
Original Article

The International Journal of High
Performance Computing Applications
1–13
� The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342016672543
hpc.sagepub.com

Accelerating NWChem Coupled
Cluster through dataflow-based
execution

Heike Jagode1, Anthony Danalis1 and Jack Dongarra1,2,3

Abstract
Numerical techniques used for describing many-body systems, such as the Coupled Cluster methods (CC) of the quan-
tum chemistry package NWCHEM, are of extreme interest to the computational chemistry community in fields such as
catalytic reactions, solar energy, and bio-mass conversion. In spite of their importance, many of these computationally
intensive algorithms have traditionally been thought of in a fairly linear fashion, or are parallelized in coarse chunks. In
this paper, we present our effort of converting the NWCHEM’s CC code into a dataflow-based form that is capable of uti-
lizing the task scheduling system PARSEC (Parallel Runtime Scheduling and Execution Controller): a software package
designed to enable high-performance computing at scale. We discuss the modularity of our approach and explain how
the PARSEC-enabled dataflow version of the subroutines seamlessly integrate into the NWCHEM codebase.
Furthermore, we argue how the CC algorithms can be easily decomposed into finer-grained tasks (compared with the
original version of NWCHEM); and how data distribution and load balancing are decoupled and can be tuned indepen-
dently. We demonstrate performance acceleration by more than a factor of two in the execution of the entire CC com-
ponent of NWCHEM, concluding that the utilization of dataflow-based execution for CC methods enables more efficient
and scalable computation.

Keywords
PaRSEC, tasks, dataflow, DAG, PTG, NWChem, CCSD

1. Introduction

Simulating non-trivial physical systems in the field of
computational chemistry imposes such high demands
on the performance of software and hardware, that it
comprises one of the driving forces of high-performance
computing. In particular, many-body methods, such as
Coupled Cluster (CC) (Bartlett and Musial, 2007) of
the quantum chemistry package NWCHEM (Valiev et
al., 2010), come with a significant computational cost,
which stresses the importance of the scalability of
NWCHEM in the context of real science.

On the software side, the complexity of these soft-
ware packages, with diverse code hierarchies, and mil-
lions of lines of code in a variety of programming
languages, represents a central obstacle for long-term
sustainability in the rapidly changing landscape of
high-performance computing. On the hardware side,
despite the need for high performance, harnessing large
fractions of the processing power of modern large-scale
computing platforms has become increasingly difficult
over the past couple of decades. This is due both to the

increasing scale and the increasing complexity and het-
erogeneity of modern (and projected future) platforms.
This paper is centered around code modernization,
focusing on adapting the existing NWCHEM CC meth-
ods to a dataflow-based approach by utilizing the task
scheduling system PARSEC. We argue that dataflow-
driven task-based programming models, in contrast to
the control flow model of coarse-grain parallelism, are
a more sustainable way to achieve computation at
scale.

The Parallel Runtime Scheduling and Execution
Control (PARSEC) (Bosilca et al., 2012) framework is a
task-based dataflow-driven runtime that enables task

1University of Tennessee, Knoxville, USA
2Oak Ridge National Laboratory, USA
3University of Manchester, UK

Corresponding author:

Heike Jagode, Innovative Computing Laboratory, University of Tennessee,

Department of Electrical Engineering and Computer Science, Suite 203

Claxton, 1122 Volunteer Boulevard, Knoxville, TN 37996, USA.

Email: jagode@icl.utk.edu



execution based on holistic conditions, leading to a bet-
ter computational resources occupancy. PARSEC
enables task-based applications to execute on distribu-
ted memory heterogeneous machines, and provides
sophisticated communication and task scheduling
engines that hide the hardware complexity from the
application developer. The main difference between
PARSEC and other task-based engines lies in the way
tasks, and their data dependencies, are represented.
PARSEC employs a unique, symbolic description of
algorithms allowing for innovative ways of discovering
and processing the graph of tasks. Namely, PARSEC
uses an extension of the symbolic Parameterized Task
Graph (PTG) (Cosnard and Loi, 1995; Danalis et al.,
2014) to represent the tasks and their data dependencies
to other tasks. The PTG is a problem-size-independent
representation that allows for immediate inspection of
a task’s neighborhood, regardless of the location of the
task in the directed acyclic graph (DAG). This con-
trasts with all other task-scheduling systems, which dis-
cover the tasks and their dependencies at runtime
(through the execution of skeleton programs) and
therefore cannot process a future task that has not yet
been discovered, or face large overheads due to storing
and traversing the DAG that represents the whole exe-
cution of the parallel application.

In this paper, we describe the transformations of the
NWCHEM CC code to a dataflow version that is exe-
cuted over PARSEC. Specifically, we discuss our effort
of breaking down the computation of the CC methods
into fine-grained tasks with explicitly defined data
dependencies, so that the serialization imposed by the
traditional linear algorithms can be eliminated, allow-
ing the overall computation to scale to much larger
computational resources.

Despite having in-house expertise in PARSEC, and
working closely and deliberately with computational
chemists, this code conversion proved to be laborious.
Still, the outcome of our effort of exploiting finer gran-
ularity and parallelism with runtime/dataflow schedul-
ing is twofold. First, it successfully demonstrates the
feasibility of converting the CC kernel into a form that
can execute in a dataflow-based task-scheduling envi-
ronment. Second, it confirms that utilizing dataflow-
based execution for CC methods enables more efficient
and scalable computations. We present a thorough per-
formance evaluation and demonstrate that the modified
CC component of NWCHEM outperforms the original
implementation by more than a factor of two.

2. Overview of NWChem

Computational modeling has become an integral part
of many research efforts in key application areas in
chemical, physical, and biological sciences. NWCHEM is
a molecular modeling software developed to take full

advantage of the advanced computing systems avail-
able. NWCHEM provides many methods to compute
the properties of molecular and periodic systems by
using standard quantum-mechanical descriptions of the
electronic wave function or density. The CC theory
(Bartlett and Musial, 2007) is considered by many to be
a gold standard for accurate quantum-mechanical
description of ground and excited states of chemical
systems. Its accuracy, however, comes at a significant
computational cost.

2.1. Tensor Contraction Engine

An important role in designing the optimum memory
versus cost strategies in CC implementations is played
by the automatic code generator, the Tensor
Contraction Engine (TCE) (Hirata, 2003), which
abstracts and automates the time-consuming and error-
prone processes of deriving the working equations of
second-quantized many-electron theories and synthesiz-
ing efficient parallel computer programs on the basis of
these equations. Current development is mostly focused
on CC implementation which can utilize any type of
single-determinantal reference function including
restricted, restricted open-shell, and unrestricted
Hartree–Fock determinants (RHF, ROHF, and UHF
respectively) in describing closed- and open-shell mole-
cular systems. All TCE CC implementations take
advantage of Global Arrays (GA) (Nieplocha et al.,
2006) functionalities, which supports the distributed
memory programming model.

2.2. CC Single Double

Especially important in the hierarchy of the CC formal-
ism is the iterative CC model with single and double
excitations (CCSD) (Purvis and Bartlett, 1982), which
is a starting point for many accurate perturbative CC
formalisms including the ubiquitous CCSD(T)
approach (Raghavachari et al., 1989). Our starting
point for the investigation in this paper is the CCSD
version that takes advantage of the alternative task
scheduling (ATS). The details of these implementations
have been described in previous publications (Kowalski
et al., 2011). In summary, the original CCSD TCE
implementations aggregated a large number of subrou-
tines, which calculate either recursive intermediates or
contributions to a residual vector. The dimensionalities
of the tensors involved in a given subroutine greatly
impact the memory, computation, and communication
characteristics of each subroutine, which can lead to
pronounced problems with load balancing. To address
this problem and improve the scalability of the CCSD
implementations, NWCHEM exploits the dependencies
exposed between the task pools into classes character-
ized by a collective task pool. This was done in such a

2 The International Journal of High Performance Computing Applications



way as to ensure sufficient parallelism in each class
while minimizing the total number of such classes.

3. Implementation of CC theory

In the first subsection, we highlight the basics necessary
to understand the original parallel implementation of
CC through TCE. We then describe the challenges of
converting TCE-generated code into a PARSEC-
enabled version and its execution model that is based
on the PTG abstraction.

3.1. CC theory through TCE

In NWCHEM, the CCSD code (among other kernels) is
generated through the TCE into multiple sub-kernels
that are divided into so-called ‘‘T1’’ and ‘‘T2’’ subrou-
tines for equations that determine the T1 and T2 ampli-
tude matrices. These amplitude matrices embody the
number of excitations in the wave function, where T1
represents all single excitations and T2 represents all
double excitations. The underlying equations of these
theories are all expressed as contractions of many-
dimensional arrays or tensors (generalized matrix mul-
tiplications). There are typically many thousands of
such terms in any one problem, but their regularity
makes it relatively straightforward to translate them
into FORTRAN code, parallelized with the use of GA,
through the TCE. In general, NWCHEM contains about
one million lines of human-generated code and over
two million lines of TCE-generated code.

3.1.1. Structure of the CCSD approach. For the iterative
CCSD code, there exist 19 T1 and 41 T2 subroutines,
and all of them highlight very similar code structure
and patterns. Figure 1 shows the pseudo FORTRAN
code for one of the generated T1 and T2 subroutines,
highlighting that most work is in deep loop nests. These
loop nests consist of three types of code:

� local memory management (i.e. MA_PUSH_
GET(), MA_POP_STACK());

� calls to functions (i.e. GET_HASH_BLOCK(),
ADD_HASH_BLOCK()) that transfer data over the
network via the GA layer;

� calls to the subroutines that perform the actual
computation on the data DGEMM() and TCE_
SORT_*() (which performs an O(n) remapping of
the data, rather than an O(n � log (n)) sorting).

The control flow of the loops is parameterized, but sta-
tic. That is, the induction variable of a loop with a
header such as ‘‘DO p3b = noab+1,noab+nvab’’
(i.e. p3b) may take different values between different
executions of the code, but during a single execution of
CCSD the values of the parameters noab and nvab

will not vary; therefore every time this loop executes it
will perform the same number of steps, and the induc-
tion variable p3b will take the same set of values. This
enables us to restructure the body of the inner loop into
tasks that can be executed by PARSEC. Specifically,
tasks with an execution space that is parameterized (by
noab, nvab, etc.), but constant during execution.

3.1.2. Parallelization of CCSD. Parallelism of the TCE-gen-
erated CC code follows a coarse task-stealing model.
The work inside each T1 and T2 subroutine is grouped
into chains of multiple matrix-multiply kernels
(GEMM). The GEMM operations within each chain
are executed serially, but different chains are executed
in a parallel fashion. However, the work is divided into
levels. More precisely, the 19 T1 subroutines are
divided into three different levels and the execution of
the 41 T2 subroutines is divided into four different lev-
els. The task-stealing model applies only within each
level, and there is an explicit synchronization step
between the levels. Therefore, the number of chains
that are available for parallel execution at any time is a
subset of the total number of chains.

Load balancing within each of the seven levels of
subroutines is achieved through shared variables (exem-
plified in Figure 1 through SharedCounter()) that
are atomically updated (read–modify–write) using GA
operations. This is an excellent case where very good
parallelism already exists but where additional paralle-
lism can be obtained by examining the data dependen-
cies in the memory blocks of each matrix. For example,
elements of the so-called T1 amplitude matrices can be
used for further computation before all of the elements
are computed. However, the current implementation of
CC features a significant amount of synchronizations
that prevent introducing additional levels of paralle-
lism, which consequently limits the overall scaling on
much larger computational resources.

Figure 1. Pseudocode of one CCSD subroutine as generated
by the TCE.

Jagode et al. 3



In addition, the use of shared variables, that are
atomically updated, which is currently at the heart of
the task-stealing and load-balancing solution, is bound
to become inefficient at large scale, becoming a bottle-
neck and causing major overhead.

Also, the notion of task in the current CC implemen-
tation of NWCHEM and the notion of task in PARSEC
are not identical. As discussed before, in NWCHEM, a
task is a whole chain of GEMMs, executed serially, one
after the other. In our PARSEC implementation of CC,
each individual GEMM kernel is a task on its own, and
the choice between executing them as a chain, or as a
reduction tree, is almost as simple as flipping a switch.

In summary, the most significant impact of porting
CC over PARSEC is the ability to eliminate redundant
synchronizations between the levels and to break down
the algorithms into finer-grained tasks with explicitly
defined dependencies.

3.2. CC theory over PaRSEC

PARSEC provides a front-end compiler for converting
canonical serial codes into the PTG representation.
However, due to computability limits, this tool is limited
to polyhedral codes, i.e.if a code is not affine then a sta-
tic analysis is not possible at compile time. Affine codes
can only contain loop headers (bounds and steps) and
array indices with expressions that are limited to addi-
tion and subtraction of the induction variables, con-
stants, and numeric literals (as well as multiplication by
numeric literals) and branches (if–then–else) that contain
only similar arithmetic expressions and comparison
operators. These affine codes (e.g. dense linear algebra
is largely affine codes) can be fully analyzed using poly-
hedral analysis and a compact representation of the
DAG, the PTG, can be generated. A critical characteris-
tic about the PTG is it can be used by the runtime to
evaluate any part of the DAG without having to store
the entire DAG in memory. This is one of the important
features that differentiate PARSEC from any other task-
scheduling system.

The problem with affine codes, though, is they are a
very small subset of the real-world applications. The
CC code generated by TCE is neither organized in pure
tasks (i.e. functions with no side-effects to any memory
other than arguments passed to the function itself) nor
is the control flow affine (e.g. loop execution space has
holes in it; branches are statically undecidable since
their outcome depends on program data, and thus it
cannot be resolved at compile time).

While the CC code seems polyhedral, it is not quite so.
The code generated by TCE includes branches that per-
form array lookups into program data. For example,
branches such as ‘‘IF(int_mb(k_spin+h7b-1).)’’
(see Figure 1) are very common. Such branches make the
code not only non-affine, but statically undecidable since

their outcome depends on program data, and thus it can-
not be resolved at compile time.

However, while the behavior of the CC code depends
on program data, this data is constant during a given
execution of the code. Therefore, the code can be
expressed as a parameterized DAG, by using lookups
into the program data, either directly or indirectly. In
our implementation we access the program data indir-
ectly by building meta-data structures in a preliminary
step. The details of this ‘‘first step’’ are explained in the
next section.

In the work described in this paper, we implemented
a dataflow form for all functions of the CCSD computa-
tion that are associated with calculating parts of the T2
amplitudes, particularly the ones that perform a GEMM
operation (the most time-consuming parts). More pre-
cisely, we converted a total of1 29 of the 41 T2 subrou-
tines, which we refer to under the unified moniker of
‘‘GA:T2’’ for the original version, and ‘‘PaRSEC:T2’’ for
the dataflow version of the subroutines.

Figure 2 illustrates the dataflow of the original 41
T2 subroutines. It shows how the work is divided into
four distinct levels. The solid edges of this DAG repre-
sent the dataflow where output data (matrix C) is added
to output data in another level (C-.C); and the dotted
edges show where output data (matrix C) is used as
input data (matrix B) for different subroutines (C-.B).

As mentioned above, the task-stealing model applies
only within each level, and there is an explicit synchro-
nization step between the four levels. As for the
PARSEC version of this code, our dataflow implemen-
tation of the 29 ‘‘PaRSEC:T2’’ subroutines is displayed
in black; and the remaining 12 of the 41 T2 subroutines
are displayed in light gray. They are the subroutines
that do not perform a GEMM operation; and are, due to
insignificance in terms of execution time, not yet con-
verted into a dataflow form but executed as in the orig-
inal code.

Our chosen subroutines comprise approximately
91% of the execution time of all 41 T2 subroutines
when computing the CCSD correlation energy of the
beta-carotene molecule (C40H56). (not including the 19
T1 subroutines and additional execution steps that set
up the iterative CCSD computation). More details are
discussed in Section 6.1 and illustrated in Figure 7a.

4. Dataflow version of CC

In this section, we describe our design decisions of the
CC dataflow version and discuss various levels of paral-
lelism and optimizations that have been studied for the
PARSEC-enabled CC implementation.

4.1. Design decisions

The original code of our chosen subroutines consists of
deep loop nests that contain the memory access

4 The International Journal of High Performance Computing Applications



routines as well as the main computation, namely
SORT and GEMM. In addition to the loops, the code con-
tains several IF statements, such as the one mentioned
above. When CC executes, the code goes through the
entire execution space of the loop nests, and only exe-
cutes the actual computation kernels (SORT and GEMM)
if the multiple IF branches evaluate to true. To create
the PARSEC-enabled version of the subroutines
(PaRSEC:T2), we decomposed the code into two steps.

The first step traverses the execution space and evaluates
all IF statements, without executing the actual com-
putation kernels (SORT and GEMM). This step
uncovers sparsity information by examining the pro-
gram data (i.e.int_mb(k_spin+h7b-1)) that is
involved in the IF branches, and stores the results in
custom meta-data vectors that we defined.
The custom meta-data vectors merely hold infor-
mation regarding the actual loop iterations that will
execute the computational kernels at runtime, i.e.
iterations where all of the IF statements evaluate to
true. This step significantly reduces the execution
space of the loop nests by eliminating all entries
that would not have executed. In addition, this step

probes the GA library to discover where the pro-
gram data resides in memory and stores these
addresses into the meta-data structures as well.

The second step is the execution of the PTG representa-
tion of the subroutines. Since the control flow
depends on the program data, the PTG examines
our custom meta-data vectors populated by the first
step; this allows the execution space of the modified
subroutines over PARSEC to match the original exe-
cution space of GA:T2. Also, using the meta-data
structures, PARSEC accesses the program data
directly from memory, without using GA.

4.2. Parallelization and optimization

One of the main reasons we are porting CC over
PARSEC is the ability of the latter to express tasks and
their dependencies at a finer granularity, as well as the
decoupling of work tasks and communication opera-
tions that enables us to experiment with more advanced
communication patterns than serial chains. Since
matrix addition is an associative and commutative
operation, the order in which the GEMMs are performed
does not bear great significance as long as the results

Figure 2. Directed acyclic graph (DAG) of the 41 T2 subroutines and its data dependencies.

Jagode et al. 5



are atomically added. This enables us to perform all
GEMM operations in parallel and sum the results using a
binary reduction tree. Figure 3 shows the DAG of eight
GEMM operations utilizing a binary tree reduction (as
supposed to a serial ‘‘chain’’ of GEMMs). Clearly, in this
implementation there are significantly fewer sequential
steps than in the original chain (McCraw et al., 2014).
For the sake of completeness, Figure 4 depicts such a
chain where eight GEMM operations are computed
sequentially.

In addition, the sequential steps are matrix addi-
tions, not GEMM operations, so they are significantly
faster, especially for larger matrices. Reductions only
apply to GEMM operations that execute on the same
node, thus avoiding additional communication.

The original version of the code performs an atomic
accumulate–write operation (via calls to ADD_HASH_
BLOCK()) at the end of each chain. Since our dataflow
version of the code computes the GEMMs for each chain
in parallel, we eliminate the global atomic GA function-
ality and perform direct memory access instead, using
local atomic locks within each node to prevent race con-
ditions. The choice of our implementation, discussed in
this paper, is based on earlier investigations presented
in Danalis et al. (2015); Jagode et al. (2016), where we
compared the performance of different variants of the
modified code and explain the different behaviors that
lead to the differences in performance.

4.3. Additional levels of parallelism

It is important to note that our work of converting the
entire NWCHEM CC ‘‘FORTRAN plus Global Arrays’’

implementation into a dataflow form has been of incre-
mental nature in order to preserve the original behavior
of the code. This allowed us to initially focus only on
the most time-consuming and most significant subrou-
tines (the 29 heavy GEMM routines), and more impor-
tantly, execute them over PARSEC without having to
convert the entire CCSD module. The successful con-
version of these 29 kernels has proven to be very bene-
ficial, resulting in a performance improvement of more
than a factor of two in the execution of the entire CC
component of NWCHEM. This result justifies our

Figure 3. Parallel GEMM operations followed by reduction.

Figure 4. Chain of GEMM operations computed sequentially.

6 The International Journal of High Performance Computing Applications



conclusion that the utilization of dataflow-based execu-
tion of CC methods enabled more efficient and scalable
computation.

After completion of the dataflow implementation
within each of the four levels, the next increment of
work that we are currently pursuing focuses on imple-
menting dataflow between the levels. From the DAG in
Figure 2 it becomes very apparent that not every sub-
routine in the upper levels has to wait for the comple-
tion of all subroutines in the lower levels. For instance,
t2_2_2() in Level 3 only depends on the data coming
out of t2_2_4(), t2_2_5(), and t2_2_2_2() in
Level 2; while these three only depend on 10 (of the 29)
subroutines2 in Level 1. Instead of putting the execution
of the tasks that comprise t2_2_2() on hold until all
subroutines in Level 1 and Level 2 are completed, the
output of the tasks that flow into t2_2_2() can be
passed as soon as it becomes available. The return of
enabling dataflow between levels is twofold. First, it
increases the level of parallelism even more; and second,
it enabled the freedom to choose a certain placement of
tasks. For example, tasks of subroutine t2_2_2() in
Level 3 can be computed where the Level 2 subroutines,
whose output flows into t2_2_2(), store their data.

Another advantage of enabling dataflow between the
levels, in addition to the benefits resulting from increased
levels of parallelism, is that part of the aforementioned
work that is necessary in the current version of the code,
will become unnecessary as soon as the complete CCSD
code has been converted to PARSEC. Specifically, data
will not need to be pulled and pushed into the GA at the
beginning and end of each subroutine if all subroutines
execute over PARSEC. Instead, the different PARSEC
tasks that comprise a subroutine will pass their output to
the tasks that comprise another subroutine using the
internal communication engine of PARSEC. This will be
done implicitly, without user involvement, since PARSEC
handles communication internally.

5. Dataflow as a programming paradigm

In this section we will discuss the reasons why the
PARSEC implementation of CC is faster than the origi-
nal code by contrasting the corresponding program-
ming paradigms.

5.1. Communication computation overlapping

The original code is written in FORTRAN3 and makes
calls to the GA toolkit for communication and syn-
chronization purposes. Global Arrays enables applica-
tions to adopt the Partitioned Global Address Space
(PGAS) programming model and provides primitives
for one-sided communication and atomic operations.
However, the structure of the CC code that makes the
communication calls does not take advantage of these

more advanced concepts and rather follows a more tra-
ditional Corse Grain Parallelism (CGP) programming
paradigm. Let us consider again the pseudocode shown
in Figure 1. This figure abstracts away many of the
details of the actual code but captures the structure
very accurately. Namely, the work is organized in sub-
routines (that are further organized in logical steps)
and inside each subroutine there are multiple nested
loops with the call to the most computationally inten-
sive functions (i.e. DGEMM and TCE_SORT_*) contained
in the innermost loop. Interestingly, the calls to the
functions that fetch the data to be processed by these
calls (i.e.GET_HASH_BLOCK) are also in the innermost
loop, immediately preceding the computation. In other
words, the program contains no additional work that is
available between the call to the data transfer function
and the call to the computation function that uses the
data. This means no matter how sophisticated and effi-
cient the communication library and the network hard-
ware is, this data exchange will not be overlapped with
computation. This behavior leads to a major waste of
efficiency, since at almost any given point in the pro-
gram there is additional work (in other subroutines)
that is not semantically dependent on the work cur-
rently being performed. However, the coarse-grain
structure of the program, with work and communica-
tion contained in deep loop nests inside subroutines,
does not allow for different units of work, that are
independent to one another, to be utilized for
communication–computation overlapping.

This missed opportunity for overlapping can be wit-
nessed in the execution trace shown in Figure 5a. The
figure shows an enlarged segment of the execution trace
to improve readability. The shown segment is represen-
tative of the whole execution and does not exhibit a
unique behavior. In this trace, the different colors rep-
resent different operations (i.e.GEMM, SORT, data trans-
fer), the x-axis represents time (i.e. longer boxes signify
operations that took longer to finish), and each row
corresponds to one MPI rank (i.e. one instance of the
parallel application) out of the total 224 used for this
run. The red color represents the execution of a matrix
multiply (GEMM), which is the most computationally
expensive operation in this code. The blue and purple
colors represent data transfers (matrices A and B
needed to perform the C+=A � B operation that a
GEMM performs). As can be easily seen by the promi-
nence of the blue color in the trace, the communication
imposes an unacceptably high overhead in the execu-
tion of the original code.

This behavior is in stark contrast with the dataflow-
based execution model that the PARSEC-enabled ver-
sion of the code follows. In the latter, computation
load is organized in tasks (not loops, or subroutines),
and tasks declare to the runtime their dependencies to
other tasks. When a task completes, the runtime can

Jagode et al. 7



initiate the asynchronous transfer of its output data
while scheduling for execution the next task whose
dependencies have been satisfied. This opportunistic
execution, typical of dataflow-based systems, allows for
maximum communication computation overlapping.
This is true because at any given time during the life of
the program, if there is available computation, it will
be performed without unnecessary waiting for some
predetermined order of loops or subroutines to be satis-
fied. The opportunistic execution of the dataflow-based
code is demonstrated in the trace shown in Figure 5b.
As can be seen in this figure, which is an enlarged view
of the beginning of the execution, many of the tasks,
responsible for reading input data (blue and purple
boxes) and sending it to the tasks that will perform the
computation (red boxes), are scheduled for execution
early on. However, as soon as some data transfers com-
plete, computation tasks become ready and, from that
point on, communication and computation are over-
lapped. It is worth noting that, in contrast with the
trace of the original code (Figure 5a), the length of the
blue and purple boxes in Figure 5b do not represent
the communication cost of the data transfers, since
tasks in PARSEC do not perform explicit communica-
tion. Rather, these boxes represent the tasks that
merely express their communication needs to the run-
time by specifying their dependencies to other tasks.
The actual data transfers are scheduled and managed
by the runtime and are fully overlapped with the com-
putation. As a result, they do not appear in the trace,
but they are responsible for the light gray gaps
(Figure 5b), which are periods of time where no work
can be executed because the corresponding data has not
been transferred yet (a phenomenon that only happens
at the beginning of the execution). To summarize, by
comparing the two traces we can clearly see that the
original NWCHEM code faces significant communica-
tion delays which can be largely addressed through the
use of communication–computation overlapping.

One could argue that the original FORTRAN code
can be modified to allow for more communication–
computation overlapping without resorting to
dataflow-based programming. A developer could reorga-
nize the loop nests into a form of a pipeline, so that each
iteration ‘‘prefetches’’ the data needed for the computa-
tion of a future iteration. This can be achieved if every
iteration initialized an asynchronous transfer for data
needed by future iterations and then proceeded to exe-
cute work whose data was prefetched by a previous
iteration. This would probably increase communication-
computation overlapping and decrease waiting time,
however, it would not be sufficient to achieve the perfor-
mance improvements gained in the dataflow-based exe-
cution. The reason can be seen in the trace. In each row
(i.e. for every MPI rank) there are time periods where
communication (blue) takes a small amount of time in
comparison with useful work (red). However, in each
row there are also time periods where a few communica-
tion operations take significantly longer than the follow-
ing computation. As a result, pipelining work and data
transfer would only remove a small part of the commu-
nication overhead, unless a very deep pipeline is used,
which would lead to significant temporary storage over-
head (because all of the incoming data that correspond
to future iterations have to be stored in temporary buf-
fers). In the case of our dataflow-based version of CC,
the runtime does not merely pipeline loop iterations, but
overlaps communication with completely independent
computation. Work that in the original code resides in
completely different subroutines and can not be utilized
for overlapping, unless a major restructuring of the code
is performed.

5.2. Freedom from control flow

As we mentioned earlier, the original code executes all
GEMM operations in serial chains and only allows for
parallelism between different chains. This structure

Figure 5. Execution traces: (a) trace of original NWCHEM code; (b) trace of dataflow-based NWCHEM code.

8 The International Journal of High Performance Computing Applications



defines both the order in which operations (that are
semantically independent) will execute and the granu-
larity of parallelism. Changing either while preserving
the straight forward structure of the original code is
not a trivial exercise. The dataflow-based PARSEC
form of the code that we have created departs from the
simplicity of the original code, but it is not subject to
either limitation mentioned above. Namely, as we dis-
cussed earlier, in PARSEC we execute all GEMM opera-
tions in parallel and perform a reduction on the output
data of all GEMM operations that belonged to a chain in
the original code. In this way, we preserve the seman-
tics of the code, but liberate the execution from the
unnecessary limitations on the granularity of paralle-
lism and strict ordering that were not dictated by the
semantics of the algorithm, but rather by inherent lim-
itations of control-flow-based programs and coarse
grain parallelism.

5.3. Multi-threading and accelerators

Another artifact of the way the original code is struc-
tured is that taking advantage of multi-threading to uti-
lize multiple cores on each node is not easy to
implement efficiently. As a result, the NWCHEM appli-
cation does not use threads and rather relies on multiple
MPI ranks per node in order to utilize multiple cores.
In PARSEC, multi-threading comes at no additional
cost for the developer. Once the developer has defined
the tasks and the dataflow between them, PARSEC will
automatically use threads to accomplish the work, utiliz-
ing multiple hardware resources. Furthermore, PARSEC
uses a combination of thread local queues and global
queues to store available tasks during the execution.
When a task Ti completes, the tasks Tj that were waiting
for the output of Ti will be placed in the thread local
queue of the thread that executed Ti. As a result, work
that should naturally execute as a chain (because the out-
put of one task is the input of another) has a high prob-
ability of executing as a chain in PARSEC taking
advantage of cache locality and increasing execution effi-
ciency. At the same time, the existence of global queues
and work stealing guarantees that PARSEC will also
exhibit good load balance.

While outside the scope of this paper, PARSEC also
enables use of accelerators without too much complex-
ity overhead for the developer. If the developer provides
a kernel that can execute on an accelerator, and specifies
the availability in the PTG representation of the code,
then PARSEC will execute this kernel on the accelerator.
In the work we are current pursuing, we are experiment-
ing with the execution of some of the GEMM operations
on an Intel Xeon Phi aiming to maximize performance,
given the tradeoffs between using that additional com-
puting power of the accelerator and paying the overhead
of transferring the necessary data to it.

6. Performance evaluation

In this section we present the performance of the entire
CCSD code using the dataflow version ‘‘PaRSEC:T2’’
of the 29 CC subroutines and contrast it with the per-
formance of the original code ‘‘GA:T2’’. Figure 6
depicts a high-level view of the integration of the
PARSEC-enabled code in NWCHEM’s CCSD compo-
nent. The code that we timed (see start and end
timers in Figure 6) includes all 19 T1 and 41 T2 sub-
routines as well as additional execution steps that set
up the iterative CCSD computation. The only differ-
ence between the original NWCHEM runs and our mod-
ified version is the replacement of the 29 original T2
subroutines ‘‘GA:T2’’ with their dataflow version
‘‘PaRSEC:T2’’ and the prerequisites discussed earlier;
these prerequisites include meta-data vector popula-
tion, initialization, and finalization of PARSEC. Also,
in our experiments we allow for all iterations of the
iterative CCSD code to reach completion.

6.1. Methodology

As input, we used the beta-carotene molecule (C40H56)
in the 6-31G basis set, composed of 472 basis set func-
tions. In our tests, we kept all core electrons frozen, and
correlated 296 electrons. Figure 7a shows the relative
workload of different subroutines (omitting those that
fell under 0.1%). To calculate this load we sum the
number of floating point operations of each GEMM that
a subroutine performs (given the sizes of the input
matrices). In addition, Figure 7b shows the distribution
of chain lengths for the five subroutines with the highest
workload in the case of beta-carotene. The different col-
ors in this figure are for readability only. As can be seen
from these statistics, the subroutines that we targeted
for our dataflow conversion effort comprise approxi-
mately 91% of the execution time of all 41 T2 subrou-
tines in the original NWCHEM TCE CCSD execution.

The scalability tests for the original TCE-generated
code and the dataflow version of PaRSEC:T2 were

Figure 6. High-level view of PARSEC code in NWCHEM.

Jagode et al. 9



performed on the Cascade computer system at EMSL/
PNNL. Each node has 128 GB of main memory and is

a dual-socket Intel Xeon E5-2670 (Sandy Bridge EP)
system with a total of 16 cores running at 2.6 GHz. We
performed various performance tests utilizing 1, 2, 4, 8,
and 16 cores per node. NWCHEM v6.5 was compiled
with the Intel 14.0.3 compiler, using the optimized
BLAS library MKL 11.1, provided on Cascade.

6.2. Discussion

Figure 8 shows the execution time of the entire
CCSD kernel when the implementation found in the
original NWCHEM code is used, and when our
PARSEC-based dataflow implementation is used for
the (earlier-mentioned) 29 PaRSEC:T2 subroutines.
Each of the experiments were run three times; the var-
iance between the runs, however, is so small that it is
not visible in the figures. Also, the correctness of the
final computed energies have been verified for each
run, and differences occur only in the last digit or two
(meaning, the energies match for up to the 14th decimal
place). In the graph we depict the behavior of the origi-
nal code using the dark (green) dashed line and the
behavior of the PARSEC implementation using the
light (orange) solid lines. Once again, the execution
time of the PARSEC runs does not exclude any steps
performed by the modified code.

On a 32 node partition, the PARSEC version of the
CCSD code performs best for 16 cores/node while
the original code performs best for 8 cores/node.
Comparing the two, the PARSEC execution runs more
than twice as fast: to be precise, it executes in 48% of
the best time of the original. If we ignore the PARSEC
run on 16 cores/node, in an effort to compare perfor-
mance when both versions use 8 cores/node and thus
have similar power consumption, we find that PARSEC
still runs 44% faster than the original.

Figure 7. CCSD statistics for beta-carotene and tilesize of 45:
(a) relative load of heaviest subroutines; (b) chain length
distribution.

Figure 8. Execution time comparison using beta-carotene on EMSL/PNNL Cascade: (a) performance on 32 nodes; (b) performance
on 64 nodes.

10 The International Journal of High Performance Computing Applications



The results are similar on a 64 node partition: the
PaRSEC version of CCSD is fastest (for 16 cores/node)
with a 43% runtime improvement compared with the
original code (which on 64 nodes performs best for 4
cores/node). It is also interesting to point out that for
64 nodes, while PaRSEC manages to use an increasing
number of cores, all the way up to 64 3 16= 1024

cores, to improve performance, the original code exhi-
bits a slowdown beyond 4 cores/node. This behavior is
not surprising since (1) the unit of parallelism of the
original code (chain of GEMMs) is much coarser than
that of PARSEC (single GEMM), and (2) the original
code uses a global atomic variable for load balancing
while PARSEC distributes the work in a round robin
fashion and avoids any kind of global agreement in the
critical path.

7. Related work

An alternate approach for achieving better load balan-
cing in the TCE CC code is the Inspector-Executor
methods (Ozog et al., 2013). This method applies per-
formance model-based cost estimation techniques for
the computations to assign tasks to processors. This
technique focuses on balancing the computational cost
without taking into consideration the data locality.

ACES III (Lotrich et al., 2008) is another method
that has been used effectively to parallelize CC codes.
In this work, the CC algorithms are designed in a
domain-specific language called the Super Instruction
Assembly Language (SIAL) (Deumens et al., 2011).
This serves a similar function as the TCE, but with an
even higher level of abstraction to the equations. The
SIAL program, in turn, is run by a MPMD parallel vir-
tual machine, the Super Instruction Processor (SIP).
SIP has components that coordinate the work by tasks,
communicate information between tasks for retrieving
data, and then for execution.

The Dynamic Load-balanced Tensor Contractions
framework (Lai et al., 2013) has been designed with the
goal of providing dynamic task partitioning for tensor
contraction expressions. Each contraction is decom-
posed into fine-grained units of tasks. Units from inde-
pendent contractions can be executed in parallel. As in
TCE, the tensors are distributed among all processes
via global address space. However, since GA does not
explicitly manage data redistribution, the communica-
tion pattern resulting from one-sided accesses is often
irregular (Solomonik et al., 2013).

8. Conclusion and future work

We have successfully demonstrated the feasibility of
converting TCE-generated code into a form that can
execute in a dataflow-based task-scheduling environ-
ment, such as PARSEC. Our effort substantiates that

utilizing dataflow-based execution for CC methods
enables more efficient and scalable computation, as our
performance evaluation reveals a performance boost of
a factor of two for the entire CCSD kernel.

This strategy with PARSEC offers many advantages
since communication becomes implicit (and can be
overlapped with computation), finer-grained tasks can
be executed in more efficient orderings than sequential
chains (i.e. binary trees) and each of these finer-grained
parallel tasks are able to run on different cores of mul-
ticore systems, or even different parts of heterogeneous
platforms. This will enable computation at extreme
scale in the era of many-core, highly heterogeneous
platforms, utilizing the components (e.g. CPU, GPU
accelerators, and/or Xeon Phi coprocessors) that per-
form best for the type of task under consideration.

As a next step, we will automate the conversion of
the entire NWCHEM TCE CC implementation into a
dataflow form so that it can be integrated to more soft-
ware levels of NWChem with minimal human involve-
ment. Ultimately, the generation of a dataflow version
will be adopted by the TCE.

Acknowledgments

We thank the anonymous reviewers for their improvement
suggestions. A portion of this research was performed using
EMSL, a DOE Office of Science User Facility sponsored by
the Office of Biological and Environmental Research and

located at Pacific Northwest National Laboratory.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: The authors disclosed receipt of the following finan-
cial support for the research, authorship, and/or publication
of this article: This material is based upon work supported in
part by the Air Force Office of Scientific Research under
AFOSR Award Number FA9550-12-1-0476, and the DOE
Office of Science, Advanced Scientific Computing Research,
under award number DE-SC0006733 ‘‘SUPER - Institute for
Sustained Performance, Energy and Resilience’’.

Notes

1. All subroutines with prefix ‘‘icsd_t2_’’ and suffices
2_2_2_2(), 2_2_3(), 2_4_2(), 2_5_2(), 2_6(), lt2_3x(),
4_2_2(), 4_3(), 4_4(), 5_2(), 5_3(), 6_2_2(), 6_3(), 7_2(),
7_3(), vt1ic_1_2(), 8(), 2_2_2(), 2_4(), 2_5(), 4_2(), 5(),
6_2(), vt1ic_1, 7(), 2_2(), 4(), 6(), 2()

2. The 10 subroutines are t2_2_1(), t2_2_6(), t2_2_4_1(),
t2_2_4_2(), t2_2_5_1(), t2_2_5_2(), t2_2_2_1(), t2_2_2_
3(), t2_2_2_2_1(), t2_2_2_2_2().

Jagode et al. 11



3. NWCHEM uses a mixture of FORTRAN dialects, includ-
ing 77 and more modern ones.

References

Bartlett RJ and Musial M (2007) Coupled-cluster theory in

quantum chemistry. Reviews of Modern Physics 79(1):

291–352. DOI:10.1103/RevModPhys.79.291.
Valiev M, Bylaska EJ, Govind N, et al. (2010) NWChem: A

comprehensive and scalable open-source solution for large

scale molecular simulations. Computer Physics Communi-

cations 181(9): 1477–1489. DOI:10.1016/j.cpc.2010.04.018.
Bosilca G, Bouteiller A, Danalis A, et al. (2012) DAGuE: A

generic distributed DAG engine for high performance

computing. Parallel Computing 38(12): 37–51.
Cosnard M and Loi M. (1995). Automatic task graph genera-

tion techniques. In: Proceedings of the 28th Hawaii Inter-

national Conference on System Sciences, pp. 113–122.

Washington, DC: IEEE.
Danalis A, Bosilca G, Bouteiller A, et al. (2014) PTG: an

abstraction for unhindered parallelism. In Domain-Specific

Languages and High-Level Frameworks for High Perfor-

mance Computing (WOLFHPC), 2014 Fourth Interna-

tional Workshop on, pp. 21–30. Washington, DC: IEEE.

DOI:10.1109/WOLFHPC.2014.8.
Hirata S (2003) Tensor contraction engine: Abstraction and

automated parallel implementation of configuration-inter-

action, coupled-cluster, and many-body perturbation the-

ories. Journal of Physical Chemistry A 107(46): 9887–9897.

DOI:10.1021/jp034596z.
Nieplocha J, Palmer B, Tipparaju V, et al. (2006) Advances,

applications and performance of the global arrays shared

memory programming toolkit. International Journal of

High Performance Computing Applications 20(2): 203–231.
Purvis G and Bartlett R. (1982) A full coupled-cluster singles

and doubles model - the inclusion of disconnected triples.

The Journal of Chemical Physics 76(4): 1910–1918. DOI:

10.1063/1.443164.
Raghavachari K, Trucks GW, Pople JA, et al. (1989) A 5th-

order perturbation comparison of electron correlation the-

ories. Chemical Physics Letters 157(6): 479–483.
Kowalski K, Krishnamoorthy S, Olson R, et al. Scalable

implementations of accurate excited-state coupled cluster

theories: Application of high-level methods to porphyrin-

based systems. In: High Performance Computing, Network-

ing, Storage and Analysis (SC), 2011, pp. 1–10. Washing-

ton, DC: IEEE.
McCraw H, Danalis A, Herault T, et al. (2014) Utilizing data-

flow-based execution for coupled cluster methods. In: Pro-

ceedings of IEEE Cluster 2014, pp. 296–297. Washington,

DC: IEEE.
Danalis A, Jagode H, Bosilca G, et al. (2015) PaRSEC in

practice: Optimizing a legacy chemistry application

through distributed task-based execution. In: 2015 IEEE

International Conference on Cluster Computing, pp. 304–

313. Washington, DC: IEEE. DOI:10.1109/

CLUSTER.2015.50.
Jagode H, Danalis A, Bosilca G, et al. (2015) Parallel process-

ing and applied mathematics: 11th International Conference,

PPAM 2015, Krakow, Poland, September 6–9, 2015.

Revised Selected Papers, Part I, chapter Accelerating

NWChem Coupled Cluster Through Dataflow-Based Exe-

cution, pp. 366–376. Cham: Springer International Pub-

lishing. DOI:10.1007/978-3-319-32149-3_35.
Ozog D, Shende S, Malony A, et al. (2013) Inspector/executor

load balancing algorithms for block-sparse tensor contrac-

tions. In: Proceedings of the 27th International ACM Con-

ference on International Conference on Supercomputing, pp.

483–484. New York, NY: ICS ’13, ACM.
Lotrich V, Flocke N, Ponton M, et al. (2008) Parallel imple-

mentation of electronic structure energy, gradient and hes-

sian calculations. The Journal of Chemical Physics 128:

194104. DOI: 10.1063/1.2920482.
Deumens E, Lotrich VF, Perera A, et al. (2011) Software

design of aces iii with the super instruction architecture.

Wiley Interdisciplinary Reviews: Computational Molecular

Science 1(6): 895–901.
Lai PW, Stock K, Rajbhandari S, et al. (2013) A framework

for load balancing of tensor contraction expressions via

dynamic task partitioning. In: Proceedings of the Interna-

tional Conference on High Performance Computing, Net-

working, Storage and Analysis (SC), pp. 1–10. New York,

NY: ACM.
Solomonik E, Matthews D, Hammond J, et al. (2013) Cyclops

tensor framework: Reducing communication and eliminat-

ing load imbalance in massively parallel contractions. In:

Parallel Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pp. 813–824. Washington,

DC: IEEE.

Author biographies

Heike Jagode is a Research Director with the
Innovative Computing Laboratory at the University of
Tennessee, Knoxville. She specializes in high-
performance computing (HPC) and the efficient use of
advanced computer architectures; focusing primarily on
developing methods and tools for performance analysis
and tuning of parallel scientific applications. Her
research interests include the multi-disciplinary effort to
convert computational chemistry algorithms into a
dataflow-based form to make them compatible with
next-generation task-scheduling systems, such as
PaRSEC. She is currently pursuing a PhD in Computer
Science from the University of Tennessee, Knoxville.
Previously, she received an MSc in High-Performance
Computing from The University of Edinburgh,
Scotland, UK; an MSc in Applied Techno-Mathematics
and a BSc in Applied Mathematics from the University
of Applied Sciences Mittweida, Germany.

Anthony Danalis is currently a Research Scientist II
with the Innovative Computing Laboratory at the
University of Tennessee, Knoxville. His research inter-
ests come from the area of HPC. Recently, his work has
been focused on the subjects of performance analysis,
system benchmarking, compiler analysis and optimiza-
tion, dataflow programming, and accelerators. He

12 The International Journal of High Performance Computing Applications



received his PhD in Computer Science from the
University of Delaware on compiler optimizations for
HPC. Previously, he received an MSc from the
University of Delaware and an MSc from the University
of Crete, Greece, both on Computer Networks, and a
BSc in Physics from the University of Crete, Greece.

Jack Dongarra holds an appointment at the University
of Tennessee, Oak Ridge National Laboratory, and the
University of Manchester. He specializes in numerical
algorithms in linear algebra, parallel computing, use of
advanced- computer architectures, programming

methodology, and tools for parallel computers. He was
awarded the IEEE Sid Fernbach Award in 2004; in
2008 he was the recipient of the first IEEE Medal of
Excellence in Scalable Computing; in 2010 he was the
first recipient of the SIAM Special Interest Group on
Supercomputing’s award for Career Achievement; in
2011 he was the recipient of the IEEE IPDPS Charles
Babbage Award; and in 2013 he received the ACM/
IEEE Ken Kennedy Award. He is a Fellow of the
AAAS, ACM, IEEE, and SIAM and a member of the
US National Academy of Engineering.

Jagode et al. 13


