
1

Heterogeneous Streaming
Chris J. Newburn, Gaurav Bansal, Michael Wood, Luis Crivelli, Judit Planas, Alejandro Duran

chris.newburn@intel.com, gaurav2.bansal@intel.com, michael.wood@3DS.com, luis.crivelli@3DS.com, judit.planas@epfl.ch, alejandro.duran@intel.com

Paulo Souza, Leonardo Borges, Piotr Luszczek, Stanimire Tomov, Jack Dongarra, Hartwig Anzt
prps@petrobras.com.br, leonardo.borges@intel.com, luszczek@eecs.utk.edu, tomov@cs.utk.edu, dongarra@cs.utk.edu, hanzt@icl.utk.edu

Mark Gates, Azzam Haidar, Yulu Jia, Khairul Kabir, Ichitaro Yamazaki, Jesus Labarta
mgates3@utk.edu, haidar@eecs.utk.edu, yjia@utk.edu, kkabir@eecs.utk.edu, iyamazak@utk.edu, jesus.labarta@bsc.es

Abstract—This paper introduces a new heterogeneous stream-
ing library called hetero Streams (hStreams). We show how a
simple FIFO streaming model can be applied to heterogeneous
systems that include manycore coprocessors and multicore CPUs.
This model supports concurrency across nodes, among tasks
within a node, and between data transfers and computation. We
give examples for different approaches, show how the implemen-
tation can be layered, analyze overheads among layers, and apply
those models to parallelize applications using simple, intuitive
interfaces. We compare the features and versatility of hStreams,
OpenMP, CUDA Streams1 and OmpSs. We show how the use
of hStreams makes it easier for scientists to identify tasks and
easily expose concurrency among them, and how it enables tuning
experts and runtime systems to tailor execution for different
heterogeneous targets. Practical application examples are taken
from the field of numerical linear algebra, commercial structural
simulation software, and a seismic processing application.

I. PROGRAMMING IN A HETEROGENEOUS ENVIRONMENT

Effective concurrency among tasks is difficult to achieve,
particularly on heterogeneous platforms. If this effort were
more tractable, more people would tune their codes to achieve
efficient performance. Our proposed hStreams framework
makes it easier to port and tune task-parallel codes by offering
the following features:

• Separation of concerns: The hStreams interface ad-
dresses real-world programmer productivity concerns,
by allowing a separation of concerns between 1) the
expression of functional semantics and exposure of task
concurrency, and 2) the performance tuning and control
over how tasks are mapped to a platform. Creators of
scientific algorithms who want to harness computing
resources are generally not computer scientists; they want
something simple and intuitive. Code tuners and runtime
developers may work long after the original scientific
developers have moved on from their creations, and they
tend to want the freedom to control how code executes
without acquiring application domain expertise.

• Sequential semantics: Many users find a valid sequence
of task invocations more natural to express than providing
a dependence graph of concurrent tasks. Our hStreams
library offers a sequential FIFO stream abstraction to
make concurrency more tractable and easier to debug.

• Task concurrency: The concurrency that we focus on
for this work is among tasks. It is orthogonal to issues
like code scheduling, vectorization, and threading, all of
which are important optimizations to apply within tasks.

• Pipeline parallelism: Platforms with distributed re-
sources tend to have significant communication latency

1* Other brands and names are the property of their respective owners.

and constrained bandwidth, that needs to be overlapped;
pipelining the transfer of one tile of data while computing
on another tile is often critical to performance.

• Unified interface to heterogeneous platforms: When
frameworks like OpenMP require users to handle task
execution differently on local or remote resources, they
increase the burden on programmers. hStreams, in con-
trast, offers a uniform task interface, to ease that burden.

The contributions of this paper are as follows: 1) the hStreams
library framework, and a demonstration of its applicability to
heterogeneous platforms; 2) a comparison with other pro-
gramming models and language interfaces; 3) a description of
our approach to layering hstreams above other plumbing layers
and below other interfaces in commercial codes and academic
frameworks, with minimal overheads; 4) an evaluation of
hStreams on relevant kernels and applications, for different
platforms, and with respect to NVIDIA CUDA Streams.

II. THE HSTREAMS LIBRARY

The hStreams[1] library provides a streaming, task queue
abstraction for heterogeneous platforms, similar to CUDA
Streams R� [2] and OpenCL. The hStreams library focuses
on heterogeneous portability. It has now been open sourced
on github; see https://github.com/01org/hetero-streams/wiki.
It was previously distributed with the Intel R� Many-core
Platform Software Stack, versions 3.4 to 3.6.

Features

The hStreams library manages task concurrency across one
or more units of heterogeneous computing resources that
we call domains. It uses queues called streams to localize
the dependence scope and to offer a FIFO (first-in, first-
out) semantic. Memory is managed across domains using an
abstraction called buffers, which are used to help manage
properties and track dependences. These three component
building blocks offer abstractions that enhance programmer
productivity, provide transparency and control, and enable a
separation of concerns between the scientist programmer and
the one tuning for a target architecture.

A domain is a set of computing and storage resources which
share coherent memory and have some degree of locality.
Examples of domains include a host CPU, a Knights family
co-processor card, a node in a cluster reached across the
fabric, a GPU, and a subset of cores that share a memory
controller. Domains are discoverable and enumerable to users.
Each domain has a set of properties that include the number,
kind and speed of hardware threads, and the amount of each
kind of memory, e.g. high-bandwidth memory.
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Streams are task queues across which task parallelism in
achieved. Streams have a source endpoint, from which actions
are issued, and a sink endpoint, at which actions occur. The
sink is bound to computing resources identified by a domain
and a CPU mask. The source and sink may be in the same
domain (like OpenMP and TBB), or in different domains,
such that work can be enqueued and scheduled on one set
of resources and executed on a disjoint set of resources, if
desired (unlike OpenMP). This provides a uniform interface
for distributing work to computing on the local host or remote
resources is more flexible and easier to use on hetero platforms
than other interfaces. Three types of actions get enqueued into
streams: compute tasks, data transfers, and synchronizations.
They are free to execute and complete out of order, as long as
the effect of such optimizations is not visible at the semantic
level, i.e., they do not violate the sequential FIFO semantic of
the stream. Tasks naturally expand across a stream’s threads
when they use threading constructs like OpenMP or TBB.

Buffers encapsulate memory. They are used to manage
storage properties (e.g. memory type and affinity) and track
dependences among actions. All memory that can be refer-
enced by user code is represented in a unified source proxy
address space, which is partitioned into buffers. The virtual
address of the base pointer of the buffer is stored for each
domain in which the buffer is instantiated, so when an operand
of an action associated with a stream falls within that buffer, its
addresses are easily translated from the source proxy address
to the virtual address needed for that stream’s domain.

These three abstractions are useful for high-level program-
mers to specify semantics of actions and properties of storage.
Those who perform tuning are left free to flexibly map
these abstractions onto underlying physical realities in ways
that optimize performance. The universality of allowing tasks
to be executed on any subset of available domains makes
hStreams fully retargetable; code can be added for new kinds
of computing resources over time. The ability of tuners to
define their own domains allows performance to be tuned for
locality and enables portability. Users can expose concurrency
across streams, but leave tuners with the responsibility for
deciding which kinds of resources can best execute the actions
of the stream (e.g. CPU or FPGA), and how many. The user’s
task naturally expands to use all of the resources given to a
stream. For example, an OpenMP for in a task will use all
threads assigned to that stream, and the code for the task need
not change if the number of threads assigned to that stream
changes, or the total number of threads available to divide
among streams changes (e.g. between a 61-core Intel R� Xeon
PhiTM coprocessor (we henceforth call this MIC, for Many-
Integrated Core) 7120P, a 57-core Xeon Phi 3110P, or a 12-
core Xeon). Users may create a stream to operate on each
tile, but the tuner can map multiple streams onto a common
set of resources. Buffers give users a way to declare usage
properties, such as whether it’s read only and what its access
patterns are, but give tuners control over the type of memory
the data is bound to, how it should be affinitized, and how it
should be managed in the memory hierarchy.

Compute, data transfer and synchronization actions can
specify memory operands. These memory operands are the

basis for data dependence analysis. In the current implemen-
tation, the user is responsible for explicitly moving data to
domains in which it is needed. If a given sequence of actions
within a stream has non-overlapping memory operands, then
the runtime is free to execute and complete those actions
out of order. For example, if compute task A is enqueued,
followed by a transfer of data for independent task B, then
B’s data transfer may proceed out of order, concurrent with
the execution of task A. Actual dependences among actions
within a stream are implicitly specified by their FIFO order
and their memory operands, and they are faithfully enforced.
There are no dependences implied among actions in different
streams, or between actions in streams and the source; those
must be explicitly specified using synchronization actions.

To make best use of task parallelism, an application domain
scientist would need to factor their code as a sequence of task
invocations, where the heap structures that are used by the
tasks are passed as parameters. A tuner can then follow up
by wrapping those heap structures in buffers, and binding the
tasks to streams. If the dependence predecessor of a given task
is not in the same domain, a data transfer needs to be added. If
the predecessor is in the same domain but a different stream, a
synchronization action is needed. Otherwise, the FIFO seman-
tic will manage the dependences within a stream implicitly,
based on the buffer-wrapped operands. For examples see [1].

High-level hStreams APIs[1] allow the specified or visible
(via automatic discovery) resources to be evenly divided up
among a specified number of streams. Again this division and
assignment can be under full user control with low-level APIs,
or almost fully-automatic, with high-level APIs.

Usage examples
Several application and framework developers find that a

FIFO streaming abstraction for tasks is useful, and they want
to write to a target-agnostic API, and then map from that API
down to several target-specific back ends. They have been able
to do this for CUDA Streams on NVidia and OpenCL on AMD
and perhaps they use OpenMP on a Xeon host. But without
hStreams, they could not do this for a MIC coprocessor
unless they changed their interfaces or wrote lots of code.
The hStreams library makes this relatively easy to do. Several
software vendors from the manufacturing space have ported
from CUDA Streams (e.g. MSC[3]) and OpenCL (e.g. Simu-
lia) to hStreams; early evaluations led them to productize with
hStreams. Petrobras is an Oil and Gas customer with a similar
API that is evaluating the hStreams library. OmpSs [4] is a
data-flow programming model, based on OpenMP, that seeks
to ease application porting to heterogeneous architectures. It
exploits task level parallelism and supports asynchronicity,
heterogeneity and data movement. The OmpSs team found
several advantages to using hStreams over CUDA Streams,
which are documented in the next sections.

III. LAYERING
Useful technologies often get sandwiched in the middle

of several layers. The hStreams library is used in some
frameworks as a plumbing layer, where completely encap-
sulating lower layers enables retargetability. Higher layers
are simpler and more powerful, yet the abstraction of lower
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Fig. 1. hStreams APIs layered between fabric interfaces & higher abstractions.

layers can remain efficient, as we demonstrate below. One
such lower layer used by Intel developer tools is the Intel R�
Co-processor Offload Infrastructure (COI), which optimizes
platform-specific trade-offs. COI is in turn built on lower
abstractions. In the PCIe context, it uses the Symmetric
Communications Interface (SCIF) which abstracts low-level
network hardware. COI supports offload over fabric, and
could be built on top of MPI, TCP, Omni-path, PGAS, and
proprietary interfaces. We exercised hStreams running on top
of COI between Xeon nodes, but don’t report results since this
COI feature is still in development.

One of the frameworks that uses the hStreams library as a
plumbing layer is OmpSs[4], which is described below. The
hStreams library has also been used underneath proprietary,
target-agnostic streaming APIs from several manufacturing
and seismic application developers, including Simulia and
Petrobras, that use CUDA Streams to target NVidia GPUs and
OpenCL to target AMD GPUs. This is illustrated in Fig. 1.

In the evaluations throughout the paper, the machine config-
urations used for the Xeon (Haswell and Ivybridge) host and
Knights Corner (KNC) co-processor are shown in Fig. 2.

hStreams’ performance overheads are less than 5% for
data transfers above 1MB. It has 20-30us of overhead for
transfers under 128KB. For both hStreams and OmpSs, over-
heads for SCIF and hStreams on the host were negligible. The
COI overheads are negligible when a pool of 2MB buffers
were used. When they were not enabled, as in the OmpSs
case, the COI allocation overheads were significant. The MIC-
side overheads for hStreams and SCIF were all either just
at initialization time or were negligible, as in the case of
invocation overheads. OmpSs ends up inducing overheads on
top of hStreams of 15-50% for matrices that are 4800-10000
elements on a side, as a cost of the conveniences it offers, as
also shown in the Cholesky results of Fig. 7.
Fig. 2. Machine configuration.

Specification Intel Xeon Processor
E5-2697v2 (IVB) and
E5-2697v3 (HSW)

Intel Xeon Phi
Coprocessor C0-
7120A (KNC)

NVidia K40x

Skt,Core/Skt,Thr/Core 2S,12C(v2),14C(v3),2T 1S, 61C, 4T 1S, 15C, 256T
SP, DP width, FMA 8,4,N (v2) 8,4,Y (v3) 16,8,Y 192, 64, Y
Clock (GHz) 2.7(v2) 2.6(v3) 1.33 (turbo) 0.875 (turbo)
RAM (GB) 64 DDR3-1.6GHz 16 GDDR5 12 GDDR5
L1 data, instr (KB) 32,32 32,32 64
L2 Cache (KB) 256 512 roughly 200
L3 Cache (KB) 32K(v2),35K(v3) (sh) - -
OS, Compiler RHEL 6.4, Intel 16.0 Linux, Intel 16.0 -
Middleware MPSS 3.6 MPSS 3.6 CUDA 7.5

IV. COMPARISON WITH OTHER APPROACHES

This section compares heterogeneous streaming approaches.
It highlights the benefits of using a library, unlike Intel Com-

piler Offload Streams, and of providing a uniform interface to
heterogeneous platforms, unlike OpenMP and CUDA Streams.
hStreams makes it easy to achieve both concurrency among
tasks across and within heterogeneous platforms, and thread
parallelism within tasks. We begin with a comparison with
OmpSs, which can be layered on top of hStreams or CUDA
Streams. We highlight differences among these approaches in
how they manage data, resources and execution flow.

OmpSs on top of hStreams

OmpSs [4] is a task-based programming model that enables
sequential applications to run in parallel. Based on compiler
directives to express tasks and data needed by those tasks, the
framework is able to dynamically detect task data dependen-
cies to exploit the inherent parallelism of applications. OmpSs
supports combining several architectures in either single node
or clusters [5], like CPUs, GPUs and MIC. In this work, the
OmpSs runtime has been ported on top of hStreams to offload
tasks to MIC cards and it provides a higher level abstraction
layer for high programmer productivity, as described below.

Data management: OmpSs allocates data automatically on
the device. Data movement between domains are implicitly
added as needed for scheduled tasks. The runtime keeps track
of data accesses by tasks to ensure program correctness.

Resource management: The runtime is in charge of trans-
parently managing hStreams devices and performing all the
needed actions, like creating and managing streams and events.

Execution flow management: OmpSs uses several streams
and partitions to distribute work among system resources
and maximize hardware utilization. Data is prefetched to the
appropriate memory space as soon as possible and overlapped
with other data transfers and computations. Internally, opera-
tions are always issued asynchronously with hStreams. This
approach is also used for offloading tasks to GPUs and it
has been shown to improve runtime performance [6]. Finally
OmpSs is able to simultaneously offload tasks to CPUs, GPUs
and MIC cards in heterogeneous platforms.

hStreams vs. Offload Streams

Offload Streams is a new feature of the Intel compiler[7]
that builds upon Intel’s past Language Extensions for Offload
(LEO), independent of OpenMP directives on the host. The
stream clause is added to the offload directive, and
new API calls create, destroy and wait on a stream. There
are differences among ways to enforce dependences between
actions. While OpenMP uses the depend clause to call out
which variables dependences are enforced on, Offload Streams
uses signal and wait clauses. Dependent operands are
explicitly listed as arguments to hStreams APIs for compute,
transfer and synchronization actions. Both hStreams and the
Intel Compiler implementations use COI.

Offload Streams supports streaming via offload to other
devices only. It does not provide convenience functions that
automatically create streams across available devices, or a
mix of different device types. As a compiler feature, Offload
Streams is able to support general parsing and type analysis
of variables that are used as operands within offloaded code,
and to identify the code to be offloaded and generate binary
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code for the designated target. Their features are ubiquitously
available to all those who pick up the latest compiler version.
Clearly, for some users, keeping pace with the latest compiler
is so time consuming that they prefer to change compiler ver-
sions infrequently, and to use library-based interfaces instead,
even if that may affect invocation and code provisioning.

OpenMP

OpenMP added support for heterogeneous computing in its
4.0 spec[8]. Unlike other language extensions, OpenMP al-
ready boasts support for multiple heterogeneous architectures
from a growing number of compiler vendors, making it a
very attractive option for many programmers. Therefore we
consider it important to have a comparison between OpenMP
and hStreams. The comparison of OpenMP and hStreams here
highlights their relative strengths, and reveals some opportu-
nities where hStreams can fill some of the current gaps with
respect to generality on heterogeneous platforms.

While OpenMP provides support for many different kinds
of parallelism (e.g., loop parallelism and task parallelism) we
restrict our comparison with hStreams to the heterogeneity
support and affinity controls of both approaches. We compare
with both the previous specification, OpenMP 4.0[8], and the
OpenMP 4.5 spec[9], which addresses certain limitations of
OpenMP 4.0 with respect to heterogeneous systems, most
notably asynchronous data transfers. Unfortunately, a complete
implementation of OpenMP 4.5 is not yet available for per-
formance comparison, from either Intel or gcc/gomp.

The most obvious difference is that OpenMP is a standard,
compiler-supported language extension while hStreams is a
library-based API extension. The previous section highlights
the key differences between a compiler and a library-based
approach. We again focus our comparison on the same three
key aspects of heterogeneity as above.

Data management: Both hStreams and OpenMP explicitly
move data from one memory space to another. While hStreams
buffers currently need to be allocated before the data can be
transferred, an OpenMP allocation can happen either explicitly
or implicitly. The hStreams allocation APIs support alloca-
tion for different memory types, e.g. for high-bandwidth
or persistent memory, whereas OpenMP does not. OpenMP
4.5’s support for asynchronous transfers closes a gap between
hStreams and OpenMP 4.0.

Resource management: is a key source of differences
between the two models. In hStreams, all resources are
treated uniformly, whether they are on the host, a card, or
a remote node. In OpenMP, there is a clear separation
in the constructs used to create work in the host and
the devices. The current hStreams implementation allows
the creation of streams on devices residing in remote nodes
(i.e., over fabric). hStreams provides the service of creating
concurrent streams of arbitrary width, comprised of affinitized
threads within a device. While an OpenMP implementation
could theoretically sub-partition nodes into devices, we are
not aware of an OpenMP implementation having productized
this. OMP PLACES, added in OpenMP 4.0, allows users to
specify a list of thread numbers on which threads in a parallel
region (such as the master thread of each stream) should

be placed. Apparently only Intel’s OpenMP implementation
allows affinity to be manipulated within the execution of a
program, and our users claim that using that mechanism is
awkward compared to describing how many streams to create
with hStreams’ “app APIs”, or to explicitly providing a mask
for each stream with our “core APIs”[1].

Execution flow management: In both models, work is
offloaded from a host thread to one of its resource abstractions
(a logical device in OpenMP, a stream in hStreams). In
hStreams, work offloaded to the same stream generates an
implicit dependence in the execution order while in OpenMP
work offloaded to the same device is independent by default.
OpenMP 4.5 extends the device constructs to support the
tasking synchronization primitives. Using this bulk synchro-
nization (taskwait and taskgroup) and point-to-point
synchronization, using the depend clause, allows synchro-
nization of work and data transfers done in the host or in
any of the attached devices, as long as they are at the same
nesting level. But that nesting constraint poses an ease of use
problem. Part of the value offered by OpenMP’s dynamic task
scheduler is that the scheduler does the binding to the target
instead of the user. But if a task that does async offload is
scheduled, and some other task depends on it, the only way
to enforce that dependence is to make sure that the (parent)
task that does the offloading completes. That synchronous
enforcement of a transitive dependence (see [1]) can be costly.
The alternative that avoids nesting is to have the user mark
the task for offload with an omp target directive[1], but
that defeats the value claimed above. In hStreams, additional
APIs are provided for inter-stream synchronization and host to
stream synchronization. In both cases, dependencies are based
on a data-flow approach where actual dependencies between
work units are derived from the declared input and output
operands of the task.

In summary, the major differences between OpenMP and
hStreams is OpenMP’s lack of ability to subdivide a device to
be able to have multiple offload regions running concurrently
onto disjoint sets of heterogeneous resources, and to span
multiple devices in a uniform way. The performance data
that we will gather upon OpenMP 4.5 completion will support
the need for OpenMP to look in this direction.

CUDA Streams

Streaming abstractions may differ in their usability and
capabilities. Several differences between hStreams and CUDA
Streams[2] are highlighted below. These differences became
clear from our comparative implementation of both hStreams
and CUDA Streams within the OmpSs framework.

Data management: Especially when dealing with multiple
devices, maintaining all of the device-side addresses in CUDA
can be complicated, as every device may have its own address
space. Then, multiple variables are needed to keep the ad-
dresses for each memory space. With hStreams, only the host
proxy address is used in the application’s source code, so the
code looks cleaner and is less error prone. hStreams allows
a single host proxy address to represent (e.g., shared) instances
in many domains; CUDA does not.
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Resource management: Unlike CUDA Streams, hStreams
allows the possibility of dividing the computing resources into
smaller groups. This allows the programmer to adapt this
division depending on application’s concurrency to improve
hardware utilization and load balancing. The use of a hardware
scheduler in CUDA Streams may enable adapting to less
concurrency than a configured number of streams.

Execution flow management: In CUDA, explicit event
and stream creation and destruction is required. Streams
in hStreams are represented by an integer in contrast to the
CUDA opaque pointers that are returned at stream creation and
need to be used to send operations to such streams. hStreams
adds the possibility of waiting on a set of events and being
signaled when one or all the events are finished. This can
save CPU spinning time. Streams and partitions can be highly
configured by the programmer using low-level APIs, but they
can also be set easily with high-level APIs. CUDA Streams
follow a strict FIFO order of operations, and are not pipelined,
while hStreams actions in the same stream do not need to
wait for previous operations to complete as long as they
are data independent. This behavior can be implemented in
CUDA Streams at the cost of using several streams and intro-
ducing synchronization points between them, which increases
the complexity and programming effort. hStreams’ flexibility
can potentially increase an application’s concurrency with no
additional effort for the programmer. For a 4Kx4K matrix
multiply in OmpSs, the hStreams-based implementation was
1.45x faster than CUDA Streams. The primary contributors
to the performance difference are that for CUDA Streams,
OmpSs needs to explicitly compute and enforce dependences,
whereas this is not necessary within hStreams.

Source code: hStreams does not require writing device-
specific code when targeting MIC. Since the same code can
also be run on the host, it is more portable and programmable.
CUDA’s special syntax requires the use of the nvcc compiler.
hStreams applications can be compiled with any compiler.

Sample API Comparison: Fig. 3 presents a summarized
comparison of hStreams and the other approaches evaluated in
this section for matrix multiply. In the top part, the number of
additional source code lines to perform offload is shown for
each of the different application phases, for several language
interfaces. The central part of the figure shows the number and
size of additional support variables needed for both hStreams
and CUDA versions, when explicit synchronization is used.
The bottom part counts the number of API calls needed
for each approach and the achieved performance. A table
showing the actual code comparison is available at Ref. [1, 10].
Performance results are shown at the bottom of the table. A
fully-functional OpenMP 4.5 compiler is not yet available,
and we did not have a CUDA formulation of this code.
hStreams requires far fewer extra lines of code, API calls and
unique APIs than CUDA (1.94x-2.25x) and OpenCL (1.65x-
2.00x). OpenCL performance is poor because cuBLAS is not
well tuned for MIC. The OpenMP 4.0 has one extra API
that does the allocation, transfer, invocation and deallocation,
but OpenMP does not use concurrency within the device
and does not support an asynchronous transfer. So a tiled
implementation has less than half of the performance: 180 vs.

Fig. 3. Coding Comparison - see [1, 10] for actual code examples
# additional source code lines vs. basic tiled version

Descr. hStreams CUDA OMP
4.0

OMP
4.5

OmpSs OpenCL

Initialization 2 9 0 0 0 8
Data alloc 3 6 0 3 0 6
Data transfers 7 7 0 7 0 7
Computation 0 2 1 1 3 0
Synchronization 1 1 0 1 1 1
Data transfers 2 2 0 2 0 2
Data dealloc 3 6 0 3 0 6
Finalization 2 7 0 0 0 3
Total 20 40 1 17 4 33

# support variables
hStreams CUDA
1 matrix[M][N][L] (events) 1 matrix [M][N] (streams)

1 matrix [M][N][L] (events)
1 opaque pointer (CUBLAS)
1 matrix [M][L] (dev. addr.), 1 matrix [L][N] (dev.
addr.), 1 matrix [M][N] (dev. addr.)

Metric hStreams CUDA OMP
4.0

OMP
4.5

OmpSs OpenCL

Unique APIs 8 18 1 5 5 16
Total APIs used 16 31 1 14 9 28
GFl/s,(10K)2 916 N/A 460, 180 N/A 762 35

460 GFl/s. hStreams provides the highest performance of the
alternatives shown. It’s not required that hStreams or CUDA
Streams use events for this particular example, but they are
illustrated there.

Other Related Work
The hStreams interface does not require OpenCL’s boil-

erplate code. It does not rely on target-specific tuning for
clBLAS [11], which is significantly under-optimized for the
MIC. Unlike tasks in SyCL [12], OpenMP, MPI, OmpSs [4],
StarPU[13], Qualcomm MARE[14], CnC[15], OCR[16], TBB
Flow Graph[17] and others, task dependences need not be
explicitly specified. Unlike SyCL[12], Phalanx[18], CnC[15],
UPC++[19], CHARM++[20], TBB Flow Graph[17, 21],
Kokkos[22], Legion[23] and Chapel[24], there is no current
dependence on C++ or other language mechanisms. As a
library, hStreams doesn’t depend on users to stay current with
the latest versions of compilers, as is the case for the Intel
compiler [25]’s Offload Streams for and OpenStream [26].
Furthermore, it doesn’t need to ”own main”, as OCR[16],
CHARM++[20] and others do, for the sake of initialization,
e.g. to set up communication. The current hStreams interfaces
are at a lower level than related systems such as Trilinos[27]
and Legion[23]. Other frameworks that deal with distributed
environments, like Global Arrays[28], HPX[29] and TIDA[30]
don’t offer the FIFO stream abstraction of hStreams. hStreams
offers a distinction between logical and physical abstractions
not available in LIBXSTREAM[31] or icc[25]. hStreams does
not yet automate dynamic scheduling, as TBB Flow Graph,
Legion, CnC, HPX and others do.

V. APPLICATIONS

In this section, we discuss some applications to which
hStreams has been applied and the associated algorithms. We
look at how algorithms are modified to support tiling, and how
work can be distributed to multiple domains to optimize for
concurrency. In the following we will first describe in detail
two fundamental reference applications, matrix multiplication
and Cholesky factorization, followed by two commercial ap-
plications, Simulia Abaqus/Standard and Petrobras RTM.
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Fig. 4. Decomposition of matrices into tiles and distribution of tasks onto
the host and multiple cards for the hetero hStreams matmult program. *Host
refers to host-as-target streams.

Matrix Multiplication
Matrix multiplication is an expensive mathematical oper-

ation used in many software applications. Here we describe
a manual mapping onto to host and multiple MICs using
hStreams. This builds upon the single card offload program
given in Ref. [32]. For this algorithm, the matrices A, B, and
C are divided into square tiles as shown in Fig. 4. Matrix A
is broadcast, one tile at a time, to both the host (using host-
as-target streams) and all MICs. Matrix B is partitioned into
column panels containing one or more tiles; these tiles are sent
one tile at a time either to the host or to a MIC. The number of
panels is chosen as an integer multiple of the number of MICs
plus one (host). Transfers to the host in host-as-target streams
are optimized away. Matrix C is also partitioned into panels;
each panel is assigned to a unique computational domain
(either host or card(s)) responsible for its update. Panel updates
are independent and do not require communication between
MICs. The combination of tiling and multiple streams allows
the design of effective strategies to hide the latency associated
with data transfers; C-panel computations may start as soon
as a few tiles arrive at the MICs as opposed to the traditional
offload approach where the computation cannot start until the
entire matrices reside on the MICs.
Cholesky Factorization

Cholesky factorization is a decomposition of Hermitian,
postive-definite matrix into the product of a lower triangular
matrix and its conjugate transpose, useful for efficient numer-
ical solutions of linear systems arising in a large number of
scientific fields. To exploit the functionality of the hStreams
library in hiding data transfer latencies and improving concur-
rency, the input matrix is divided into tiles as shown in Fig. 5.
The native, host version, of the tiled-Cholesky factorization
algorithm employed in this paper is given in Ref. [33]. Fig. 5
shows different compute operations (LAPACK and BLAS
functions) which are applied on different tiles. Intel R� MKL is
used for these function calls. The colors show computes in the
first pass of the algorithm. In the algorithm, one moves from
column to column starting from the leftmost column and the
colors (and operations) are shifted right each time. The tiles
on which DPOTRF and DTRSM have been applied contain
the final factored data for the column.

The manual hetero algorithm using hStreams for tiled-
Cholesky builds upon the single MIC card offload program
given in Ref. [32]. For this, DPOTRFs, DTRSMs and some of
the DSYRKs and DGEMMs execute on the host (in host-as-
target streams). For DPOTRF, we use a machine-wide stream

Fig. 5. Decomposition of the matrix into tiles and distribution of tasks onto
the host and multiple cards for the hetero hStreams Cholesky program. *Host
refers to host-as-target streams.

on the host. The results of DTRSMs are broadcast to all cards.
Each tile-row is assigned to either the host or one of the
cards in a round-robin fashion. Each subsequent compute on
the host or a given card is round-robin’d across the available
streams on that computing domain. The results of DSYRK
and DGEMMs in the column adjacent to the DTRSM column
are sent from different cards to the host. This process repeats
in the next pass. Note that since there are no dependencies
between DSYRK and DGEMMs and since each card computes
on a fixed row, no data card-card transfers are needed. Each
card only interacts with the host. Once again, any transfers
en-queued in host streams are aliased and optimized away.

MAGMA

The MAGMA (Matrix Algebra on GPU and Multicore
Architectures) [34] provides a dense linear algebra library
similar to LAPACK but for heterogeneous/hybrid architec-
tures. MAGMA offers a version that targets MIC. The lower
Cholesky MAGMA function uses the host for the DPOTRF
panel and does the rest of the work on the MIC card. We
will compare our hStreams Cholesky performance against
MAGMA Cholesky performance in the next section.

Simulia Abaqus/Standard

Simulia’s Abaqus/Standard software product[35] simulates
static and low-speed dynamic events where highly accurate
mechanical stress solutions are critically important. Examples
include sealing pressure in a gasket joint, steady-state rolling
of a tire, or crack propagation in a composite airplane fuselage.
They accelerate highly-parallel computations on AMD GPUs
with OpenCL, on NVidia GPUs with CUDA Streams, and now
on MIC coprocessors with hStreams, all as back ends for a
target-agnostic API that their developers code to. The initial
release of Abaqus 2016 uses hStreams in the symmetric
solver; coverage for unsymmetric solver will follow in the first
maintenance release. The symmetric solver that is evaluated
in this paper is related to the hStreams Cholesky reference
code in the following way. It uses similar factorization: LDLT

instead of LLT . As a research topic, Simulia is investigating
the use of the host for streaming computations using hStreams,
in addition to offloading to multiple cards. For this purpose a
standalone test program is developed that factorizes a single
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dense supernode. The full production solver processes all of
the supernodes in a given system of equations in an optimized
order. We will show the performance results for the full solver
as well as for the standalone test program in the next section.

Petrobras RTM
Reverse Time Migration [36] is heavily used by Petrobras in

seismic processing, on HPC clusters with thousands of nodes.
A single job can run from weeks to months. The core of
RTM is usually a time domain finite difference wave field
propagator [37], a stencil-based computation [38], where each
point reads from its neighbors in a 3D regular grid.

Petrobras has a high-level Fortran90 library called
HLIB [39] that abstracts three back ends: CUDA, OpenCL
and the CPU. Although there’s one architecture with optimized
implementations for each back end, all the device management
needed is done with a high-level target-agnostic Fortran API.

A production-size grid won’t fit in one co-processor mem-
ory, so a domain decomposition into subdomains is needed.
At every wave propagation step each accelerator needs to
exchange information with its neighbors, since every point
in the grid needs information on its neighborhood. There’s a
distinction between two kinds of grid points within each sub-
domain: halo points, that need to produce data for neighboring
subdomains, and internal points, that do not need to exchange
data that way in this time step. Processing of data for halo
grid points should be given priority, so that the internal grid
points can be processed while the data exchange is occurring.

A streaming abstraction fits well here. In the simplest form,
halo grid points are processed in one (set of) streams, and
interior (bulk) grid points are processed in another (set of)
streams. Data exchange with neighbors can be initiated once
all of the processing in the first set of streams is done. In such
a scheme, there’s an implicit barrier, waiting for all actions to
complete in the first set of streams before any data exchanges
start. That scheme can work fine, if the work on the bulk points
takes longer than both the work on the halo points and the cost
of the data exchange. When that condition holds, having data
transfers complete in FIFO order, and not having any special
data dependence management is fine. CUDA Streams provides
that, and this is what the existing Petrobras implementation
does. Being able to have hStreams plug into Petrobras’ target-
agnostic streaming API enables it to be ported quickly to
heterogeneous clusters.

But there’s an alternate scheme, that becomes increasingly
relevant given the trend towards increasing communication
costs on large grids, that may eventually exceed the cost of
processing the interior grid points. That can happen when
the ratio of halo points to interior points increases, because
the subdomain is small, e.g. to fit in constrained memory, or
when dealing with very high-order stencils. In that case, we
don’t want to wait until all halo grid points are processed to
start exchanging data. Instead, we want to queue up transfer
tasks that depend on the completion of processing of each
halo grid point. That involves making those data transfer tasks
dependent on the compute tasks. A FIFO stream semantic
can save the user from having to make those dependences
explicit. But if the transfers are to be concurrent with the

computes, they’d need to be in different CUDA Streams,
and explicit synchronization would need to be added, since
actions are in different streams. This is unnecessary with
hStreams. And what if there’s load imbalance across the tasks,
and some finish earlier than others? In that case, the FIFO
semantic promotes ease of use, but a FIFO implementation
would inhibit performance. Unlike CUDA Streams, hStreams
enables a FIFO semantic and an out of order execution. Thus
the data exchange tasks (if MPI is used explicitly as is done at
Petrobras today) or even direct, enqueued data transfer actions
(if hStreams is used for communication plumbing), can be
queued into the same stream as their related computation, and
they can get dynamically scheduled, as early as the data is
ready. This accommodates 1) slow communication, 2) more-
dominant communication costs when the ratio of halo points to
interior points is high, due to small sub-domains or high-order
stencils, and 3) dynamic load imbalance. These two schemes
are evaluated and compared below.

VI. PERFORMANCE RESULTS

Good performance on heterogeneous platforms is a result
of a careful choices of where tasks run most efficiently,
of how to maximize concurrency across and within nodes
in the platform, and of keeping overheads low. We start
with concurrency considerations within a node, then look at
distributing tasks across a heterogeneous platform.

Within a Node: Tiling, Concurrency, Balancing
Tiling is the process of decomposing large matrices down

into smaller ones, and modifying an algorithm to work on
the tiles instead of the monolithic matrices. Decomposition
increases concurrency. Tiling can help in that a smaller amount
of data needs to get transferred to a computing resource before
the work can begin on it. Some or all of the communication
latency can get covered by computation, through pipelining.
Decomposition creates a larger number of tasks, which may be
more evenly divisible by the number of computing resources,
leading to less load imbalance.

The best degree of tiling and number of streams depends on
the matrix size and algorithm. Users want to be able to tune
these easily, by changing just a few parameters. We provide a
detailed analysis of that technique in [32] for matrix multiply,
Cholesky, and LU, but only for offloading to a single KNC
card rather than multiple MICs or MICs plus a host.

Distributing Tasks on a Heterogeneous Platform
Compute efficiency is straightforward. When a given task

is run on different computing elements, where does it run
best? At present, DGETRF runs better on the host than the
coprocessor, and an untiled scheme works best for sizes
smaller than 4K [32]. An untiled Cholesky (DPOTRF) runs
better natively on a Haswell (HSW) Xeon than on coprocessor
for matrix sizes up to 20,000 (see Fig. 7). The trade-off is
more complicated: 1) should it be decomposed into tiles and
2) should DPOTRF run on the host or coprocessor, as it also
affects the number of data transfers?

Fig. 6 shows matrix multiplication performance on a hetero
platform. Up to 2599 Gflops/s is achieved for a HSW node
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Fig. 6. Performance of hetero hStreams Matrix-Multiply for different plat-
forms and configurations.

with 2 KNC cards. The relative capabilities of the host and
card affect the importance of load balancing. In a naive
distribution of work across computing resources, the same
number of tasks are given to each of the host and card. This is
fine for Haswell, which has similar performance on DGEMM
(902 GFl/s) to a KNC (982 GFl/s). But in the Ivybridge (IVB)
case, where host performance drops to 475 GFl/s, performance
with load balancing on 2 MICs (1878 GFl/s) is 1.58x higher
than without (manual) load balancing (1192 GFl/s), see Fig. 6.

Another set of trade-offs pertains to how concurrency is
exploited across and within nodes. Consider the distribution
of tasks for a tiled Cholesky across multiple MICs, shown in
Fig. 5. One possible distribution executes the DPOTRF and
all three DTRSMs on the Xeon host, with results broadcast
to all MICs, and the remainder of the lower three rows
of DSYRK and DGEMM tasks to host and 2 MICs. This
particular distribution maximizes concurrency across MICs
and minimizes communication. As seen in the hStreams curve
in Fig 7, the scaling efficiency degrades as the number of
MICs is increased, because the tiles shown in grey above the
diagonal in Fig. 5 don’t need to be computed. For the tiled-
matrix multiply, on the other hand, we see excellent scaling
for 2 MICs (efficiency of > 85% for matrix sizes > 12000,
for HSW host) because as shown in Fig. 4 there is perfect load
balancing among MICs and a simple communication pattern.

The difficult trade-offs in decomposing and distributing
tasks are shown to matter, so having a very flexible, intuitive
and efficient framework in which to map concurrent tasks
onto heterogeneous platforms, as we’ve found hStreams to be,
can have a significant impact on productivity. Improving that
productivity is key to achieving good performance.

We now examine the relative performance of different im-
plementations for Cholesky factorization that use both the host
and MIC cards: hetero hStreams code, MKL AO (automatic
offload), MAGMA and OmpSs. The results are shown in
Fig. 7, which compare results for the host only, with an MKL
native DPOTRF call, and with the host plus 1 or 2 MIC
cards. The fact that 10% greater performance was achieved
with hStreams with four days of tuning to use the host rather
than just purely offloading to multiple MICs, vs. months of
development by the MKL team to develop and tune their AO
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Fig. 7. Performance of Cholesky for different platforms and implementations:
hStreams code (hStr), MKL Automatic Offload (AO), MAGMA, OmpSs.

infrastructure is an indication of both the power of hStreams’
infrastructure and its ease of use. MAGMA performance when
using a single KNC card exceeds that of hStreams’ with KNC-
only or HSW-only configuration because MAGMA code ships
the DPOTF2 panel factorization back to the CPU and thus
the MIC spends most of the execution time in much more
efficient DTRSM, DSYRK, and DGEMM routines. However,
hStreams outperforms MAGMA by 10% when the host and
MIC are used because spare host resources are used for more
efficient routines in addition to the latency-bound DPOTF2.
Also compare the MAGMA’s rather smooth performance curve
with hStreams’ noticeably-jagged performance, especially on
two MIC cards. This is a result of the MAGMA’s team effort
in performance engineering around sporadic inefficiencies that
may be present in the software stack (BLAS implementation
from MKL, communication library, etc.) and its tailoring to
the hardware configuration (cache line size, core count, etc.).
hStreams itself is not focused only on linear algebra software;
it does not apply domain-specific knowledge to dynamically
adjust the parametric setting of the algorithm or switch the
underlying numerical method for greater efficiency without
loss of accuracy as MAGMA does. OmpSs has only been
tested in offload mode and for only one MIC. The performance
for sufficiently-large problem sizes (>12K) is the same as that
of MAGMA even if not using the host for computational tasks.
For small problem sizes, granularity issues and the overhead of
OmpSs fully dynamic task instantiation and scheduling result
in lower performance.

Simulia Abaqus/Standard
Fig. 8 shows the performance of several customer-

representative workloads evaluated in the Simulia full appli-
cation, which uses hStreams in its released production code.
The 8 workloads are identified by name, with proprietary
customer workloads assigned a letter: A, B or C. The test
cases cover not only the common symmetric cases, but also
unsymmetric cases. The speedups from adding the use of MIC
cores via hStreams to the standard use of Xeon cores look
promising. Speedups are shown relative to both the weaker
IVB baseline (up to 2.61x for the solver kernel and 1.99x for
the entire application) and the more-capable Haswell (HSW)
(up to 1.45x and 1.22x, respectively). The latter obviously has
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lower speedups, since the HSW peak compute performance is
approximately twice the Ivy Bridge (IVB) performance, as can
also be seen in Fig. 6. Only the solver is offloaded to the MIC
cards. The difference in speedups obtained for the solver and
the full application is dependent on how ”solver-dominant”
the workload is, as well as other initialization costs.

1.22x
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1.83x

2.61x

0.0x

0.5x

1.0x
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2.0x

2.5x

3.0x

app solver app solver
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Gain from adding MIC cards

s2b s2bu
s4b s4bu
s8 A
B C

Fig. 8. Speedups for Abaqus/Standard when adding 2 MIC cards to Xeon
cores. Data for 8 workloads for IVB and HSW host CPUs is shown.

To investigate the potential benefit of using host-as-target
streams, we use a standalone test program which factorizes
a single representative supernode, and show the run times in
seconds for factorizing the supernode on KNC card, Haswell
host CPU (HSW, 2 years newer than KNC), and Ivy Bridge
host CPU (IVB, includes transfer time) in Figure 9. The
relative run times correlate pretty well with the relative peak
performance of these platforms. There is a plan to modify the
standalone test program to use hStreams to make concurrent
use of host and MIC streams in a unified programming
framework in the future.

KNC offload HSW host-as-target IVB hvost-as-target
2.35 2.24 4.27

Fig. 9. Runtimes (s) for Abaqus standalone hStreams test program. 4 streams
for KNC (60 threads each), 3 streams for HSW (9 threads each), and 3 streams
for IVB (7 threads each) are used. The median of 5 runs is reported.

We compare the net effectiveness of parallelizing for a
hetero platform, including host-target concurrency, streaming
overheads and hiding communication costs, we compare
Simulia Abaqus performance for hStreams and CUDA
Streams implementations. To make this a fair comparison,
the card-side work should be the same. This was achieved by
using a single card on three representative standard workloads
and the card-side FLOPS were confirmed to be within 1%
for the two cases. This comparison is clouded by two issues:
1) the K40x is faster than the KNC, yet 2) card performance
is not always on the critical path. When card performance is
on the critical path, we can normalize with respect to card-
side performance. This is assessed for KNC using VTune
(sum of work and OpenMP times on all threads/240 threads),
and for K40x using the sum of kernel times, as reported by
nvprof. Since kernels may overlap on different SMXes, this
is an upper bound, which could lead to under-normalization
in K40x’s favor. The results for [s4b, s8, ”A”] show a [1.12x,
1.17x, 1.27x] solver advantage for K40x, but a [1.28x, 1.24x,
1.03x] advantage for KNC, respectively, when normalized to

card-side performance. The middle of these ranges is within a
couple percent of parity, suggesting that the two streaming ap-
proaches have comparable performance for radically-different
targets, and hStreams holds promise for bringing out forth-
coming performance improvements with Knights Landing.
Petrobras RTM

An initial implementation of Petrobras’ MPI-based reverse
time migration in hStreams shows promising results . We
compare, for one to four ranks, 1) a baseline case which
executes one rank on a HSW with no offload, 2) fully-
synchronous offload of the highly-parallel code to a KNC card
with no overlap of data and compute, and 3) asynchronous,
pipelined-overlap offload to a KNC card. In the asynchronous,
pipelined case (3), the MPI send and receive is executed on
the host, the data movement for the upper and lower halo
is pipelined with the upper and lower halo and bulk (non-
halo) computation. We evaluated whether the halo tasks were
small enough to benefit from task concurrency in multiple
streams. Their workload of 1K ⇥ 1K ⇥ 8 ⇤ 80 Flops is
large enough to dwindle the OpenMP fork/join overheads
and obviate the need for such concurrency. The benefit of
asynchronous pipelining ranges from 3 to 10%. Performance
tuning benefits KNC significantly: the speedup from using a
KNC over just a Haswell host is 1.52x for 1 card and 6.02x
for 4 ranks on 4 MICs for optimized code. For unoptimized
code, the speedup, 1.13x-4.53x, is lower since communication
is a smaller fraction and hiding it is less beneficial.

VII. CONCLUSIONS & FUTURE WORK

A streaming abstraction is one of several compelling choices
for mapping concurrent tasks to heterogeneous platforms. We
now summarize how the hStreams framework meets the goals
for supporting heterogeneity with streaming.

• Offload to captive cards over PCIe: we show compelling
performance for how hStreams is able to offload work to
one or more MIC co-processors.

• Portability between pure offload to one or more cards
and also streaming within the (host) node.

• Effective layering under Simulia Abaqus/Standard,
OmpSs, and Petrobras in production environments, and
over COI (co-processor offload interface)

Ease of use is a primary goal for optimizing large code
projects deployed on heterogeneous clusters. Here’s an assess-
ment of how some goals for ease of use were met:

• Fewer lines of code ([20, 40, 33] for [hStreams, CUDA
Streams, OpenCL] in one case), fewer API calls
([8, 18, 16] unique APIs, [16, 31, 28] API instances), less
variable allocation: the competitiveness of hStreams was
illustrated in a complete example for matrix multiply.

• Lower overheads for cross-stream coordination, as illus-
trated by a 1.45x advantage for hStreams vs. CUDA
Streams in OmpSs on a 4Kx4K matrix.

• Ease of design exploration, with respect to target affin-
ity, changing degree of tiling and number of streams,
and remapping parallelism across different nodes in a
heterogeneous cluster was illustrated with examples like
multi-card Cholesky, where hStreams outperformed MKL
Automatic Offload and MAGMA for MIC.
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• Ease of porting and future proofing through separation
of concerns: Easy code porting across alternative het-
erogeneous configurations was illustrated on a simplified
representation of Petrobras’s RTM code.

Finally, a heterogeneous streams framework needs to
achieve good performance.

• Enabling concurrency between nodes, within a device,
between computation and communication: each of these
were illustrated with matrix multiplication. Outperformed
MAGMA and MKL AO by 10%, boosted Petrobras
offload by 10%, yielded 2x gains over just a host.

• Less dependence analysis and enforcement work, leading
to a 1.4x gain for OmpSs relative to CUDA Streams on
a 6K x 6K matrix 2x2-tiled multiply

• Ease of performance tuning: the relevance and ease of
varying the degree of tiling, number of streams and
target affinitization was established for matrix multiply
and Cholesky for hStreams, was explained.

In conclusion, hStreams meets all of these design criteria, and
we’ve demonstrated these points with supporting data.

Petrobras is evaluating hStreams for future production
deployments with Knights Landing. Simulia is considering
applying hStreams to their Eigenvalue solver, and also their
AMS solver, which currently depends on MAGMA for MIC.
MAGMA is looking to rework some of its infrastructure to
use hStreams. The overhead analysis performed as part of
this work revealed that making MIC-side memory allocation
asynchronous is a bottleneck; this feature is now forthcoming.
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