Tennessee, June 2017. revision 03-2018.

[15] Lynn E Cannon. A cellular computer to implement the Kalman �lter algorithm. Technical
report, MONTANA STATE UNIV BOZEMAN ENGINEERING RESEARCH LABS, 1969.

[16] Jaeyoung Choi, David W Walker, and Jack J Dongarra. PUMMA: Parallel universal matrix
multiplication algorithms on distributed memory concurrent computers. Concurrency and
Computation: Practice and Experience, 6(7):543–570, 1994.

[17] Robert A Van De Geijn and Jerrell Watts. SUMMA: Scalable universal matrix multiplication
algorithm. Concurrency-Practice and Experience, 9(4):255–274, 1997.

[18] Jaeyoung Choi. A new parallel matrix multiplication algorithm on distributed-memory
concurrent computers. In High Performance Computing on the Information Superhighway, 1997.
HPC Asia’97, pages 224–229. IEEE, 1997.

[19] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing communication
in numerical linear algebra. SIAM Journal onMatrix Analysis and Applications, 32(3):866–901,
2011.

[20] Edgar Solomonik and James Demmel. Communication-optimal parallel 2.5 d matrix
multiplication and lu factorization algorithms. In European Conference on Parallel Processing,
pages 90–109. Springer, 2011.

22

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Samuel Williams, Andrew Waterman, and David Patterson. Roo�ine: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65–76,
2009.

[22] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien Langou,
Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear algebra on emerging
architectures: The plasma and magma projects. In Journal of Physics: Conference Series,
volume 180, page 012037. IOP Publishing, 2009.

[23] Jakub Kurzak, Piotr Luszczek, Ichitaro Yamazaki, Yves Robert, and Jack Dongarra. De-
sign and implementation of the pulsar programming system for large scale computing.
Supercomputing Frontiers and Innovations, 4(1):4–26, 2017.

23

Appendices

24

APPENDIX A

Function Signatures

25

APPENDIX A. FUNCTION SIGNATURES

template <Target target=Target ::HostTask , typename scalar_t >
void gemm(scalar_t alpha , Matrix <scalar_t >& A,

Matrix <scalar_t >& B,
scalar_t beta , Matrix <scalar_t >& C,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <Target target=Target ::HostTask , typename scalar_t >
void hemm(blas::Side side ,

scalar_t alpha , HermitianMatrix <scalar_t >& A,
Matrix <scalar_t >& B,

scalar_t beta , Matrix <scalar_t >& C,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <Target target=Target ::HostTask , typename scalar_t >
void herk(blas::real_type <scalar_t > alpha , Matrix <scalar_t >& A,

blas::real_type <scalar_t > beta , HermitianMatrix <scalar_t >& C,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <Target target=Target ::HostTask , typename scalar_t >
void her2k(scalar_t alpha , Matrix <scalar_t >& A,

Matrix <scalar_t >& B,
blas::real_type <scalar_t > beta , HermitianMatrix <scalar_t >& C,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <Target target=Target ::HostTask , typename scalar_t >
void symm(blas::Side side ,

scalar_t alpha , SymmetricMatrix <scalar_t >& A,
Matrix <scalar_t >& B,

scalar_t beta , Matrix <scalar_t >& C,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <Target target=Target ::HostTask , typename scalar_t >
void syrk(scalar_t alpha , Matrix <scalar_t >& A,

scalar_t beta , SymmetricMatrix <scalar_t >& C,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <Target target=Target ::HostTask , typename scalar_t >
void syr2k(scalar_t alpha , Matrix <scalar_t >& A,

Matrix <scalar_t >& B,
scalar_t beta , SymmetricMatrix <scalar_t >& C,
const std::map <Option , Value >& opts = std::map <Option , Value >());

template <Target target=Target ::HostTask , typename scalar_t >
void trmm(blas::Side side , blas::Diag diag ,

scalar_t alpha , TriangularMatrix <scalar_t >& A,
Matrix <scalar_t >& B,

const std::map <Option , Value >& opts = std::map <Option , Value >());

template <Target target=Target ::HostTask , typename scalar_t >
void trsm(blas::Side side , blas::Diag diag ,

scalar_t alpha , TriangularMatrix <scalar_t >& A,
Matrix <scalar_t >& B,

const std::map <Option , Value >& opts = std::map <Option , Value >());

26

APPENDIX B

Implementation Snippets

27

B.1. GEMM APPENDIX B. IMPLEMENTATION SNIPPETS

B.1 gemm

1 #pragma omp parallel
2 #pragma omp master
3 {
4 #pragma omp task depend(out:bcast [0])
5 {
6 for (int64_t i = 0; i < A.mt(); ++i)
7 A.template tileBcast <target >(
8 i, 0, C.sub(i, i, 0, C.nt() -1));
9
10 for (int64_t j = 0; j < B.nt(); ++j)
11 B.template tileBcast <target >(
12 0, j, C.sub(0, C.mt()-1, j, j));
13 }
14
15 for (int64_t k = 1; k < lookahead +1 && k < A.nt(); ++k)
16 #pragma omp task depend(in:bcast[k-1]) \
17 depend(out:bcast[k])
18 {
19 for (int64_t i = 0; i < A.mt(); ++i)
20 A.template tileBcast <target >(
21 i, k, C.sub(i, i, 0, C.nt() -1));
22
23 for (int64_t j = 0; j < B.nt(); ++j)
24 B.template tileBcast <target >(
25 k, j, C.sub(0, C.mt()-1, j, j));
26 }
27
28 #pragma omp task depend(in:bcast [0]) \
29 depend(out:gemm [0])
30 internal ::gemm <target >(
31 alpha , A.sub(0, A.mt()-1, 0, 0),
32 B.sub(0, 0, 0, B.nt()-1),
33 beta , C.sub(0, C.mt()-1, 0, C.nt() -1));
34
35 for (int64_t k = 1; k < A.nt(); ++k) {
36 if (k+lookahead < A.nt())
37 #pragma omp task depend(in:gemm[k-1]) \
38 depend(in:bcast[k+lookahead -1]) \
39 depend(out:bcast[k+lookahead])
40 {
41 for (int64_t i = 0; i < A.mt(); ++i)
42 A.template tileBcast <target >(
43 i, k+lookahead , C.sub(i, i, 0, C.nt() -1));
44
45 for (int64_t j = 0; j < B.nt(); ++j)
46 B.template tileBcast <target >(
47 k+lookahead , j, C.sub(0, C.mt()-1, j, j));
48 }
49
50 #pragma omp task depend(in:bcast[k]) \
51 depend(in:gemm[k-1]) \
52 depend(out:gemm[k])
53 internal ::gemm <target >(
54 alpha , A.sub(0, A.mt()-1, k, k),
55 B.sub(k, k, 0, B.nt()-1),
56 scalar_t (1.0), C.sub(0, C.mt()-1, 0, C.nt() -1));
57 }
58 }

28

B.2. TRSM APPENDIX B. IMPLEMENTATION SNIPPETS

B.2 trsm

1 #pragma omp parallel
2 #pragma omp master
3 {
4 if ((A.uplo() == Uplo::Lower && A.op() == Op:: NoTrans) ||
5 (A.uplo() == Uplo::Upper && A.op() != Op:: NoTrans)) {
6 // --
7 // Lower/NoTrans or Upper/Trans , Left case
8 // Forward sweep
9 for (int64_t k = 0; k < mt; ++k) {
10 scalar_t alph = k == 0 ? alpha : scalar_t (1.0);
11
12 // panel (Akk tile)
13 #pragma omp task depend(inout:row[k]) priority (1)
14 {
15 // send A(k, k) to ranks owning block row B(k, :)
16 A.template tileBcast <target >(
17 k, k, B.sub(k, k, 0, nt -1));
18
19 // solve A(k, k) B(k, :) = alpha B(k, :)
20 internal ::trsm <Target ::HostTask >(
21 Side::Left , diag ,
22 alph , A.sub(k, k),
23 B.sub(k, k, 0, nt -1), 1);
24
25 // send A(i=k+1:mt -1, k) to ranks owning block row B(i, :)
26 for (int64_t i = k+1; i < mt; ++i)
27 A.template tileBcast(
28 i, k, B.sub(i, i, 0, nt -1));
29
30 // send B(k, j=0:nt -1) to ranks owning block col B(k+1:mt -1, j)
31 for (int64_t j = 0; j < nt; ++j)
32 B.template tileBcast(
33 k, j, B.sub(k+1, mt -1, j, j));
34 }
35
36 // lookahead update , B(k+1:k+la, :) -= A(k+1:k+la, k) B(k, :)
37 for (int64_t i = k+1; i < k+1+ lookahead && i < mt; ++i) {
38 #pragma omp task depend(in:row[k]) \
39 depend(inout:row[i]) priority (1)
40 {
41 internal ::gemm <Target ::HostTask >(
42 scalar_t (-1.0), A.sub(i, i, k, k),
43 B.sub(k, k, 0, nt -1),
44 alph , B.sub(i, i, 0, nt -1), 1);
45 }
46 }
47
48 // trailing update , B(k+1+la:mt -1, :) -= A(k+1+la:mt -1, k) B(k, :)
49 // Updates rows k+1+la to mt -1, but two depends are sufficient:
50 // depend on k+1+la is all that is needed in next iteration;
51 // depend on mt -1 daisy chains all the trailing updates.
52 if (k+1+ lookahead < mt) {
53 #pragma omp task depend(in:row[k]) \
54 depend(inout:row[k+1+ lookahead]) \
55 depend(inout:row[mt -1])
56 {
57 internal ::gemm <target >(
58 scalar_t (-1.0), A.sub(k+1+ lookahead , mt -1, k, k),
59 B.sub(k, k, 0, nt -1),
60 alph , B.sub(k+1+ lookahead , mt -1, 0, nt -1));
61 }
62 }
63 }
64 }

29

	Contents
	List of Figures
	List of Tables
	Introduction
	Implementation
	Matrix Class Hierarchy
	Handling of side, uplo, trans
	gemm
	syrk, syr2k, herk, her2k
	symm, hemm
	trmm, trsm

	Handling of Multiple Precisions
	Parallelization
	gemm and Other Routines
	trsm

	Experiments
	Environment
	Performance
	PBLAS Routines in Double Precision
	Different Cases of DTRMM
	GEMM in Different Precisions

	Traces

	Summary
	Bibliography
	Appendices
	Function Signatures
	Implementation Snippets
	gemm
	trsm

