
3

Designing SLATE
SLATE: Software for Linear Algebra Targeting Exascale

Jakub Kurzak
Panruo Wu
Mark Gates
Ichitaro Yamazaki
Piotr Luszczek
Gerald Ragghianti
Jack Dongarra

Innovative Computing Laboratory

January 30, 2018

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear
Security Administration) responsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering and early testbed platforms,
in support of the nation’s exascale computing imperative.

The authors would like to thank Jeff Larkin from the NVIDIA Developer Technology team for sharing
insights about the inner workings of NVIDIA hardware and software solutions.

Revision Notes
09-2017 first publication

01-2018 improved artwork, new cover

@techreport{kurzak2017designing,
author={Kurzak, Jakub and Wu, Panruo and Gates, Mark and Yamazaki, Ichitaro

and Luszczek, Piotr and Ragghianti, Gerald and Dongarra, Jack},
title={{SLATE} Working Note 3: Designing {SLATE}:

Software for Linear Algebra Targeting Exascale},
institution={Innovative Computing Laboratory, University of Tennessee},
year={2017},
month={September},
number={ICL-UT-17-06},
note={revision 09-2017}

}

i

Contents

1 Introduction 1

2 Design 3
2.1 Matrix Layout . 3
2.2 Class Structure . 6
2.3 Model of Parallelism . 10
2.4 Message Passing Communication . 11

2.4.1 Ibcast/Wait Implementation . 12
2.4.2 Isend/Irecv/Wait Implementation . 12

2.5 Node Level Memory Consistency Model . 13
2.5.1 CUDA Managed Memory . 13
2.5.2 OpenMP Directives . 14
2.5.3 OpenMP API . 15
2.5.4 Discussion . 15

2.6 Cholesky Example . 16

3 Preliminary Performance Results 18
3.1 Experimental Setup . 18
3.2 Multicore Scaling . 18
3.3 GPU Scaling . 19
3.4 Discussion . 20
3.5 Traces . 21

4 Other Considerations 24
4.1 Software Engineering . 24
4.2 Development Road Bumps . 25

ii

List of Figures

1.1 Software Stack. 1

2.1 Different types of matrices accommodated by the matrix class. 4
2.2 2D block cyclic mapping of a matrix. 5
2.3 Permanent tiles and transient tiles. 5
2.4 Rectangular tiling. 5
2.5 Matrix dimensions. 9
2.6 Dynamic tasking. 10
2.7 Tile based communication. 11

3.1 Strong scaling using POWER8. 19
3.2 Asymptotic scaling using POWER8. 19
3.3 Node performance using P100. 20
3.4 Asymptotic scaling using P100. 20
3.5 Multicore trace. 21
3.6 Single GPU trace. 22
3.7 Multi GPU trace. 23

iii

CHAPTER 1

Introduction

Figure 1.1 shows the SLATE so�ware stack, designed a�er a careful consideration of all available
implementation technologies [1]1. The objective of SLATE is to provide dense linear algebra
capabilities to the ECP applications, e.g., EXAALT, NWChemEx, QMCPACK, GAMESS, as well
as other so�ware libraries and frameworks, e.g., FBSS. In that regard, SLATE is intended as a
replacement for ScaLAPACK, with superior performance and scalability in distributed memory
environments with multicore processors and hardware accelerators.

Figure 1.1: So�ware Stack.

The SLATE project also encompasses the design and implementation of C++ APIs for BLAS
and LAPACK [10]2, and for batch BLAS. Underneath these APIs, highly optimized vendor
libraries will be called for maximum performance (Intel MKL, IBM ESSL, NVIDIA cuBLAS,
AMD rocBLAS, etc.).

1http://www.icl.utk.edu/publications/swan-001
2http://www.icl.utk.edu/publications/swan-002

1

 http://www.icl.utk.edu/publications/swan-001
 http://www.icl.utk.edu/publications/swan-002

CHAPTER 1. INTRODUCTION

To maximize portability, the current design relies on the MPI standard for message passing,
and the OpenMP standard for multithreading and o�oad to hardware accelerators. The collab-
orations with the ECP Exa MPI and OMPI-X projects are intended to improve message passing
capabilities, while the collaboration with the ECP SOLLVE project is intended to improve
multithreading capabilities.

There will also be opportunities for replacing the layer of MPI and OpenMP with a specialized
runtime system, such as DTE (a.k.a. PaRSEC) [7], contingent on the runtime providing good
interoperability with MPI and OpenMP, implementing support for nested parallelism, and
demonstrating acceptable scheduling overheads.

Overall, the objective of SLATE is to leverage years of experience maintaining legacy lin-
ear algebra so�ware (LAPACK [4], ScaLAPACK [5]), developing new linear algebra so�ware
(PLASMA [15], DPLASMA [6], MAGMA [8]), and implementing runtime scheduling systems
(QUARK [14], PaRSEC [7], PULSAR [13]), to deliver a so�ware package that:

Targets Modern Hardware such as the upcoming CORAL systems, where the number of nodes
is large, and each node contains a heavyweight multicore processor and a number of
heavyweight hardware accelerators.

Guarantees Portability by relying on standard computational components (vendor implemen-
tations of BLAS and LAPACK), and standard parallel programming technologies (MPI,
OpenMP) or portable runtime systems (e.g., PaRSEC).

Provides Scalability by employing proven techniques of dense linear algebra, such as the 2D
block cyclic data distribution, as well as modern parallel programming approaches, such
as dynamic scheduling and communication overlapping.

Facilitates Productivity by relying on the intuitive Single ProgramMultiple Data (SPMD) pro-
gramming model and a set of simple abstractions to represent dense matrices and dense
matrix operations.

Assures Maintainability by employing useful facilities of the C++ language, such as templates
and overloading of functions and operators, and focusing on minimizing code bloat by
relying on compact representations.

2

CHAPTER 2

Design

2.1 Matrix Layout

The new matrix storage introduced in SLATE is probably its most impactful feature. In this
respect, SLATE represents a radical departure from the traditional wisdom of dense linear
algebra so�ware. Unlike in other packages, including LAPACK, ScaLAPACK, PLASMA, MAGMA,
Elemental, where the matrix occupies a contiguous memory region, in SLATE the matrix
consists of a collection of individually allocated tiles, with no correlation between their positions
in the matrix and their memory locations. The new structure, introduced in SLATE, o�ers
numerous advantages, e.g.:

• The same structure can be used for holding many di�erent matrix types1, e.g., general,
symmetric, triangular, band, symmetric band, etc. (Figure 2.1). No memory is wasted
for storing parts of the matrix that hold no useful data, e.g., the upper triangle of a lower
triangular matrix. There is no need for using complex matrix layouts, such as the Recursive
Packed Format (RPF) [2, 3, 11] in order to save space.

• The matrix can be easily converted, in parallel, from one layout to another with O(P)
memory overhead, where P is the number of processors (cores/threads) used. Possible
conversions include: changing the layout of tiles from column major to row major,
“packing” of tiles for e�cient execution of the GEMM operation2, low-rank compression
of tiles, re-tiling of the matrix (changing the tile size), etc. Notably, transposition of the
matrix can be accomplished by transposition of each tile and remapping of the indexes.
There is no need for complex in-place layout translation and transposition algorithms [12].

1http://www.netlib.org/lapack/lug/node24.html
2https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm

3

http://www.netlib.org/lapack/lug/node24.html
 https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm

2.1. MATRIX LAYOUT CHAPTER 2. DESIGN

Figure 2.1: Di�erent types of matrices accommodated by the matrix class, from le� to right:
general, (lower) triangular or symmetric, general band, (lower) triangular or symmetric band.
Hollow boxes indicate tiles that are not created and do not consume memory.

• Tiles can easily be moved or copied among di�erent memory spaces. Both inter-node
communication and intra-node communication is vastly simpli�ed. Tiles can easily and
e�ciently be transferred between nodes using MPI. Tiles can be easily moved in and out
of faster memory, such as the MCDRAM in the Xeon Phi processors. Tiles can also be
copied to one or more device memories in the case of GPU acceleration.

Note: Although the PLASMA library stores the matrix by tiles, it still relies on contiguous matrix
allocation, with direct mapping of tiles’ coordinates to their memory addresses, which
deprives it of the bene�ts of independent management of individual tiles.

In the current prototype, the matrix is implemented as an object of type std::map holding
pointers to tiles, and indexed by objects of type std::tuple<int64_t, int64_t, int>:

std::map <std::tuple <int64_t , int64_t , int >, Tile <FloatType >*> *tiles_;

The �rst two elements of the tuple indicate the location of the tile in the matrix (row, column).
The third element indicates the memory space, i.e., OpenMP device number. Notably, multiple
replicas of the same tile can exist simultaneously in di�erent memory spaces.

Note: Initially, std::map was chosen, for simplicity. However, the standard implementation
of std::map relies on a red-black tree, with O(log n) complexity, which is a performance
concern. Although this has not prevented good performance numbers so far, it is a
reason for concern in the long run. The simple solution is the replacement of std::map
with std::unordered_map, which is of O(1) complexity, the caveat being that we need to
provide the hashing function for the keys (std::tuple<int64_t, int64_t, int>), which
may require some careful consideration.

Another important feature of the SLATE matrix is that, in the distributed memory environment,
it provides a local view of the distributed matrix, i.e.:

• It relies on global indexing of tiles, meaning that each tile is identi�ed by the same unique
tuple across all processes.

4

2.1. MATRIX LAYOUT CHAPTER 2. DESIGN

Figure 2.2: 2D block cyclic mapping of a matrix to 4 processes arranged in a 2× 2 grid. Hollow
boxes indicate tiles that are not created and do not consume memory.

• Each process only allocates its portion of the global matrix, following some prede�ned
distribution, e.g., 2D block cyclic. (Figure 2.2).

• Remote tiles are accessed by creating tiles in the local matrix, at their appropriate coordi-
nates, and bringing over the data by the means of message passing. Figure 2.3 shows a
symmetric (positive de�nite) matrix in the process of Cholesky factorization by 4 pro-
cesses in a 2× 2 arrangement. Blue tiles are owned by process 0. Yellow tiles are brought
in from process 2 for applying the transformations of the second panel factorization.

Figure 2.3: Permanent tiles (blue)
and transient tiles (yellow).

The global indexing of tiles has the advantage of presenting
the developer with a simple SPMD programming model,
not too di�erent from the serial (superscalar) programming
model of the PLASMA library.

The distribution of tiles to processes is speci�ed by a globally
de�ned function. By default, SLATE provides the standard
2D block cyclic distribution, but the user can supply an ar-
bitrary mapping function. Similarly, in the case of o�oad
to accelerators, distribution to multiple accelerators is spec-
i�ed by a mapping function. By default, SLATE applies 1D
block cyclic distribution to the local tiles, but the user can
replace it with an arbitrary function.

Figure 2.4: Rectangular tiling.

Finally, SLATE does not require uniform tile sizes. The only
requirement is that diagonal tiles are square (Figure 2.4).
Although the current prototype is not generalized to that
extent, there are no particular di�culties in supporting rect-
angular tiles. This will facilitate in the future the use of
the SLATE infrastructure for developing, e.g., Adaptive Cross
Approximation (ACA) linear solvers. Similarly to the distribu-
tion of tiles, the row heights and column widths have to be
speci�ed by a globally de�ned function.

5

2.2. CLASS STRUCTURE CHAPTER 2. DESIGN

2.2 Class Structure

The design of SLATE revolves around two classes: Matrix and Tile. The Tile is intended as a
simple class for maintaining the state of individual tiles and implementing rudimentary (serial)
tile operations, while the Matrix class is intended as a much more complex class, maintaining
the state of distributed matrices throughout the execution of parallel matrix algorithms in
distributed memory environments.

Note: The code snippets presented in this report come from the prototype of the Cholesky
factorization, developed in the course of the design phase, and are intended for illustration
of the design ideas and not the �nal product. Speci�cally, many low level implementation
details are omitted for brevity, such as locks. Also, at this stage the code is void of any
inheritance structure, which is intended in the �nal product.

The following is a simpli�ed code snippet of the Tile class:
1 #ifndef SLATE_TILE_HH
2 #define SLATE_TILE_HH
3
4 #include <blas.hh>
5 #include <lapack.hh>
6 ...
7
8 namespace slate {
9
10 template <typename FloatType >
11 class Tile {
12 public:
13 Tile(int64_t mb, int64_t nb);
14 Tile(const Tile <FloatType > *src_tile , int dst_device_num);
15 ˜Tile ();
16
17 void gemm(blas::Op transa , blas::Op transb , FloatType alpha ,
18 Tile <FloatType > *a, Tile <FloatType > *b, FloatType beta);
19
20 void syrk(blas::Uplo uplo , blas::Op trans ,
21 FloatType alpha , Tile <FloatType > *a, FloatType beta);
22
23 void trsm(blas::Side side , blas::Uplo uplo , blas::Op transa ,
24 blas::Diag diag , FloatType alpha , Tile <FloatType > *a)
25 ...
26
27 int64_t mb_; ///< tile height
28 int64_t nb_; ///< tile width
29
30 FloatType *data_; ///< tile data
31 ...
32
33 private:
34 static int host_num_; ///< OpenMP initial device number
35 int device_num_; ///< OpenMP device number
36 ...
37 };
38
39 template <typename FloatType >
40 int Tile <FloatType >:: host_num_ = omp_get_initial_device ();
41
42 } // namespace slate
43
44 #endif // SLATE_TILE_HH

6

2.2. CLASS STRUCTURE CHAPTER 2. DESIGN

The code illustrates the following design decisions:

Lines 4, 5: The implementation of the Tile class is based on the C++ APIs for BLAS and
LAPACK, being developed simultaneously in the course of the SLATE project3. The
primary objective of those APIs is the use of templating for handling of multiple preci-
sions (single/double, real/complex) [10].

Line 10: The Tile class is templated for supporting multiple precisions, initially the basic four
precisions of LAPACK and ScaLAPACK, but possibly also extended precisions, such as
double-double or triple-�oat, or lower precisions, such as the half precision (commonly
referred to as FP16)4.

Line 13, 14: The class provides a basic set of constructors. A simple constructor creates a tile
with speci�c dimensions in the host memory (the memory of the “initial device”). A copy
constructor creates a copy of the tile in the memory space of another device.

Line 17, 24: The class implements a set of methods for performing basic dense linear algebra
operations, matrix (tile) multiplication, symmetric rank-k update, triangular solve, etc.
These methods basically forward the call to the appropriate routines of BLAS and LA-
PACK through their respective C++ APIs. They also implement auxiliary tasks, such as
enforcement of atomic access through locks, critical sections, etc. They are also intended
to include comprehensive error checks, such as checks of parameter dimensions, checks
for null pointers, etc.

Line 27-30: The class stores basic information about the tile, such as its dimensions and the
pointer to its data. This information may become more complex, as polymorphism is
introduced to handle di�erent types of tiles, e.g., low-rank compressed tiles.

Line 34, 35: The class stores the tile’s location, i.e., the OpenMP device number where the tile
data is located. A class (static) �eld stores the device number identifying the host, referred to
as the “initial device” in the OpenMP nomenclature, so that the omp_get_initial_device()
function does not have to be invoked every time the host needs to be identi�ed. The �eld
is initialized in line 40.

The following is a simpli�ed code snippet of the Matrix class:

1 #ifndef SLATE_MATRIX_HH
2 #define SLATE_MATRIX_HH
3
4 #include "slate_Tile.hh"
5
6 #include <algorithm >
7 #include <functional >
8 #include <map >
9 #include <set >
10 #include <vector >
11 ...
12
13 #include <mpi.h>
14 #include <omp.h>
15

3http://www.icl.utk.edu/publications/swan-002
4https://en.wikipedia.org/wiki/Half-precision floating-point format

7

http://www.icl.utk.edu/publications/swan-002
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

2.2. CLASS STRUCTURE CHAPTER 2. DESIGN

16 namespace slate {
17
18 template <typename FloatType >
19 class Matrix {
20 public:
21 Matrix(int64_t m, int64_t n, FloatType *a, int64_t lda ,
22 int64_t mb, int64_t nb);
23 Matrix(int64_t m, int64_t n, FloatType *a, int64_t lda ,
24 int64_t mb, int64_t nb, MPI_Comm mpi_comm , int64_t p, int64_t q);
25 Matrix(const Matrix &a, int64_t it, int64_t jt, int64_t mt, int64_t nt);
26 ˜Matrix ();
27
28 void potrf(blas::Uplo uplo);
29 void trsm(blas::Side side , blas::Uplo uplo ,
30 blas::Op trans , blas::Diag diag ,
31 FloatType alpha , const Matrix &a);
32 ...
33
34 private:
35 Tile <FloatType >* &operator ()(int64_t i, int64_t j) {
36 return (* tiles_)[{it_+i, jt_+j, host_num_ }];
37 }
38 Tile <FloatType >* &operator ()(int64_t i, int64_t j) const {
39 return (* tiles_)[{it_+i, jt_+j, host_num_ }];
40 }
41 Tile <FloatType >* &operator ()(int64_t i, int64_t j, int device) {
42 return (* tiles_)[{it_+i, jt_+j, device }];
43 }
44 Tile <FloatType >* &operator ()(int64_t i, int64_t j, int device) const {
45 return = (* tiles_)[{it_+i, jt_+j, device }];
46 }
47
48 int64_t it_; ///< first row of tiles
49 int64_t jt_; ///< first column of tiles
50 int64_t mt_; ///< number of tile rows
51 int64_t nt_; ///< number of tile columns
52
53 std::map <std::tuple <int64_t , int64_t , int >, Tile <FloatType >*> *tiles_;
54
55 MPI_Comm mpi_comm_;
56
57 int mpi_size_;
58 int mpi_rank_;
59
60 static int host_num_; ///< OpenMP initial device number
61 int num_devices_; ///< OpenMP number of devices
62
63 std:: function <int64_t (int64_t i, int64_t j)> tileRankFunc;
64 std:: function <int64_t (int64_t i, int64_t j)> tileDeviceFunc;
65 std:: function <int64_t (int64_t i)> tileMbFunc;
66 std:: function <int64_t (int64_t j)> tileNbFunc;
67 };

The code illustrates the following design decisions:

Lines 4-14: The Matrix class is implemented based on the Tile class, employs a set of Standard
Template Library (STL) containers, and relies on MPI and OpenMP for handling message
passing and node-level parallelism.

Lines 21-25: The Matrix class provides a standard set of constructors. In a single node scenario,
the SLATE matrix can be built from a LAPACK matrix, given the pointer and the leading
dimension of the LAPACK matrix, and the intended tiling factors for the SLATE matrix.
In a distributed memory scenario, SLATE also requires the MPI communicator and the

8

2.2. CLASS STRUCTURE CHAPTER 2. DESIGN

dimensions of the process grid (P andQ), if the 2D block cyclic distribution is the intention.
Arbitrary, user-de�ned, mapping functions will also be supported.

Lines 28-31: The class provides a set of methods implementing the main functionality of the
SLATE package: parallel BLAS, parallel norms, parallel matrix factorizations and solves,
etc.

Lines 35-46: The class overloads the parentheses operator to provide access to tiles based on
their coordinates. I.e., for a matrix object "a", the expression a(i, j) returns the pointer
to the tile located in row i and column j. The optional third parameter allows for accessing
the tile in a speci�ed device memory. If omitted, the host memory is assumed.

 jt_ nt_

i
t
_

m
t
_

Figure 2.5: Matrix dimensions.

Lines 48-51: Each matrix can be a submatrix
within a larger matrix (Figure 2.5) The
it_ and jt_ �elds contain the vertical
and horizontal o�sets from the beginning
of the main matrix, respectively. The
mt_ and nt_ �elds contain the size of the
(sub)matrix. The values indicate the num-
ber of tiles, not elements. The �elds have
identical names and meaning to the ones
in the matrix descriptor in the PLASMA
library.

Lines 53: As already described in Section 2.1, the matrix is a collection of tiles, stored as an object
of type std::map (alternatively std::unordered_map), and indexed by tile coordinates in
the matrix and the device number. Unlike in other linear algebra packages, tile coordinates
have no relation to the tile’s location in the memory.

Lines 55-61: The class contains the basic MPI information, such as the MPI communicator, the
MPI size (number of participating processes), and the MPI rank (the index of the local
process), as well as the basic OpenMP information, such as the number identifying the
host and the number of devices.

Lines 63-66: Finally, the class contains the functions describing the partitioning and tiling of
the matrix. tileRankFunc de�nes the mapping of tiles to the MPI ranks, based on the tiles’
coordinates, while tileDeviceFunc de�nes the mapping of tiles to devices. tileMbFunc
de�nes the height for a row of tiles, based on its vertical location, while tileNbFunc de�nes
the width of a column of tiles, based on its horizontal location.

Notably, there seems to be no need for a separate structure to maintain state. Traditionally,
so�ware libraries introduce a designated object to preserve state (Handle, Context, etc.). In
SLATE, it looks like the Matrix is perfectly suitable for that purpose, and there is no need for a
separate structure. E.g., right now, the Matrix stores the MPI communicator and the process
grid dimensions, which would traditionally be stored by an object such as Handle or Context.

9

2.3. MODEL OF PARALLELISM CHAPTER 2. DESIGN

2.3 Model of Parallelism

The cornerstones of SLATE are: 1) the SPMD programming model for productivity and main-
tainability, 2) dynamic task scheduling using OpenMP for maximum node-level parallelism and
portability, 3) the technique of lookahead for prioritization of the critical path, 4) non-blocking
messaging using MPI for communication overlapping, 5) primarily reliance on the 2D block
cyclic distribution for scalability, 6) reliance on the GEMM operation, speci�cally its batch
rendition, for maximum hardware utilization.

Figure 2.6: Dynamic tasking.

The Cholesky factorization prototype, developed
in the course of this work, established the ba-
sic framework for the development of other rou-
tines. Figure 2.6 illustrates the main principles.
Data�ow tasking (omp task depend) is used for
scheduling operations on large blocks of the ma-
trix (large boxes connected with arrows), and
nested tasking (omp task) is used for scheduling
individual tile operations to individual cores. At
the same time, batch BLAS calls are used for fast
processing of large blocks of the matrix using pow-
erful devices, such as GPU accelerators or large
numbers of cores of the Xeon Phi processors.

This approach is superior to data�ow scheduling
on a tile by tile basis. For a matrix of N ×N tiles,
tile by tile scheduling creates O(N3) dependen-
cies. Combined with large numbers of cores, this
o�en leads to catastrophic scheduling overheads.
This is one of the main performance handicaps of
the OpenMP version of the PLASMA library [15],
speci�cally in the case of processors with large
numbers of cores, such as the Xeon Phi family [9].
In contrast, the SLATE approach creates O(N) de-
pendencies, instead of O(N3), which completely
eliminates the issue of scheduling overheads. At
the same time, this solution is a necessity for
scheduling large bundles of tile operations to ac-
celerators.

One or more columns of the trailing submatrix are singled out for prioritized processing to
facilitate faster advance along the critical path, i.e., to implement the lookahead. Prioritization
of tasks can be accomplished using the OpenMP priority clause. At the same time, the depth
of the lookahead needs to be limited, as it is proportional to the size of the extra memory
required for communication bu�ers. Deep lookahead translates to depth-�rst processing,
synonymous with le�-looking algorithms, which can provide scheduling bene�ts in shared
memory environments, but can also lead to catastrophic memory overheads in distributed
memory environments, which was a painful lesson of the PULSAR project [13].

10

2.4. MESSAGE PASSING COMMUNICATION CHAPTER 2. DESIGN

Distributed memory computing is implemented by �ltering the tile operations through the
matrix mapping function (Section 2.1) and issuing appropriate communication calls (Section 2.4)
in the course of the computation. Management of separate memories of multiple accelerators
is handled by a node-level memory consistency protocol (Section 2.5).

2.4 Message Passing Communication

Communication in SLATE relies on explicit data�ow information. When a tile is modi�ed by a
process, and the data needs to be propagated across other processes, a call is issued to a function
that initiates the communication. A synchronizing call is required on the receiving side, before
the tile data can be accessed.

Communication is done on a tile basis. The initiating call speci�es coordinates of the tile that
needs to be propagated, and the boundaries of the matrix region where the tile will be applied.
The completion call speci�es the coordinates of the tile that is being received, and is basically
synonymous with the wait operation.

Figure 2.7: Tile based communication.

Consider the step of the Cholesky factorization
shown in Figure 2.7. A�er the factorization of the
�rst panel, the panel tiles will be applied across
the trailing submatrix. Tile (2, 0) will be applied
to the right, and its mirror image (transposition)
will be applied to the second column of the matrix
(the lower part). The initiating call has the form:
tileSend(2, 0, {2, 2, 1, 2}, {2, 6, 2, 2}),
and the receiving calls have the form:
tileSync(2, 1), tileSync(2, 2), tileSync(3, 2),
etc. In the C++ implementation, the ranges
are passed as braced initializer lists of type
std::array<int64_t, 4>.

The actual set of processes participating in the exchange is computed in the tileSend function,
based on the function mapping tiles to ranks. The send function builds the list of participating
processes and initiates the communication. Also, on the receiving side, it populates the local
matrix with the tiles meant for reception of the remote data. These transient tiles are created
with a lifespan, which is atomically decremented on each access, so that the tile can be discarded
when it is used up. This approach is a necessity in the case of dynamic scheduling, as there is
no clear completion point, when the transient tiles can be safely discarded. At the same time,
preserving them for too long, past their usefulness, leads to excessive memory usage.

Most of the communication in SLATE will be of multicast nature, and the non-blocking collec-
tives of MPI 3 seem to be the natural choice. Currently, however, they su�er from a serious
shortcoming, as discussed in the following section. Because of that, a temporary alternative
implementation, using point-to-point communication, is also discussed.

11

2.4. MESSAGE PASSING COMMUNICATION CHAPTER 2. DESIGN

2.4.1 Ibcast/Wait Implementation

In the general case of arbitrary mapping of tiles to the processes’ ranks, basically a multicast
operation needs to be performed. This can be done by creating an MPI group of participating
processes, then creating a subcommunicator for that group, and then using the broadcast
operation across that communicator. This can be accomplished with the following set of MPI
functions:

1 int MPI_Group_incl(MPI_Group group , int n, const int ranks[], MPI_Group *newgroup);
2
3 int MPI_Comm_create_group(MPI_Comm comm , MPI_Group group , int tag , MPI_Comm *newcomm);
4
5 int MPI_Comm_rank(MPI_Comm comm , int *rank);
6
7 int MPI_Group_translate_ranks(MPI_Group group1 , int n, const int ranks1[],
8 MPI_Group group2 , int ranks2 []);
9
10 int MPI_Ibcast(void *buffer , int count , MPI_Datatype datatype , int root ,
11 MPI_Comm comm , MPI_Request *request);
12
13 int MPI_Wait(MPI_Request *request , MPI_Status *status);

First, the MPI_Group_incl() function is used to create the group of participating processes.
Then the MPI_Comm_create_group() is used to create a subcommunicator for that group. Then
each process can use MPI_Comm_rank() to �nd out its own rank in the new communicator,
and MPI_Group_translate_ranks() to �nd out the rank of the broadcast root. At this point,
MPI_Ibcast() can be used to initiate the broadcast, which can be completed with the usual
MPI_Wait() function.

The problem with this, fairly straightforward, scenario is that, while MPI_Ibcast() is non
blocking, MPI_Comm_create_group() is blocking, and it is actually blocking across the main
communicator, which completely nulli�es the advantages of MPI_Ibcast(). At this point, it is
not clear if the blocking behavior of MPI_Comm_create_group() is a fundamental restriction or
an implementation artifact. As long as MPI_Comm_create_group() blocks, MPI_Ibcast() cannot
really be taken advantage of, unless a communicator created once can be used multiple times.
Unfortunately, this is not the case for SLATE, if arbitrary mapping of tiles to ranks is allowed.

2.4.2 Isend/Irecv/Wait Implementation

Due to the aforementioned shortcomings of MPI’s non-blocking collective communication, we
implemented a temporary solution, based on MPI’s non-blocking point-to-point communica-
tion, utilizing the most basic set of MPI functions:

1 int MPI_Isend(const void *buf , int count , MPI_Datatype datatype , int dest , int tag ,
2 MPI_Comm comm , MPI_Request *request);
3
4 int MPI_Irecv(void *buf , int count , MPI_Datatype datatype , int source , int tag ,
5 MPI_Comm comm , MPI_Request *request);
6
7 int MPI_Wait(MPI_Request *request , MPI_Status *status);

This means that the originating process sends the message in sequence to all the recipients.
While this is far form optimal, it is also not overly detrimental, as with the 2D block cyclic
distribution each tile is sent to roughly

√
P destinations, where P is total number processes.

12

2.5. NODE LEVELMEMORY CONSISTENCYMODEL CHAPTER 2. DESIGN

At this stage, optimal broadcast patterns are much less critical than non-blocking properties.
Eventually, this issue will have to be addressed when targeting really large scale problems. The
ideal solution is implementation of truly non-blocking multicast functionality in MPI libraries.

2.5 Node Level Memory ConsistencyModel

A couple of di�erent solutions are available for dealing with the complexity of node-level
memory architecture, i.e., dealing with separate physical memories of multiple hardware
accelerators. The most viable options include the use of CUDA managed memory, OpenMP
directives, and OpenMP o�oad API. The following sections discuss the main aspects of each
solution.

2.5.1 CUDAManagedMemory

NVIDIA CUDA o�ers a set of functions for managing memory using the Uni�ed Memory
system5, which automatically transfers memory between the host memory and the memories
of multiple devices, as needed, on a page basis:

1 __host__ c u d a E r r o r _ t
2 cudaMallocManaged(void** devPtr , size_t size , unsigned int flags=cudaMemAttachGlobal);
3
4 __host__ __device__
5 cudaError_t cudaFree(void* devPtr);
6
7 __host__ c u d a E r r o r _ t
8 cudaMemAdvise(const void* devPtr , size_t count , cudaMemoryAdvise advice , int device);
9
10 __host__ c u d a E r r o r _ t
11 cudaMemPrefetchAsync(const void* devPtr , size_t count , int dstDevice , cudaStream_t stream =0);

Managed memory is allocated using the cudaMallocManaged() function and freed using the
cudaFree() function. The cudaMemAdvise() function can be used to hint the usage pattern, and
the cudaMemPrefetchAsync() function can be used to prefetch.

cudaMemAdvise() can be used to advise the Uni�ed Memory subsystem about the usage pattern
for the memory range starting at the speci�ed address and extending to size bytes. The start
address of the memory range will be rounded down, and the end address rounded up, to be
aligned to the CPU page size, before the advice is applied. The cudaMemAdvise() funciton allows
for specifying if the memory will be mostly read or written and what is the preferred location
for that memory.

cudaMemPrefetchAsync() prefetches memory to the speci�ed destination device. devPtr is the
base device pointer of the memory to be prefetched and dstDevice is the destination device.
count speci�es the number of bytes to copy, and stream is the stream in which the operation is
enqueued. If there is insu�cient memory to prefetch the desired region, the Uni�ed Memory
driver may evict pages from other managed allocations to the host memory in order to make
room.

5http://docs.nvidia.com/cuda/cuda-runtime-api/group CUDART MEMORY.html

13

http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html

2.5. NODE LEVELMEMORY CONSISTENCYMODEL CHAPTER 2. DESIGN

New generations of NVIDIA GPUs support device memory oversubscription, i.e., replication of
the same memory region in di�erent devices. This capability is indicated by a non-zero value
for the device attribute cudaDevAttrConcurrentManagedAccess. Concurrent managed access can
be accomplished by passing cudaMemAdviseSetReadMostly to the cudaMemAdvise() function. If
cudaMemPrefetchAsync() is subsequently called on this region, it will create a read-only copy of
the data on the destination processor. If any processor writes to this region, all copies of the
corresponding page will be invalidated except for the one where the write occurred.

Note: Care needs to be taken when passing managed memory to libraries, particularly MPI. The
MPI needs to be CUDA-aware and have explicit support for managed memory. Otherwise,
the MPI call might fail or, in the worst case, produce silently wrong results. This may
happen when, e.g., the MPI tries to register managed memory for Remote Direct Memory
Access (RDMA).

2.5.2 OpenMPDirectives

O�oad to accelerators can be accomplished using OpenMP #pragma directives, which allow
for assigning work to multiple devices, and moving data to and from their corresponding
memories6. Most tasks can be accomplished using the following subset:

1 #pragma omp target
2 #pragma omp target data
3 device
4 map
5 to
6 from
7 tofrom
8 alloc
9 #pragma omp target enter data
10 #pragma omp target exit data
11 #pragma omp target update

The omp target directive instructs the compiler to execute the enclosed block of code on a
device. In the case of multiple devices, the device number can be speci�ed using the device
clause. The map clause allows for explicitly mapping data in host memory to device memory. If
the map type is to or tofrom, then the host data is copied to the device. If the value is from or
alloc, then the device data is not initialized. If the data was created when the target region was
encountered, then it is deallocated on exit from the region. If the map type was from or tofrom,
then it is copied to the host memory before it is deallocated.

The omp target data directive maps data in host memory to device memory and also de�nes
the lexical scope of the data being mapped, allowing for a reduction of data copies, when multi-
ple target regions are using the same data7. The omp target enter data, omp target exit data,
and omp target update clauses provide further �exibility in handling data in a way that mini-
mizes data motion.

6https://www.ibm.com/support/knowledgecenter/en/SSXVZZ 13.1.5/com.ibm.xlcpp1315.lelinux.doc/
compiler ref/tuoptppp.html

7https://www.ibm.com/support/knowledgecenter/en/SSXVZZ 13.1.5/com.ibm.xlcpp1315.lelinux.doc/
compiler ref/prag omp target data.html

14

https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.xlcpp1315.lelinux.doc/compiler_ref/tuoptppp.html
https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.xlcpp1315.lelinux.doc/compiler_ref/tuoptppp.html
https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.xlcpp1315.lelinux.doc/compiler_ref/prag_omp_target_data.html
https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.xlcpp1315.lelinux.doc/compiler_ref/prag_omp_target_data.html

2.5. NODE LEVELMEMORY CONSISTENCYMODEL CHAPTER 2. DESIGN

2.5.3 OpenMPAPI

The OpenMP standard also o�ers a set of API functions for managing multiple accelerator de-
vices and the data tra�c among their corresponding memories8. Most task can be accomplished
using the following small subset:

1 int omp_get_initial_device(void);
2
3 int omp_get_num_devices(void);
4
5 void* omp_target_alloc(size_t size , int device_num);
6
7 void omp_target_free(void *device_ptr , int device_num);
8
9 int omp_target_memcpy(void *dst , void *src , size_t length ,
10 size_t dst_offset , size_t src_offset ,
11 int dst_device_num , int src_device_num);

The omp_get_initial_device() function returns a unique number which identi�es the host.
The number is outside the range from 0 to omp_get_num_devices()−1. The value is implementa-
tion dependent. GCC returns −omp_get_num_devices(). The omp_get_num_devices() function
returns the number of target devices, i.e., the number of accelerators, and is basically equivalent
to cudaGetDeviceCount().

The omp_target_alloc() and omp_target_free() functions are used to allocate and free mem-
ory respectively. If the host number is passed as device_num, then host memory is allocated, if a
number between 0 and omp_get_num_devices()−1 is passed, then device memory is allocated.
This is di�erent from CUDA, where device memory is allocated with cudaMalloc(), while host
memory can be allocated with one of the standard functions - malloc(), calloc(), etc. - or
cudaMallocHost(), if pinned memory allocation is desired.

The omp_target_memcpy() function copies memory between pointers, which can be either
host or target device pointers. The equivalent CUDA function is cudaMemcpy(). In the past
cudaMemcpy() required the direction of the copy to be speci�ed (either cudaMemcpyHostToDevice
or cudaMemcpyDeviceToHost. Currently, however, cudaMemcpy() also accepts the value
cudaMemcpyDefault, in which case the direction is deduced from the pointers.

2.5.4 Discussion

The OpenMP API, described in this subsection, is currently the solution of choice. CUDA
managed memory, while o�ering the highest level of convenience and automation, su�ers
from the obvious shortcoming of being a proprietary solution. There are also concerns about
its interoperability with MPI, as mentioned in Section 2.5.1, as well as issues with support across
di�erent devices. In principle, OpenMP directives provide a similar level of convenience. At
this point, however, it is not clear if they provide an appropriate level of control. Another reason
of concern is lagging support of OpenMP o�oad directives in compilers. Missing API functions
can be easily substituted with custom implementations, which is not the case for compiler
directives.

8https://www.ibm.com/support/knowledgecenter/en/SSXVZZ 13.1.5/com.ibm.xlcpp1315.lelinux.doc/
compiler ref/bifs omp.html

15

https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.xlcpp1315.lelinux.doc/compiler_ref/bifs_omp.html
https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.xlcpp1315.lelinux.doc/compiler_ref/bifs_omp.html

2.6. CHOLESKY EXAMPLE CHAPTER 2. DESIGN

2.6 Cholesky Example

The following code shows the Cholesky factorization – implemented using the prototype
SLATE infrastructure – with somewhat compressed whitespace, but otherwise complete:

1 template <typename FloatType >
2 void Matrix <FloatType >:: potrf(blas::Uplo uplo , int64_t lookahead)
3 {
4 using namespace blas;
5
6 uint8_t *column;
7 Matrix <FloatType > a = *this;
8
9 #pragma omp parallel
10 #pragma omp master
11 for (int64_t k = 0; k < nt_; ++k) {
12 #pragma omp task depend(inout: column[k]) // ---- panel factorization and propagation
13 {
14 if (tileIsLocal(k, k))
15 a(k, k)->potrf(uplo);
16
17 if (k < nt_ -1)
18 tileSend(k, k, {k+1, nt_ -1, k, k});
19
20 for (int64_t m = k+1; m < nt_; ++m) {
21 #pragma omp task
22 if (tileIsLocal(m, k)) {
23 tileWait(k, k);
24 a.tileMoveToHost(m, k);
25 a(m, k)->trsm(Side::Right , Uplo::Lower ,
26 Op::Trans , Diag::NonUnit , 1.0, a(k, k));
27 }}
28 #pragma omp taskwait
29
30 for (int64_t m = k+1; m < nt_; ++m)
31 tileSend(m, k, {m, m, k+1, m}, {m, nt_ -1, m, m});
32 }
33 for (int64_t n = k+1; n < k+1+ lookahead && n < nt_; ++n) { // ----- lookahead columns
34 #pragma omp task depend(in: column[k]) \
35 depend(inout: column[n])
36 {
37 #pragma omp task
38 if (tileIsLocal(n, n)) {
39 tileWait(n, k);
40 a(n, n)->syrk(Uplo::Lower , Op::NoTrans , -1.0, a(n, k), 1.0);
41 }
42 for (int64_t m = n+1; m < nt_; ++m) {
43 #pragma omp task
44 if (tileIsLocal(m, n)) {
45 tileWait(m, k);
46 tileWait(n, k);
47 a.tileMoveToHost(m, n);
48 a(m, n)->gemm(Op::NoTrans , Op::Trans , -1.0, a(m, k), a(n, k), 1.0);
49 }}
50 #pragma omp taskwait
51 }}
52 if (k+1+ lookahead < nt_) { // ------------------------------------ trailing submatrix
53 #pragma omp task depend(in: column[k]) \
54 depend(inout: column[k+1+ lookahead]) \
55 depend(inout: column[nt_ -1])
56 Matrix(a, k+1+ lookahead , k+1+ lookahead , nt_ -1-k-lookahead , nt_ -1-k-lookahead).syrk(
57 Uplo::Lower , Op::NoTrans , -1.0,
58 Matrix(a, k+1+ lookahead , k, nt_ -1-k-lookahead , 1), 1.0);
59 }}}

16

2.6. CHOLESKY EXAMPLE CHAPTER 2. DESIGN

The code is intended to illustrate the basic mechanics of the SLATE approach. It is not intended
to represent the �nal solution, as many conventions are expected to change in the course of the
project. It is also quite likely that new abstraction layers will emerge as the project progresses.

The �rst block of code (lines 12-32) factors and propagates the panel. The diagonal block is
factored and sent down the column. Then a triangular solve is applied to the tiles in the column,
and then each tile is sent in the horizontal direction, while its transposed image is sent in the
vertical direction.

The second block of code (lines 33-51) applies the transformations to the lookahead number of
columns of the trailing submatrix. Diagonal tiles are updated using the syrk() method of the
Tile class, while all the other tiles are updated using the gemm() method of the Tile class.

The last block of code (lines 52-59) applies the transformations to all the remaining columns
of the trailing submatrix using the syrk() method of the Matrix class. The method relies pri-
marily on batch BLAS routines to dispatch the operations to available devices, either multicore
processors or hardware accelerators, and also invokes the necessary local communication for
tiles that are not available in the memories of appropriate devices. In the case of matrices that
do not �t in the combined memories of all the available accelerators, this method will also be
responsible for implementing streaming access to the trailing submatrix.

Memory tra�c is explicit – represented by tileSend() and tileWait() methods of the Matrix
class for distributed memory communication, and the tileMoveToHost() method of the Matrix
class for bringing tiles back to host memory from device memories. Similar methods are
available for moving tiles in the opposite direction (from the host to one of the devices), as well
as for making duplicate, read only, copies of tiles in memories of multiple devices.

Although the code has some complexity to it, it is a fairly straightforward and compact repre-
sentation, especially considering that it supports distributed memory systems and o�oad to
accelerators. In comparison, the PLASMA library involves about the same amount of code to
express the Cholesky factorization for shared memory systems only (only multithreading). At
the same time, the MAGMA library, contains a separate function for o�oad to a single GPU with
the matrix located in the host memory (magma_?potrf), a separate function for o�oad to a single
GPU, with the matrix located in the GPU memory (magma_?potrf_gpu), a separate function
for o�oad to multiple GPUs, with the matrix located in the CPU memory (magma_?potrf_m),
and a separate function for o�oad to multiple GPUs, with the matrix distributed across the
memories of the GPUs (magma_?potrf_mgpu). Each of them is at least as long as the SLATE
Cholesky routine. MAGMA does not support distributed memory.

17

CHAPTER 3

Preliminary Performance Results

3.1 Experimental Setup

Preliminary performance results were collected using the Summitdev system1 at theOakRidgeNa-
tional Laboratory (ORNL), which is intended to mimic the OLCF’s next supercomputer Summit.
Summitdev is based on IBM POWER8 processors and NVIDIA P100 (Pascal) accelerators, and is
one generation behind Summit, which will be based on POWER9 processors and V100 (Volta)
accelerators.

The Summitdev system contains three racks, each with 18 IBM POWER8 S822LC nodes, for
a total of 54 nodes. Each node contains 2 POWER8 CPUs, 10 cores each, and 4 P100 GPUs.
Each node has 256 GB of DDR4 memory. Each GPU has 16 GB of HBM2 memory. The
GPUs are connected by NVLink 1.0 at 80 GB/s. The nodes are connected with a fat-tree
EDR In�niBand. The so�ware environment used for the experiments included GCC 7.1.0,
CUDA 8.0.54, ESSL 5.5.0, and Spectrum MPI 10.1.0.3.

3.2 Multicore Scaling

This section presents the results of multicore scaling experiments (both strong scaling and
asymptotic scaling). Performance of SLATE is compared to the performance of ScaLAPACK and
the theoretical maximum performance, de�ned as the single node performance of DGEMM
multiplied by the number of nodes.

1https://www.olcf.ornl.gov/kb articles/summitdev-quickstart/

18

 https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/

3.3. GPU SCALING CHAPTER 3. PRELIMINARY PERFORMANCE RESULTS

Basic performance tuning was done for both SLATE and ScaLAPACK. The best setup for SLATE
turned out to be one process per socket. I.e., the number of processes is double the number of
nodes. The best setup for ScaLAPACK turned out to be one process per core. I.e., the nuber of
processes is 20 times the number of nodes. Tuning also involved �nding good tiling factors
for SLATE, and good blocking factors for ScaLAPACK. The tiling factor of 256 delivered good
performance for SLATE across all runs. Optimal blocking factors for ScaLAPACK included 64,
96, and 128. Performance depended heavily on the shape of the process grid for both SLATE
and ScaLAPACK. The best numbers are shown in each case.

Figure 3.1 shows the results of the strong scaling experiment, where a matrix of size
40, 000× 40, 000 is factored using an increasing number of nodes. Figure 3.2 shows the re-
sults of the asymptotic scaling experiment, where a matrix of size 20, 000× 20, 000 is factored
using a single node, a matrix of size 40, 000× 40, 000 is factored using a 4 nodes, and a matrix of
size 80, 000× 80, 000 is factored using 16 nodes. Both SLATE and ScaLAPACK scale fairly well,
for the range of problem sizes, with SLATE enjoying a modest performance advantage over
ScaLAPACK.

TF
LO

PS

0

1

2

3

4

5

6

7

8

NODES

0 4 8 12 16

SLATE
ScaLAPACK
DGEMM max

Cholesky factorization in double precision
strong scaling on summitdev (multicore only)

Figure 3.1: Strong scaling using POWER8.

TF
LO

PS

0

1

2

3

4

5

6

7

8

NODES

0 4 8 12 16

SLATE
ScaLAPACK
DGEMM max

Cholesky factorization in double precision
asymptotic scaling on summitdev (multicore only)

Figure 3.2: Asymptotic scaling using POWER8.

3.3 GPU Scaling

This section presents the results of GPU scaling experiments (single node performance and
asymptotic scaling). Basic performance tuning was done for SLATE. The tile size of 512 turned
out to deliver good performance across all runs. Also the lookahead of one proved to be the
best choice in all cases.

Unfortunately, here, we failed to produce a comparison with ScaLAPACK. To start with, cur-
rently, the OLCF facility has no license for the PESSL library. At the same time, we found
no evidence of GPU support for the Cholesky factorization in the ESSL library. Finally, we
failed to make the Netlib ScaLAPACK call the GPU enabled DGEMM from ESSL. Therefore,
no meaningful comparison with ScaLAPACK was possible at this time. We hope to be able to
produce such a comparison in near future.

19

3.4. DISCUSSION CHAPTER 3. PRELIMINARY PERFORMANCE RESULTS

Figure 3.3 shows the performance of single node runs, using a single GPU and all four GPUs.
The experiment was run until the GPU memory was exhausted. The largest matrix that �t in
the memory of a single GPU was 56, 000× 56, 000. The largest matrix that �t in the combined
memories of all four GPUs was 112, 000× 112, 000. For a single GPU, top performance slightly
exceeded 4 GFLOPS. For four GPUs, top performance slightly exceeded 9 TFLOPS. At this
point, serial bottlenecks still prevent the code from utilizing the GPUs to the fullest. Notably,
the MAGMA library reaches 12 GFLOPS in the same setup.

TF
LO

PS

0

2

4

6

8

10

SIZE

0 30,000 60,000 90,000 120,000

1 GPU
4 GPUs

Cholesky factorization in double precision
single node of summitdev

Figure 3.3: Node performance using P100.

TF
LO

PS

0

20

40

60

80

100

120

140

160

NODES

0 4 8 12 16

SLATE
ideal

Cholesky factorization in double precision
asymptotic scaling on summitdev

Figure 3.4: Asymptotic scaling using P100.

Figure 3.4 shows asymptotic scaling using one node, four nodes and 16 nodes, i.e., 4 GPUs,
16 GPU, and 64 GPUs, with matrix sizes of 112, 000 × 112, 000, 225, 000 × 225, 000, and
450, 000× 450, 000. Here, SLATE actually shows a slight superlinear scaling. This is due to
the fact that the single node run is not reaching its maximum performance for the matrix size
of 112, 000× 112, 000. Doubling the matrix size for the four nodes run doubles the amount of
work per node, which minimizes the impact of serial bottlenecks. The same trend continues for
the 16 nodes run. SLATE reached 40 TFLOPS on 4 nodes and exceeded 150 TFLOPS on 16
nodes.

3.4 Discussion

Overall, the experimental results, presented in this chapter, seem to be validating the proposed
methodology. The prototype code exceeded the performance of ScaLAPACK in distributed
memory runs with multicore processors, achieved ∼90% of MAGMA’s performance for a single
GPU run, and ∼75% of MAGMA performance for a four GPUs run. At the same time, it showed
superlinear scaling from one node to four nodes and 16 nodes. Notably, the 150 TFLOPS
performance achieved on 16 nodes, translates to ∼80% of the DGEMM peak (single node
DGEMM performance of 12 TFLOPS times 16).

It needs to be pointed out that Summitdev is a very unforgiving system, and so will be the
upcoming Summit machine. Within each node of Summitdev, the two POWER8 processors
have only about 1

40 th of the performance of the four P100 GPUs. Any computational part

20

3.5. TRACES CHAPTER 3. PRELIMINARY PERFORMANCE RESULTS

not o�oaded to the GPUs immediately becomes a bottleneck. At the same time, the NVLink
connection does not completely solve the problem of host to device communication. And
�nally, there is a massive disproportion between the computing power of a node and its network
connection. This forced us to blow up the matrix size to almost half a million, in order to get
good performance from 64 GPUs.

3.5 Traces

This section presents a handful of traces collected in the course of the preliminary runs. The
traces were collected using an ad hoc tracing code, which collects tasks’ start and end times
with omp_get_wtime(), and then prints them to a Scalable Vector Graphics (SVG) �le when the
execution completes. The same color coding is used across all traces. potrf tasks are brown,
trsm tasks are purple, syrk tasks are blue, and gemm tasks are green. The gemm tasks o�oaded to
GPUs are bright green. Host to device communication is gray, and MPI communication is very
light gray. Also, since the complete traces are very long, all �gures contain three pieces: a slice
at the beginning of the execution, a slice in the middle, and a slice at the end.

Figure 3.5 shows 4 nodes (80 cores) factoring a 25, 000 × 25, 000 matrix with the tile size of
256×256. The process grid is 2×2 and the lookahead is one. The execution is fairly smooth – with
some small gaps for communication and synchronization – until the end of the factorization,
when the trace becomes sparse due to the cores running out of work. Otherwise, communication
is mostly hidden and the cores are kept busy most of the time.

Figure 3.5: Multicore trace.

Figure 3.6 shows 20 cores and one GPU factoring a 56, 000× 56, 000 matrix with the tile size of
512× 512. The lookahead is one. The top stripe shows the beginning of the execution. First,
the �rst diagonal block is factored (brown). Then triangular solve is applied to all the tiles in
the �rst column below the diagonal block (purple). At this point, the lookahead takes e�ect and
the CPUs start executing tasks simultaneously with the GPU. The CPUs update the �rst trailing
column (green), then update all diagonal tiles of the remaining trailing submatrix, then factor
the second diagonal block, and then apply triangular solve to all the tiles below the diagonal in
the trailing column. At the same time, the GPU updates all the tiles below the diagonal in the
entire trailing submatrix (bright green). The �rst time the GPU accesses the trailing submatrix,
the submatrix is transferred from the host memory to the device memory (the long gray bar).
Then the trailing submatrix stays resident in the device memory, and only one column is
transferred between the host memory and the device memory at a time. In general, the GPU

21

3.5. TRACES CHAPTER 3. PRELIMINARY PERFORMANCE RESULTS

is busy most of the time, until the end of the factorization, when work become scarce. Also,
unlike the MPI communication, the host to device communication is currently not hidden.
Although this is not a big problem, it will be a target of future optimizations.

Figure 3.6: Single GPU trace.

Figure 3.7 shows 20 cores and four GPUs factoring a 112, 000× 112, 000 matrix with the tile size
of 512× 512. The lookahead is one. The matrix is distributed to the GPUs in a 1D block cyclic
fashion. The execution progresses similarly to the execution of the one GPU run. It is clearly
noticeable that the GPUs have an asymmetric access to the memory, as the initial transfer of
the matrix to the device memory takes about twice as long for one pair of GPU as it takes for
the other pair.

The most dramatic observation of this run is the horrendous disproportion of CPU power to
GPU power. It takes the CPU a comparable amount of time to deal with one column of the
trailing submatrix as it takes the GPUs to deal with more than 200 remaining columns. Also, the
host to device communication starts playing a bigger role in the overall performance pro�le. In
the middle of the factorization, the CPUs start overtaking the GPUs in the execution time, and
eventually dominate the execution time towards the end.

Distributed memory multi GPU runs required very large matrices to get good performance. At
this point, collection and plotting of traces became prohibitively expensive for our makeshi�
tracing tool. We plan to collect larger traces in the future, either by �xing the scalability
bottlenecks or by switching to a production quality tracing tool.

22

3.5. TRACES CHAPTER 3. PRELIMINARY PERFORMANCE RESULTS

Figure 3.7: Multi GPU trace.

23

CHAPTER 4

Other Considerations

4.1 So�ware Engineering

Basic so�ware engineering practices will be followed in the development of the SLATE so�ware.
The so�ware is hosted on Bitbucket in the repository https://bitbucket.org/icl/slate, with the
C++ APIs for BLAS and LAPACK hosted as independent repositories https://bitbucket.org/icl/
blaspp and https://bitbucket.org/icl/lapackpp, and included in SLATE as subrepositories. The
Doxygen system1 will be used for creating a reference manual, and accompanied by entry level
documentation developed in Sphinx2, the documentation generator of Python. We will follow
our coding guidelines3, which are based on established so�ware practices, mostly on the Google
C++ Coding Style Guide4, with some of the important provisions including:

• Following basic formatting rules such as 80 character lines, indentation with 4 spaces, and
basic naming conventions, mostly following the Google guide.

• Using precise-width integer types in all cases when the built-in int type is insu�cient and
staying away from unsigned integer types.

• Extensively using 64-bit integers, speci�cally the int64_t type for all mathematical objects,
such as sizes of matrices and tiles, o�ests, coordinates, etc.

• Passing input parameters as values or const references, and passing output and in/out
parameters as pointers to non-const.

1http://www.doxygen.org
2http://www.sphinx-doc.org
3https://bitbucket.org/icl/style/wiki/ICL C CPP Coding Style Guide
4https://google.github.io/styleguide/cppguide.html

24

https://bitbucket.org/icl/slate
https://bitbucket.org/icl/blaspp
https://bitbucket.org/icl/blaspp
https://bitbucket.org/icl/lapackpp
http://www.doxygen.org
http://www.sphinx-doc.org
 https://bitbucket.org/icl/style/wiki/ICL_C_CPP_Coding_Style_Guide
 https://google.github.io/styleguide/cppguide.html

4.2. DEVELOPMENT ROAD BUMPS CHAPTER 4. OTHER CONSIDERATIONS

• Using OpenMP-style stubs for compiling without certain components, e.g., compiling
without MPI for shared memory systems.

• Using C++ exceptions for error handling.

4.2 Development Road Bumps

We hit a number of roadblocks in the process of prototyping SLATE. The more painful ones
included:

Lagging compiler support for tasking and o�oad extensions: Virtually all compilers, other
than GCC, lag in support for either the OpenMP tasking directives, or the omp_target_
functions, or both. All of the compilers we looked at, including XLC, PGI, ICC, and clang,
haves some de�ciencies. We settled on the use of GCC, which has outstanding support for
the tasking extensions, just to discover thread safety issues with its omp_target_ functions,
as described in the following bullet.

Questionable thread safety of o�oad directives in GCC: We encountered race conditions
when working with GCC’s omp_target_ functions. Although, at this point, we cannot
be certain that the problem did not come from elsewhere, replacing them with semanti-
cally equivalent CUDA calls �xed the problem.

Questionable thread safety of OpenMPI: We experienced problems with the support for the
MPI_THREAD_MULTIPLE mode in OpenMPI. Surprisingly, though, we had a hard time �xing
the issue by placing MPI calls in critical sections. The problem was not �xed until we
switched to the Intel MPI on Intel systems and the Spectrum MPI on IBM systems, while
keeping the MPI calls in critical sections.

Catastrophic overheads of CUDAmemorymanagement: We encountered overheads of
CUDA memory management, which can only be described as catastrophic. Attempts
of allocating and freeing memory in the course of a factorization completely annihilate
the performance. This is an old issue, which has been encountered in the course of the
PaRSEC and PULSAR projects, and led to the adoption of custom memory managers.
Here, we resorted to the same solution of building a rudimentary memory manager. This
�xed the problem of memory management overheads.

Hopefully, all the encountered problems can be resolved in collaboration with the compiler
vendors and the GCC developer community, and with the providers of MPI (Intel, IBM), as well
as developers of the OpenMPI and MPICH libraries (the ECP OMPI-X and Exa MPI projects).
We are also looking forward to the collaboration with the ECP SOLLVE project, which focuses
on advancing the OpenMP extensions using the LLVM infrastructure.

25

Bibliography

[1] Ahmad Abdelfattah, Hartwig Anzt, Aurelien Bouteiller, Anthony Danalis, Jack Dongarra,
Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, Stephen
Wood, Panruo Wu, Ichitaro Yamazaki, and Asim YarKhan. Roadmap for the development
of a linear algebra library for exascale computing: SLATE: So�ware for linear algebra
targeting exascale. SLATE Working Note 1, Innovative Computing Laboratory, University
of Tennessee, June 2017. revision 06-2017.

[2] Bjarne Stig Andersen, Jerzy Waśniewski, and Fred G Gustavson. A recursive formulation
of Cholesky factorization of a matrix in packed storage. ACM Transactions on Mathematical
So�ware (TOMS), 27(2):214–244, 2001.

[3] Bjarne Stig Andersen, John A Gunnels, Fred Gustavson, and Jerzy Wasniewski. A recursive
formulation of the inversion of symmetric positive de�nite matrices in packed storage
data format. PARA, 2:287–296, 2002.

[4] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James Demmel, Jack
Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney, et al.
LAPACK Users’ Guide. SIAM, 1999.

[5] L Susan Blackford, Jaeyoung Choi, Andy Cleary, Eduardo D’Azevedo, James Demmel,
Inderjit Dhillon, Jack Dongarra, Sven Hammarling, Greg Henry, Antoine Petitet, et al.
ScaLAPACK Users’ Guide. SIAM, 1997.

[6] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam Haidar,
Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier, Hatem Ltaief, et al.
Flexible development of dense linear algebra algorithms on massively parallel architectures
with DPLASMA. In Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on, pages 1432–1441. IEEE, 2011.

[7] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Hérault,

26

BIBLIOGRAPHY BIBLIOGRAPHY

and Jack J Dongarra. PaRSEC: Exploiting heterogeneity to enhance scalability. Computing
in Science & Engineering, 15(6):36–45, 2013.

[8] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov,
and Ichitaro Yamazaki. Accelerating numerical dense linear algebra calculations with GPUs.
In Numerical Computations with GPUs, pages 3–28. Springer, 2014.

[9] Joseph Dorris, Jakub Kurzak, Piotr Luszczek, Asim YarKhan, and Jack Dongarra. Task-based
Cholesky decomposition on Knights Corner using OpenMP. In International Conference on
High Performance Computing, pages 544–562. Springer, 2016.

[10] Mark Gates, Piotr Luszczek, Jakub Kurzak, Jack Dongarra, Konstantin Arturov, Cris Cecka,
and Chip Freitag. C++ API for BLAS and LAPACK. SLATE Working Note 2, Innovative
Computing Laboratory, University of Tennessee, June 2017. revision 06-2017.

[11] Fred Gustavson, André Henriksson, Isak Jonsson, Bo Kågström, and Per Ling. Recursive
blocked data formats and BLAS’s for dense linear algebra algorithms. Applied Parallel
Computing Large Scale Scienti�c and Industrial Problems, pages 195–206, 1998.

[12] Fred Gustavson, Lars Karlsson, and Bo Kågström. Parallel and cache-e�cient in-place
matrix storage format conversion. ACM Transactions on Mathematical So�ware (TOMS), 38
(3):17, 2012.

[13] Jakub Kurzak, Piotr Luszczek, Ichitaro Yamazaki, Yves Robert, and Jack Dongarra. Design
and implementation of the PULSAR programming system for large scale computing.
Supercomputing Frontiers and Innovations, 4(1):4–26, 2017.

[14] Asim YarKhan. Dynamic Task Execution on Shared and Distributed Memory Architectures. PhD
thesis, University of Tennessee, 2012.

[15] Asim YarKhan, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra. Porting the PLASMA
numerical library to the OpenMP standard. International Journal of Parallel Programming,
45(3):612–633, 2017.

27

	Introduction
	Design
	Matrix Layout
	Class Structure
	Model of Parallelism
	Message Passing Communication
	Ibcast/Wait Implementation
	Isend/Irecv/Wait Implementation

	Node Level Memory Consistency Model
	CUDA Managed Memory
	OpenMP Directives
	OpenMP API
	Discussion

	Cholesky Example

	Preliminary Performance Results
	Experimental Setup
	Multicore Scaling
	GPU Scaling
	Discussion
	Traces

	Other Considerations
	Software Engineering
	Development Road Bumps

