
PaRSEC in Practice: Optimizing a legacy Chemistry
application through distributed task-based execution

Anthony Danalis∗, Heike Jagode∗, George Bosilca∗ and Jack Dongarra∗†‡
∗Innovative Computing Laboratory (ICL), University of Tennessee, Knoxville

†Oak Ridge National Laboratory, Oak Ridge, TN
‡University of Manchester, Manchester, UK

Abstract—Task-based execution has been growing in popular-
ity as a means to deliver a good balance between performance
and portability in the post-petascale era. The Parallel Runtime
Scheduling and Execution Control (PARSEC) framework is a
task-based runtime system that we designed to achieve high
performance computing at scale. PARSEC offers a programming
paradigm that is different than what has been traditionally used
to develop large scale parallel scientific applications.

In this paper, we discuss the use of PARSEC to convert a
part of the Coupled Cluster (CC) component of the Quantum
Chemistry package NWCHEM into a task-based form. We explain
how we organized the computation of the CC methods in
individual tasks with explicitly defined data dependencies between
them and re-integrated the modified code into NWCHEM.

We present a thorough performance evaluation and demon-
strate that the modified code outperforms the original by more
than a factor of two. We also compare the performance of
different variants of the modified code and explain the different
behaviors that lead to the differences in performance.

Keywords—PaRSEC; Tasks; DAG; PTG

I. INTRODUCTION

Large applications for parallel computers have been pre-
dominantly programmed in the Coarse Grain Parallelism
model using MPI as the communication layer, or some ab-
straction layer built on top of MPI. The main drivers of this
trend have been the relative simplicity of the CGP model, the
high performance that such implementations can achieve, as
well as the portability, ubiquity, and longevity of the tools that
are necessary for developing and executing such applications.

In the race for post-petascale computing, several research
groups – including our own – have been increasingly con-
cerned with the feasibility of developing large scale applica-
tions that can utilize a satisfactory fraction of the computing
power of future machines and do so while preserving their
portability and maintainability characteristics. Task-based ex-
ecution on-top of runtime systems has started emerging as an
alternative programming paradigm to CGP and several success
stories have encouraged multiple research groups to pursue
this avenue. In this paper, we describe how we used PARSEC–
the distributed task scheduling runtime system that we have
developed in previous work [1] – to accelerate CCSD, a key
component of the quantum chemistry software NWCHEM [2].

We argue that the traditional CGP programming model fails
to deliver the expected performance scalability, especially with
the increase in scale, complexity, and heterogeneity of modern
supercomputers. While applications could be optimized further

without departing from existing programming models, such
optimizations would lead to significantly more complex code
that is harder to port and maintain. In this paper we substantiate
this claim by showing how a production strength, large scale,
scientific application balances complexity and optimization in
a way that leads to suboptimal performance.

The Parallel Runtime Scheduling and Execution Control
(PARSEC) framework [3] is a task-based dataflow-driven run-
time designed to achieve high performance computing at
scale. PARSEC enables task-based applications to execute on
distributed memory heterogeneous machines, and provides
sophisticated communication and task scheduling engines that
hide the hardware complexity of supercomputers from the
application developer, while not hindering the achievable per-
formance. The main difference between PARSEC and other
task engines is the way tasks, and their data dependencies, are
represented, enabling PARSEC to employ a unique, symbolic
way of discovering and processing the graph of tasks. Namely,
PARSEC uses a symbolic Parameterized Task Graph (PTG) [4],
[5] to represent the tasks and their data dependencies to other
tasks.

PARSEC’s programming paradigm proposes a complete de-
parture from the way we have been designing and developing
applications. However, as we demonstrate in this paper, the
conversion from CGP to task based execution can happen
gradually. Performance critical parts of an application can
be selectively ported to execute over PARSEC and then be
re-integrated seamlessly into the larger application which is
oblivious to this transformation.

The transformation discussed in this paper focuses on
the iterative Coupled Cluster (CC) methods [6] of NWCHEM

known as Coupled Cluster Single Double (CCSD), which
is automatically generated by the Tensor Contraction Engine
(TCE) [7]. Coupled Cluster constitutes highly accurate elec-
tronic methods and is used to address important topics such
as renewable energy sources (e.g., solar and bio-renewables),
efficient batteries, and chemical catalysis.

In the remainder of this paper, we briefly outline PARSEC

and NWCHEM and describe the high level structure of the
PARSEC integration into NWCHEM. Then we discuss the task-
based implementation of the selected code and its various
algorithmic variations, followed by a detailed analysis on the
impact of these variations on performance. Finally, we offer
a quantitative performance comparison between the original
and modified CCSD code and qualitative explanations for this
difference.

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.50

304

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.50

304

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.50

304

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.50

304

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.50

304

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.50

304

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.50

304

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.50

304

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.50

304

II. OVERVIEW OF NWCHEM AND PARSEC

This section outlines NWCHEM and PARSEC with its
execution model that is based on the Parameterized Task Graph
(PTG) abstraction.

A. NWChem

Computational modeling has become an integral part of
many research efforts in key application areas in chemical,
physical, and biological sciences. NWCHEM [2] is a molecular
modeling software developed to take full advantage of the ad-
vanced computing systems available. NWCHEM provides many
methods to compute the properties of molecular and periodic
systems by using standard quantum-mechanical descriptions of
the electronic wave function or density. The Coupled Cluster
(CC) theory [6], [8], [9], [10] is considered by many to be a
gold standard for accurate quantum-mechanical description of
ground and excited states of chemical systems. Its accuracy,
however, comes at a significant computational cost. One of the
goals of this project is to strengthen the NWCHEM CC methods
by enabling more powerful ways through dataflow-based task
scheduling and execution, much better resource management,
and a robust path to exploit hybrid computer architectures.

Tensor Contraction Engine: An important role in de-
signing the optimum memory vs. cost strategies in CC im-
plementations is played by the program synthesis system, the
Tensor Contraction Engine (TCE) [7], which abstracts and
automates the time-consuming and error-prone processes of
deriving the working equations of second-quantized many-
electron theories and synthesizing efficient parallel computer
programs on the basis of these equations. All TCE CC
implementations take advantage of the Global Arrays (GA)
Toolkit [11], which provides a ”shared-memory” programming
interface for distributed-memory computers.

CC Single Double (CCSD): Especially important in the
hierarchy of the CC formalism is the iterative CC model with
single and double excitations (CCSD) [12]. This paper focuses
on the CCSD version that has a computational cost of O(N6)
and storage cost of O(N4), where N is a measure of the molec-
ular system size. This version takes advantage of the alternative
task scheduling (ATS) and the details of these implementations
have been described in previous publications [13].

B. PaRSEC and the PTG programming model

The PARSEC framework [3] is a task-based dataflow-
driven system designed as a dynamic platform that can address
the challenges posed by distributed heterogeneous hardware
resources. The central component of the system, the runtime,
orchestrates the execution of the tasks on the available hard-
ware. Choices regarding the execution of the tasks are based
on information provided by the user regarding the tasks that
comprise the user application, and the dataflow between those
tasks. This information is provided in the form of a compact,
symbolic representation of the tasks and their dependencies
known as a Parameterized Task Graph (PTG) [4], [5]. The
runtime combines the information contained in the PTG with
supplementary information provided by the user – such as
the distribution of data onto nodes, and priorities, that define
the relative importance of different tasks – in order to make
efficient scheduling decisions.

GEMM(L1, L2)
L1 = 0..(mtdata->size_L1-1)
L2 = 0..(mtdata->size_L2-1)

A_reader = find_last_segment_owner(mtdata, 0, L2, L1)
B_reader = find_last_segment_owner(mtdata, 1, L2, L1)

: descRR(L1)

READ A <- A input_A(A_reader, L2, L1)
READ B <- B input_B(B_reader, L2, L1)

RW C <- (L2 == 0) ? C DFILL(L1)
<- (L2 != 0) ? C GEMM(L1, L2-1)
-> (L2 < (mtdata->size_L2-1)) ? C GEMM(L1, L2+1)
-> (L2 == (mtdata->size_L2-1)) ? C SORT(L1)

; mtdata->size_L1-L1 + P
BODY {

dgemm(’T’, ’N’, ...
}

Fig. 1: PTG for GEMM tasks organized in a chain.

The PTG can be understood as a compressed representation
of the DAG that describes the execution of a task-based
application. While a thorough description of the PTG is outside
the scope of this paper (and can be found in [5]), we will
use the example shown in Figure 1 to outline some important
aspects that relate to the work presented in this paper.

This code snippet defines the GEMM task class. Tasks
of this class are parameterized using parameters L1 and L2.
This class mimics the original CCSD code which has the
GEMM operations organized in multiple parallel chains, with
each chain containing multiple GEMMs that execute serially.
In this PTG, L1 corresponds to the chain number and L2
corresponds to the position of a GEMM inside the chain to
which it belongs. As can be seen in the figure, the number of
chains and the length of each chain do not have to be known
a-priori. PARSEC can dynamically look them up in metadata
structures that can be filled by an inspection phase during the
execution of the program. Also, the PTG allows for calls to
arbitrary C functions for dynamically discovering information
such as the nodes from which the input data must be received.

By looking at the dataflow information of matrix C (the
lines with the arrows), one can see the chain structure. The
first GEMM task (L2==0) receives matrix C from the task
DFILL (which initializes matrix C), all other GEMM tasks
receive the C matrix from the previous GEMM task in the chain
(GEMM(L1, L2-1)) and send it to the next GEMM task in the
chain (GEMM(L1, L2+1)), except for the last GEMM which
sends the C matrix to the SORT task.

This representation of the algorithm does not resemble
the form of familiar coarse grain parallel programs, but the
learning curve that must be climbed comes with rewards for
those who climb it. Figure 2 shows the one line that must
replace the four lines that define the dataflow of matrix C in
order to change the organization of the GEMMs from a serial
chain to a parallel execution followed by a reduction.

WRITE C -> A REDUCTION(L1, L2)

Fig. 2: PTG snippet for parallel GEMM tasks.

305305305305305305305305305

PARSEC is an event driven system. When an event occurs
(i.e., a task completes), the runtime reacts by examining the
dataflow defined in the PTG of the task. This reveals what
future tasks can be executed based on the data generated
by the completed task. Beyond scheduling tasks, the runtime
also handles the data exchange between distributed nodes,
thus it reacts to the events triggered by the completion of
data transfers as well. When the hardware is busy executing
application code – and thus no events are triggered – the
runtime does not incur overhead.

Due to the PTG representation, all communication becomes
implicit and thus is handled automatically by the runtime
without user intervention. In MPI (or other Coarse Grain
Programming models), the developer has to explicitly insert
in the source code a call to a function that performs each
data transfer, and when non-blocking communication is used
the developer has to manage large numbers of outstanding
messages and duplicate buffers which quickly becomes a
logistical overhead. Even if abstraction layers are used over
the communication library, as is the case in NWCHEM, the
developer still has to explicitly insert in the source code calls
such as GET_HASH_BLOCK().

In summary, PARSEC provides the opportunity for par-
allel applications to enjoy high efficiency, without putting
on the application developer the burden of micromanaging
asynchronous data-transfers, processes, threads, and other low
level library primitives and interfaces.

III. CODE STRUCTURE

In this section, we highlight the basics necessary to under-
stand the original parallel implementation of CC through TCE.
In the second part, we then describe our design decisions of
the dataflow version of the CC code and how it is integrated
into the original workflow of NWCHEM.

A. Code Structure of NWChem CCSD

In NWCHEM, the iterative CCSD method, among other
kernels, is generated through the TCE into multiple (more
than 60) sub-kernels that are divided into so-called “T1”
and “T2” subroutines for equations determining T1 and T2
amplitude matrices. These amplitude matrices embody the
number of excitations in the wave function, where T1 rep-
resents all single excitations and T2 all double excitations.
The underlying equations of these theories are all expressed
as contractions of many-dimensional arrays or tensors (gen-
eralized matrix multiplications (GEMM)), of which there are
typically many thousands in any one problem. The generated
FORTRAN 77 code for the T1 and T2 subroutines contains
most work in deep loop nests, including local memory man-
agement (e.g., via MA_PUSH_GET(), MA_POP_STACK()),
calls to GA functions that transfer data over the network (i.e.,
GET_HASH_BLOCK(), ADD_HASH_BLOCK()), and last but
not least, calls to the subroutines that perform the actual
computation on the data (i.e., SORT(), GEMM()).

Parallelism of the current TCE generated CC code is coarse
grained. The work inside the CC kernels is grouped into
chains of multiple GEMM operations. The operations within
each chain are executed serially while different chains are
independent and can execute in parallel. In other words, the

unit of work (i.e., a task) in the TCE generated code is an
entire chain. To achieve load balancing, the different MPI
ranks perform global work stealing in order to decide which
chains will execute by each rank. However, the entire work
is divided into seven different levels and there is an explicit
synchronization step between those levels. This implies that
the task-stealing model applies only within each level; and
therefore, the number of chains that are available for parallel
execution at any time is a subset of the total number of chains.

Load balancing within each of the seven work levels is
achieved through shared variables that are atomically updated
(read-modify-write) using Global Arrays operations. Reliance
on atomic variables that are shared across all participating
nodes in a distributed memory execution is bound to become
inefficient at large scale, becoming a bottleneck and causing
significant overhead.

B. Code Structure of CCSD over PaRSEC

In an effort to evaluate the suitability of a task scheduling
runtime such as PARSEC for executing the CC methods, we
conducted a study where we transformed part of NWCHEM’s
CCSD into a dataflow version. In this paper we focus our
discussion on one of the CCSD subroutines, icsd t2 7(). The
rest of the NWCHEM code is oblivious to this change and
the execution of the PARSEC-enabled CCSD subroutines is as
seamless as the call to an external library procedure. Figure 3
provides a high-level overview of how the transformed subrou-
tines, that run over PARSEC, are integrated into the original
structure of NWCHEM.

Fig. 3: High level view of PARSEC code in NWCHEM.

The loop nests that implement the chains of GEMMs in
the original code contain IF branches. It follows, that each
GEMM executes only if the conditions of the branches that
enclose it evaluate to true.

306306306306306306306306306

As shown in the figure, our modified code starts with
an inspection phase. During this phase the code computes
the set of iteration vectors that lead to task executions – in
other words, we discover all the loop iterations whose IF
statements evaluate to true. In addition, the code queries
the Global Array library to discover the physical location
of the program data on which the GEMMs will operate on.
The code that performs this inspection is derived from the
original code of each subroutine. Specifically, we create a
slice of the original code that contains all the control flow
statements – i.e., DO loops and IF-THEN-ELSE branches –
but none of the subroutine calls – i.e., GEMM(), SORT(),
GET_HASH_BLOCK(), MA_PUSH_GET(), etc. Instead, in
the place of the original subroutine calls, we insert operations
that store the status of the execution into custom meta-data
arrays that we have introduced. For example, a call to GEMM()
is replaced with code that stores the pointers to the data that is
involved in this GEMM operation as well as the iteration vector
(the values of the induction variables of all loops enclosing the
call) into a meta-data array. The location in this array where
this information is stored is determined by the location of each
GEMM in the chain of GEMMs and the chain number. The
location in the chain and the chain number are computed by
the same inspection code based on the occurrence of calls
to subroutines such as DFILL() which initiates a chain of
GEMMs and ADD_HASH_BLOCK() which terminates it.

After the inspection phase is finished, our meta-data arrays
contain all the information necessary for PARSEC to determine
which GEMM tasks are connected into a chain, the length of
each chain, the number of chains, the node that holds the data
needed for each GEMM, and the actual pointers to these data.
At this point PARSEC starts the execution of the tasks. The
execution starts with “read” tasks that pull the data from the
Global Array into PARSEC-managed memory and pass this
memory to the tasks that execute the actual tensor contractions.
As the tensor contractions finish, “writer” tasks take the output
data and push it back into the GA memory. At this point,
PARSEC returns control back to the original NWCHEM code.

It is important to note that part of the aforementioned work
that is necessary in the current version of the code, will become
unnecessary as soon as the complete CCSD code has been
converted to PARSEC. Specifically, data will not need to be
pulled and pushed into the GA at the beginning and end of each
subroutine if all subroutines execute over PARSEC. Instead, the
different PARSEC tasks that comprise a subroutine will pass
their output to the tasks that comprise another subroutine using
the internal communication engine of PARSEC – and will do
so implicitly, since PARSEC handles communication internally,
without user involvement.

IV. DESIGN DECISIONS

A. Algorithmic Variations

When we designed the PARSEC implementation of CCSD
it became apparent that several operations can be ordered in
multiple ways and still preserve the semantics of the original
algorithm. This is the case because these operations – i.e., ma-
trix addition, data remapping and updating of data in memory
– are associative and commutative. In this section we present
several variations of our algorithm, each using a different

ordering of tasks, and we discuss the impact of these variations
on performance. We note that the final result (correlation
energy) computed by the different variations matched up to
the 14th digit.

The choice with the highest impact on performance relates
to the parallelism of the GEMM operations. As mentioned
earlier, the original CCSD code has the GEMM operations
organized in chains. Different chains execute in parallel, inde-
pendently of one another, while the GEMMs within a chain
execute in serial order and they all use the same output, C.
However, none of the input matrices (A,B) of any GEMM
operation ever overlaps with the output of any other GEMM of
any chain in the subroutine. In other words, all input matrices
are read-only within the the scope of a subroutine. Matrix
multiplication itself is noncommutative (i.e., A · B �= B · A),
however the GEMM kernel does not perform only a multiplica-
tion, but also an addition, C = C+A ·B. The matrix addition,
is both commutative and associative. Therefore, if we segment
the single chain of GEMMs into a number of shorter chains
that each works on private memory and then we accumulate
these partial results through a reduction tree, the semantics
of the original code will be preserved. This variation of the
algorithm, shown graphically in Figure 4, increases available
parallelism, but decreases locality, since different chains work
on different private C matrices.

Fig. 4: Parallel GEMM operations followed by reduction.

The height of the shorter chains can vary from one (for
maximum parallelism) to the height of the original chain
(for maximum locality). In this paper we consider the two
extreme cases. Another side-effect of segmenting the chains is
an increased readiness of work. In the single chain approach
of the original code the input matrices A and B of the first
GEMM in the chain must be fetched for any work to start. In
the modified version useful work can start as soon as the input
matrices of any GEMM become available. As a result of the
increased readiness of work, the variations of the algorithm
where the GEMM operations are performed in parallel have a

307307307307307307307307307

lower starting overhead – an expectation that is confirmed by
our experiments, discussed in Section V.

In Figure 4 we depict the work needed to write the
output of a set of GEMMs back into the Global Array as
a single box named WRITE_RESULT_TO_GA. We employed
this abstraction to focus on the parallelism of the GEMMs.
Nonetheless, the writing of the results back to the Global
Array is a non trivial operation that can also lead to several
variations of the algorithm. In the original code of subroutine
icsd_t2_7(), after the last GEMM in a chain, there are
four IF branches each containing a call to a subroutine called
SORT_4(). This subroutine – which we will refer to as
“SORT” hereafter – takes as input the output of the chain of
GEMMs, C, and outputs a modified version of it that we will
call Csorted. In the interest of accuracy, we should mention
that despite its name, the SORT operation does not perform
actual sorting of the data, but rather a remapping of the C
matrix where the elements of the input matrix are shuffled to
different locations in the output matrix regardless of the value
they hold. Each of the four SORT operations is followed by
a call to ADD_HASH_BLOCK() that adds the data into the
Global Array (i.e, performs the operation Corig += Csorted

where Corig is the data that is stored in the Global Array
before the call to ADD_HASH_BLOCK(). Hereafter, we will
refer to this operation as WRITE. Interestingly, the predicates
of the four IF branches are not mutually exclusive. One can
easily see in the code below – which contains snippets of the
IF statements of subroutine icsd_t2_7() – that when the
variables that are being compared are equal, then multiple of
these IF statements will evaluate to true.

IF ((p3b .le. p4b) .and. (h1b .le. h2b)) ...
IF ((p3b .le. p4b) .and. (h2b .le. h1b)) ...
IF ((p4b .le. p3b) .and. (h1b .le. h2b)) ...
IF ((p4b .le. p3b) .and. (h2b .le. h1b)) ...

As a result, depending on the value of these variables, the
original code will perform one, two, or four SORT operations
– each followed by a WRITE – and will do so in a serial
way. In our code, we implemented different variations of
the WRITE_RESULT_TO_GA work, with each one having a
different level of parallelism in performing the sorting and
writing of the data.

Fig. 5: Serialized sort and single write.

The simplest variation, which is depicted in Figure 5,
executes all operations in serial, but in a different order than the
original CCSD code. Namely, the output of the GEMMs, C, is
passed to a task – called SORT – that contains four consecutive
calls to the SORT_4() kernel, each one guarded by the
corresponding IF statement. Each call, i, uses a different
temporary matrix, Ctmp

i as output. After each call, Ctmp
i

is accumulated into a master matrix Csorted – which was
initialized to zero before the first call to SORT_4(). When
the SORT task is done, the resulting matrix Csorted is passed
to the task WRITE_C. This task reads the data that is currently
stored in the target memory location Corig and updates it
by performing the addition: Corig += Csorted. To prevent
race conditions between different threads the WRITE_C task
performs the reading, adding, and storing into memory atomi-
cally by protecting all this code with pthread mutexes. Clearly,
changing the order of operations and adding all the temporary
matrices to one another before adding them to the memory
does not alter the semantics of the original code since addition
is commutative and associative.

In this variation of WRITE_RESULTS_TO_GA, the work
exhibits the lowest amount of parallelism, and the highest level
of data locality, since matrices C and Csorted are read and
written multiple times in quick succession by the same task
(SORT) and thus the same operating system thread, since in
PARSEC tasks do not migrate between threads after they have
started executing.

Fig. 6: Parallelized sort and single write.

The next variation involves parallelization of the SORT
task. Namely, as shown in Figure 6, the code now imple-
ments four different tasks, SORT_0, SORT_1, SORT_2, and
SORT_3. The execution of each task is guarded by the same
predicate as the corresponding IF branch in the original
code. Each SORT_i task receives the same C matrix as
input and stores the output of the SORT_4() subroutine
into a private Csorted

i matrix. Then, it forwards this private
matrix to the WRITE_C task. The latter receives one, two, or
four input sorted matrices (depending on the values of the
predicates), and uses them to update the data in memory:
Corig += Csorted

i ∀i = 0..3. This variation has increased
parallelism in comparison to the previous scenario, since the
SORT operations now happen in parallel, but it has reduced
data locality and additional memory requirements, since each

308308308308308308308308308

SORT_i task needs to allocate a Csorted
i matrix. Furthermore,

this variation can lead to more idle time since it has a longer
atomic operation. This is the case because the work performed
by the WRITE_C task is treated as a critical region that is
protected by mutexes in order to run atomically, and this
variation of the code assigns more work to the WRITE_C task
than the previous case.

Fig. 7: Parallelized sort and write

In order to address the last concern regarding the length
of the critical region, and increase parallelism even further,
we created another variation that we show in Figure 7. In this
variation, there are multiple WRITE_C_i tasks, in addition to
the multiple SORT_i tasks. Each SORT_j task (that executes)
sends its output matrix to the corresponding WRITE_C_j task,
which updates the data in memory using only this matrix:
Corig += Csorted

j . This variation has the least amount of data
locality, but exhibits maximum parallelism without increasing
the length of the critical regions.

B. Exporting PARSEC data to Global Arrays

In the discussion above we analyzed the high level or-
ganization of the tasks that sort and write the data into the
memory, but we abstracted away the details of how PARSEC

actually accesses the memory addresses that correspond to the
Global Array data, which in the general case can be distributed
between multiple nodes. For simplicity, we will explain the
process using the algorithmic variation where there is only
one SORT and one WRITE_C task type, shown in Figure 5,
but the same logic applies to all variations.

A GA matrix Corig can potentially be split between the
memories of different nodes participating in the execution of
the program. In Figure 8 we depict a matrix as being split
between the memory of nodes nodei, nodei+1, and nodei+2.

As a result, although there is only one class of WRITE_C
tasks, in this example there need to be three instances of
this task class, each running on one of the three nodes that
contains data in order to access and modify this data. In the
figure we depict this with WRITE_C(i), WRITE_C(i+1)
and WRITE_C(i+2). Consequently, the transmission of data
between the SORT task and the different WRITE_C task
instances is implemented such that each task instance only

Fig. 8: Exporting data to GA.

receives the data that is relevant to the node on which the task
instance executes.

Achieving all this data management is possible because
PARSEC abstracts away a lot of the details. During the in-
spection phase (i.e., before any tasks start running) we query
the Global Arrays library regarding the actual location of the
program data using calls such as ga_distributed() and
ga_access(). The information that we acquire from these
calls is passed to PARSEC along with a unique ID for each
matrix. As a result, the PTG is Global Array agnostic and only
uses these unique IDs to refer to data relying on PARSEC for
the management of the ID-to-node and ID-to-pointer mapping.

C. Using task priorities in PARSEC

PARSEC includes multiple task scheduling algorithms, each
designed to maximize a different objective function, i.e., cache
reuse, load balancing, etc. The default scheduling algorithm,
which is what we used for the performance experiments in
this paper, tries to achieve a balance between several objective
functions and also takes task priorities into consideration, if
such have been defined by the developer. Task priorities are
taken into account by the scheduler when a set of available
tasks are considered for execution, and they only have a
relative meaning. That is, between two available tasks, the one
with a higher priority will execute first.

In this paper we explicitly set task priorities for all the
variants of our algorithm, except for one, in order to study the
effect of priorities on the behavior of the program. To set task
priorities in PARSEC the developer has to explicitly add a line
in the PTG representation of each task class. This line starts
with a semicolon and is followed by an expression that can be
as simple as a numeric literal, or as complex as an arbitrary
function of any variable that is available to the task class
(i.e., global and local variables, as well as the parameters of
the task class). In the implementation presented in this paper,
we assigned to all task classes priority expressions that are

309309309309309309309309309

decreasing functions of the chain number1. To differentiate the
priority of different task classes within a single chain, we use
constant offsets. We assign a higher priority to the tasks that
read the input data (matrices A and B) from the Global Array,
by giving them the highest offset (+5), then follow the tasks
that perform the GEMM operation with offset +1, and all other
tasks classes do not have an offset. The general expression used
in the task priorities is:

max_L1 - L1 + offset*P

Where max_L1 is the total number of chains, L1 is the
chain number of each chain, and P is the number of nodes
participating in the execution. This scheme has the following
consequences:

• All tasks of a given task class (i.e., GEMM) that partici-
pate in the same chain will have the same priority.

• All tasks of a given task class that belong to chain i will
have higher priority than any task of the same task class
that belongs to chain j where j > i.

• Since we assign an offset of +5 to the tasks that read
the input data, and an offset of +1 to the GEMM tasks,
there will always be at least 5 ∗ P reader tasks that
executed before each GEMM task. Therefore, there is a
data prefetching pipeline of depth 5 ∗ P .

D. Load Balancing

The original NWChem code aims to achieve load balancing
through a work stealing scheme that is often referred to as
NXTVAL [14]. This approach relies on the updating of a
global atomic variable provided by the Global Arrays library
for ensuring that each MPI rank will atomically acquire a
single unit of work each time. The unit of work in the original
NWChem code (a whole chain) is much coarser than in our
PARSEC enabled version. Nevertheless, requiring that every
MPI rank has to update a single global atomic variable for
every unit of work is not a scalable approach.

In the PARSEC enabled code presented in this paper we
took the opposite approach. We performed a static, round-
robin work distribution between nodes and allowed PARSEC

to perform dynamic work stealing within each node. This
approach may lead to higher load imbalance than the work
stealing approach between nodes, but incurs zero overhead in
the critical path. Our performance results validate our choice.

V. PERFORMANCE EVALUATION

In this section we will discuss performance results that we
obtained by executing the original NWChem code as well as
five variants of our PARSEC implementation, as discussed in
Section IV-A. In particular we timed the following five variants
of the algorithm:

1As we mentioned in Section III, during the inspection phase we record
which chain (of the original code) each GEMM corresponds to. In our code
the chain number is one of the parameters of each task and it has no effect on
the parallelism between those tasks. It serves only as a means to differentiate
between tasks that are working toward the computation of the same final C
matrix, or different ones.

v1. GEMMs are organized in a serial chain, but SORTs and
WRITEs are parallel. Priorities are a decreasing function
of the chain number.

v2. GEMMs and SORTs are parallel, but there is one WRITE.
No priority is set for any task.

v3. GEMMs, SORTs, and WRITEs are all parallel. Priorities
are a decreasing function of the chain number.

v4. GEMMs and SORTs are parallel, but there is one WRITE.
Priorities are a decreasing function of the chain number.

v5. GEMMs are parallel, but there is one SORT and one
WRITE. Priorities are a decreasing function of the chain
number.

Figure 9 shows the execution time of the original code
and the different algorithmic variants discussed above. All
experiments used beta-carotene as the input molecule, in 6-
31G basis set composed of 472 basis set functions, and run
on a 32 node partition of the Cascade cluster at the Pacific
Northwest National Laboratory. To improve readability we
show the execution time of the PARSEC variants only for
1, 3, 7, and 15 cores per node in the form of boxes with
different shades (and different border style), stacked next to
one another. In contrast, the execution time of the original
version is shown for every number of cores/node and is shown
as a (green) line with circular points. In the following text we
discuss observations that can be made by studying this graph.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 3 7 11 15

E
xe

cu
tio

n
T

im
e

(s
ec

)

Cores/Node

CCSD icsd_t2_7() computation on 32 nodes using Beta-Carotene

Original NWChem
PaRSEC v1
PaRSEC v2
PaRSEC v3
PaRSEC v4
PaRSEC v5

Fig. 9: Comparison of algorithm variations and original code.

The original code scales fairly well up to three cores/node
(achieving a speedup of 2.35x over the one core/node run) but
tapers off after that, achieving little additional improvement un-
til the best performance at seven cores/node – which achieves
a speedup of 2.69x over the one core/node case. After this
point the performance deteriorates, although not significantly.
In contrast, the PARSEC code scales much better with all
variants, except v1, improving their performance all the way
up to 15 cores/node.

PARSEC outperforms the original code as soon as three
cores per node are used, and shows a significant performance
improvement. Namely, at 15 cores/node the best PARSEC

310310310310310310310310310

variant (v5) achieves a speedup of 2.1x over the fastest run
of the original code at seven cores/node.

The different variants of the PARSEC code show little
difference when few cores per node are used, but diverge
significantly when the machine reaches saturation. Namely, at
15 cores/node, the fastest PARSEC variant is 1.73x faster than
the slowest variant.

The slowest PARSEC variant, v1, is the one where the
GEMMs are organized in a serial chain (mimicking the be-
havior of the original code). This indicates that parallelism
between GEMMs is more significant than locality for the
performance of this program, despite the parallelism that
already exists between different chains.

The fastest PARSEC variant, v5, is the one where the
GEMMs are parallel but the SORT operation and the critical
section that writes back to the memory are serialized. This is
not an obvious outcome, mainly because the critical region of
the WRITE is protected by a mutex that is shared by all threads
in the node and used by all WRITE operations on the node. As
a consequence, one could expect that smaller critical regions
would lead to better interleaving of different threads and thus
better performance. However, variant v3, which implements
the WRITE in parallel, delivers worse performance than v5
for all core counts and especially when 15 cores/node are
used. We attribute this behavior to two factors. First, the better
data locality of v5 – which is especially important for an
operation such as WRITE that does nearly no work and is
memory bound. Second, while the serialized version has a
longer critical region, each write_C task locks and unlocks
the mutex only once per chain, as opposed to the parallel
writing scheme of v3 where there are up to four write_C_i
tasks per chain increasing the number of the system wide
operations required to lock and unlock the mutex that protects
the critical region.

Comparing variants v2 and v4, which only differ in the
task priorities, we can see the importance of task priorities
with respect to performance. Furthermore, by comparing v2
against all other variants, we can deduce that priorities are the
single most important design decision after the parallelism of
the GEMM operations, since the v2 variant performs worse
than all other variants except for v1. To substantiate this point
further, we present the execution trace of variants v4 and v2
in Figures 10 and 11 respectively. These traces were generated
using PARSEC’s native performance instrumentation module.

In these traces, each row represents a thread (out of 7
threads per node) and each group of seven adjacent rows
represents a node. The horizontal axis represents time and
the two figures are not at the same scale. Instead, each trace
shows all the events that occurred from the beginning to the
end of the program’s execution, regardless of the length of
the execution. Different colors represent different task classes
and the colors are consistent between the two figures. Red
represents GEMM operations, blue represents the reading of
input matrix A, purple represents the reading of B, yellow
represents the reductions and light green represents the writing
back to the global array. Finally, grey represents idle time.

The traces make it abundantly clear that variant v2 –
which lacks task priorities – has too much idle time in the
beginning. The reason relates to the way PARSEC handles

Fig. 10: Trace of v4 (priority decreasing with chain number).

Fig. 11: Trace of v2 (no task priorities).

communication. In PARSEC, tasks do not explicitly perform
communication, rather they express their communication needs
to the runtime system by specifying their dependencies to other
tasks. The actual data transfer calls are issued by the runtime
system (and in the case of the code discussed in this paper,
data transfer calls are issued by a specialized communication
thread that runs on a dedicated core). When variant v2 starts
running, PARSEC discovers that all the tasks that read the
input matrices A and B are ready for execution, since they
do not depend on any previous tasks. The lack of priorities
allows PARSEC to execute all these tasks which enqueue
their communication requests for the communication thread
to fulfill, and return immediately. As a result, the network is
flooded with communication requests between all nodes that
participate in the execution, and there is no computation with
which to overlap this communication. In contrast, variant v4
defines priorities that decrease with the chain number. This
means that the GEMMs of the early chains have a higher
priority than the read tasks of all but the first few chains.
However, no GEMMs can execute before their input data has
been transferred. Therefore, while the early communication
is ongoing, PARSEC will keep executing read tasks, but as
soon as data starts arriving at a node, the priorities of the
different tasks will guide PARSEC to schedule work (GEMMs)
interleaved with communication (reading of A and B). This

311311311311311311311311311

way, the idle time at the beginning is smaller (as is evident
in the trace) and a significant part of the communication
is overlapped with computation, leading to a faster overall
execution.

Fig. 12: Trace of original NWChem code.

Figure 12 shows the trace of the original NWChem code.
Once again, the horizontal axis is not at the same scale as
the other traces, red represents GEMMs and blue represents
communication, although in this case it is the cost of the
subroutine GET_HASH_BLOCK(). Although this trace depicts
the performance of the original code, it was also generated
using PARSEC’s performance instrumentation functionality.
This is possible because PARSEC exports this functionality
as an API that can be used to instrument arbitrary code.

This trace tells a very different story from the previous
ones. Here, communication is interleaved with computation,
however it is not overlapped. This is an artifact of the way
the original NWChem code is structured. Namely, the calls
to the communication subroutine GET_HASH_BLOCK() that
fetches the input data (A and B) from the Global Array into
a local buffer are issued immediately preceding the call to
the GEMM kernel. Therefore, regardless of the underlying
communication library, or network conduit, the communication
is not overlapped with the computation, because it is not given
a chance to do so. There is no computation in the code between
the point where the data transfer starts and the point where the
data is needed.

In Figure 13 we show a part from the bottom middle
of the previous trace zoomed in so that individual tasks
can be discerned. In this figure the lack of communication
computation overlapping is evident by the length of the blue,
purple and light green rectangles in comparison to the length
of the red triangles.

In summary, porting the icsd_t2_7() subroutine of
NWCHEM over PARSEC enabled us to modify the behavior
of the code and explore the trade-offs between locality and
parallelism in the execution of the GEMM, SORT and WRITE
operations. It also enabled us to trace the execution of the code,
so that we can understand the different sources of overhead.
As a result, we managed to produce multiple variants of the
code that outperform the original code with our best variant
achieving a speedup of 2.69x on 32 nodes.

Fig. 13: Zoomed in trace of original code.

VI. RELATED WORK

Task based execution is being pursued by several research
groups and software companies around the world. As a result,
several solutions are being currently actively developed [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24]. While their
level of maturity, feature set and similarity with PARSEC

vary, none of them supports the PTG programming model.
They largely rely on some form of “Dynamic Task Discovery
(DTD)”, or in other words building the entire DAG of exe-
cution in memory using skeleton programs. While PARSEC

also uses an inspector phase to collect information about the
meta data of the program, this is hardly equivalent to the
DTD approach. Our inspector phase does not build a DAG in
memory and does not need to discover the way tasks depend
on one another by matching input and output data. Rather, this
information is expressed by the developer in the PTG and the
inspector merely collects information such as the number of
chains and the size of each chain. As a consequence, using
PARSEC gives us the flexibility to readily express and test
different algorithmic variations (as discussed in Section IV-A).

The use of an inspector-executor model for optimizing
NWCHEM has been proposed before [14]. However, Ozog et al.
use this approach to assess the cost of different tasks and focus
on improving the load balance of the application. They do not
use a task-execution runtime, nor do they explore variations
of the base algorithm, as we do in this paper. Other efforts to
improve load balancing and scalability of tensor contractions,
such as the Cyclops Tensor Framework [25], or the Dynamic
Load-balanced Tensor Contractions framework [26] offer or-
thogonal approaches to the TCE altogether.

VII. CONCLUSIONS

In this paper we described our effort to utilize our task-
based execution system PARSEC to optimize part of NWCHEM,
a legacy Quantum Chemistry application written using FOR-
TRAN 77 and Global Arrays. We discussed how PARSEC is
used from within NWCHEM and perform a detailed analysis of
the different algorithmic choices of our algorithm as well as
their impact on performance. The lessons learned from this
analysis guide us in the effort to port a larger part of the
application to run over PARSEC, but can also provide useful

312312312312312312312312312

insight to other groups aiming to modernize legacy applications
by converting them to a task-based form.

Finally, we demonstrated a significant performance im-
provement (2.69x speedup) that we achieved by executing
the NWCHEM Coupled Cluster code over PARSEC instead of
employing the antiquated Coarse Grain Parallelism program-
ming model that, to this day, remains the prevalent model for
developing scientific applications.

ACKNOWLEDGMENT

This material is based upon work supported in part by
the Air Force Office of Scientific Research under AFOSR
Award No. FA9550-12-1-0476, and the DOE Office of Sci-
ence, Advanced Scientific Computing Research, under award
No. DE-SC0006733 “SUPER - Institute for Sustained Perfor-
mance, Energy and Resilience”, and in part by the Russian
Scientific Foundation, Agreement N14-11-00190. A portion
of this research was performed using EMSL, a DOE Office
of Science User Facility sponsored by the Office of Biological
and Environmental Research and located at Pacific Northwest
National Laboratory.

REFERENCES

[1] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaeif, P. Luszczek, A. YarKhan,
and J. Dongarra, “Flexible development of dense linear algebra algo-
rithms on massively parallel architectures with DPLASMA,” in Pro-
ceedings of the Workshops of the 25th IEEE International Symposium
on Parallel and Distributed Processing (IPDPSW 2011). IEEE, 16-20
May 2011, pp. 1432–1441.

[2] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,
H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Aprà, T. L. Windus, and
W. de Jong, “NWChem: A comprehensive and scalable open-source
solution for large scale molecular simulations,” Computer Physics
Communications, vol. 181, no. 9, pp. 1477–1489, SEP 2010.

[3] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier,
and J. Dongarra, “DAGuE: A generic distributed DAG
engine for high performance computing,” Parallel Computing,
vol. 38, no. 12, pp. 37 – 51, 2012, extensions for Next-
Generation Parallel Programming Models. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819111001347

[4] M. Cosnard and M. Loi, “Automatic task graph generation techniques,”
in HICSS ’95: Proceedings of the 28th Hawaii International Conference
on System Sciences. Washington, DC: IEEE Computer Society, 1995.

[5] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra,
“PTG: an abstraction for unhindered parallelism,” in Proceedings of
the International Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing (WOLFHPC), Nov
2014.

[6] R. J. Bartlett and M. Musial, “Coupled-cluster theory in quantum
chemistry,” Reviews of Modern Physics, vol. 79, no. 1, pp. 291–352,
JAN-MAR 2007.

[7] S. Hirata, “Tensor contraction engine: Abstraction and automated par-
allel implementation of configuration-interaction, coupled-cluster, and
many-body perturbation theories,” Journal of Physical Chemistry A, vol.
107, no. 46, pp. 9887–9897, NOV 20 2003.

[8] R. J. Bartlett and M. Musiał, “Coupled-cluster theory in quantum
chemistry,” Reviews of Modern Physics, vol. 79, no. 1, pp. 291–352,
2007.

[9] F. Coester, “Bound states of a many-particle system,” Nuclear Physics,
vol. 7, pp. 421–424, Jun. 1958.

[10] J. Čı́žek, “On the correlation problem in atomic and molecular systems.
calculation of wavefunction components in Ursell-type expansion using
quantum-field theoretical methods,” J. Chem. Phys., vol. 45, p. 4256,
1966.

[11] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease,
and E. Apra, “Advances, Applications and Performance of
the Global Arrays Shared Memory Programming Toolkit,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 203–231, 2006. [Online]. Available:
http://hpc.sagepub.com/cgi/content/abstract/20/2/203

[12] G. Purvis and R. Bartlett, “A Full Coupled-Cluster Singles and Doubles
Model - the Inclusion of Disconnected Triples,” Journal of Chemical
Physics, vol. 76, no. 4, pp. 1910–1918, 1982.

[13] K. Kowalski, S. Krishnamoorthy, R. Olson, V. Tipparaju, and E. Aprà,
“Scalable implementations of accurate excited-state coupled cluster the-
ories: Application of high-level methods to porphyrin-based systems,” in
High Performance Computing, Networking, Storage and Analysis (SC),
2011 International Conference for, Nov 2011, pp. 1–10.

[14] D. Ozog, S. Shende, A. Malony, J. R. Hammond, J. Dinan, and
P. Balaji, “Inspector/executor load balancing algorithms for block-
sparse tensor contractions,” in Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing,
ser. ICS ’13. ACM, 2013, pp. 483–484. [Online]. Available:
http://doi.acm.org/10.1145/2464996.2467282

[15] “Intel Concurrent Collections for C/C++,” http://software.intel.com/en-
us/articles/intel-concurrent-collections-for-cc.

[16] Intel, “Intel threading building blocks,”
http://threadingbuildingblocks.org/.

[17] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures,” Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb.
2011. [Online]. Available: http://hal.inria.fr/inria-00550877

[18] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. IEEE, 2012. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389086

[19] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and
Y. Zhou, “Cilk: an efficient multithreaded runtime system,” in Proceed-
ings Symposium on Parallel Algorithms and Architectures, July 1995.

[20] O. A. R. Board, “OpenMP Application Program Interface, Version 4.0,”
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[21] S. Chatterjee, S. Tasrlar, Z. Budimlic, V. Cave, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan, “Integrating Asynchronous Task Parallelism
with MPI,” in Parallel Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, May 2013, pp. 712–725.

[22] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Hierarchical task-
based programming with StarSs,” Int. J. High Perf. Comput. Applic.,
vol. 23, no. 3, pp. 284–299, 2009.

[23] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’ Guide:
QUeueing And Runtime for Kernels,” Innovative Computing Labora-
tory, University of Tennessee, Tech. Rep., 2011.

[24] The OCR team, “The OCR project,” https://01.org/open-community-
runtime.

[25] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel, “Cyclops
tensor framework: Reducing communication and eliminating load im-
balance in massively parallel contractions,” in Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on, May
2013, pp. 813–824.

[26] P.-W. Lai, K. Stock, S. Rajbhandari, S. Krishnamoorthy, and
P. Sadayappan, “A framework for load balancing of tensor contraction
expressions via dynamic task partitioning,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’13. ACM, 2013, pp. 13:1–13:10.
[Online]. Available: http://doi.acm.org/10.1145/2503210.2503290

313313313313313313313313313

