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ABSTRACT
As modern hardware keeps evolving, an increasingly effective
approach to develop energy efficient and high-performance
solvers is to design them to work on many small size in-
dependent problems. Many applications already need this
functionality, especially for GPUs, which are known to be
currently about four to five times more energy efficient than
multicore CPUs. We describe the development of the main
one-sided factorizations that work for a set of small dense
matrices in parallel, and we illustrate our techniques on the
LU and Cholesky factorizations. We refer to this mode of op-
eration as a batched factorization. Our approach is based on
representing the algorithms as a sequence of batched BLAS
routines for GPU-only execution. The goal of avoiding mul-
ticore CPU use, e.g., as in the hybrid CPU-GPU algorithms,
is to exclusively benefit from the GPU’s significantly higher
energy efficiency, as well as from the removal of the costly
CPU-to-GPU communications. Furthermore, we do not use a
single symmetric multiprocessor (on the GPU) to factorize a
single problem at a time. We illustrate how our performance
analysis and the use of profiling and tracing tools guided
the development and optimization of batched factorizations
to achieve up to 2-fold speedup and 3-fold better energy
efficiency compared to our highly optimized batched CPU
implementations based on the MKL library (when using two
sockets of Intel Sandy Bridge CPUs). Compared to a batched
LU factorization featured in the CUBLAS library for GPUs,
we achieved up to 2.5 speedup on the K40 GPU.

Categories and Subject Descriptors
G.1.3 [Numerical Linear Algebra]: Linear systems (direct
and iterative methods)
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1. INTRODUCTION
Designing algorithms to work on small problems is a con-

cept that can deliver higher performance through an im-
proved data reuse. Work on small problems naturally im-
proves reuse as once the input data is loaded into fast memory,
it can be used presumably many times until the completion
of the task. Many numerical libraries and applications al-
ready use, and need this functionality further developed.
For example, these are the tile algorithms from the area of
dense linear algebra [2], various register and cache block-
ing techniques for sparse computations [11], sparse direct
multifrontal solvers [30], high-order FEM [7], and numerous
applications, e.g., from astrophysics [17], hydrodynamics [7],
image processing [18], signal processing [5], etc.

The lack of linear algebra software for small problems is
especially noticeable for GPUs. The development for CPUs,
as pointed out in Sections 2 and 4.1, can be done easily
using existing software infrastructure. On the other hand,
GPUs, due to their high parallelism, are efficient for large
data parallel computations, and therefore have often been
used in combination with CPUs, where the CPU handles
the small and difficult to parallelize tasks. The need to
overcome the challenges of solving small problems on GPUs
is rooted in the GPUs energy efficiency – to use it, four to
five times better than the one for multicore CPUs, codes
must be ported efficiently to GPUs. This is one of the
main goals of our research in this direction, to develop GPU
algorithms and implementations on small problems that
outperform multicore CPUs in energy efficiency. This paper
in particular targets the main one-sided factorizations for a
set of small dense matrices of the same size, and we illustrate
our discoveries on the LU and Cholesky factorizations.

Figure 1 gives a schematic view of the batched problem con-
sidered. Basic block algorithms, as the ones in LAPACK [4],
factorize at step i a block of columns, denoted by panel Pi,
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Figure 1: Schematic view of a batched one-sided
factorization problem for a set of k dense matrices.
An approach based on batched BLAS factorizes the
matrices simultaneously.

followed by the application of the transformations accumu-
lated in the panel factorization to the trailing sub-matrix Ai.

Interleaved with the algorithmic work are questions on
what programing and execution model is best for small prob-
lems, how to offload work to the GPUs, and what should be
the interaction with the CPUs if any. The offload-based exe-
cution model and the accompanying terms host and device
have been established by the directive-based programming
standards: OpenACC [22] and OpenMP 4 [23]. While these
specifications are host-centric, in the context of dense linear
algebra computations, we recognize three distinctly different
modes of operation: hybrid, native, and batched execution.
The first one employs both the host CPU and the device
accelerator, be it a GPU or an Intel coprocessor, that coop-
eratively execute on a particular algorithm. The second one
offloads the execution completely to the accelerator. The
third one is the focus of this writing and involves execution
of a multitude of small problems on the accelerator while
the host CPU only sends the input data and receives the
computed result in a pipeline fashion to alleviate the over-
heads of the dearth of PCIe bandwidth and comparatively
long latency of the transfers.

2. RELATED WORK
Small problems can be solved efficiently on single CPU

core, e.g., using vendor supplied libraries such as MKL [14]
or ACML [3], because the CPU’s memory hierarchy would
back a “natural” data reuse (small enough problems can
fit into small fast memory). Besides memory reuse, to fur-
ther speedup the computation, vectorization to use SIMD
processor supplementary instructions can be added either ex-
plicitly as in the Intel Small Matrix Library [13], or implicitly
through the vectorization in BLAS. Batched factorizations
then can be efficiently computed for multicore CPUs by hav-
ing a single core factorize a single problem at a time (see
Section 4.1). However, as we show, the energy consumption
is higher than the GPU-based factorizations.

For GPU architectures, prior work has been concentrated
on achieving high-performance for large problems through
hybrid algorithms [27]. Motivation came from the fact that

the GPU’s compute power can not be used on panel factori-
zations as efficiently as on trailing matrix updates [28]. As
a result, various hybrid algorithms were developed where
panels are factorized on the CPU while the GPU is used for
trailing matrix updates (mostly GEMMs) [1, 10]. For large
enough problems the panel factorizations and associated with
it CPU-GPU data transfers can be overlapped with GPU
work. For small problems however, this is not possible, and
our experience has shown that hybrid algorithms would not
be as efficient as they are for large problems.

Indeed, targeting very small problems (of size up to 128),
Villa et al. [24], [25] obtained good results for batched LU
developed entirely for GPU execution, where a single CUDA
thread, or a single thread block, was used to solve one system
at a time. Similar techniques, including the use of single
CUDA thread warp for single factorization, were investigated
by Wainwright [29] for LU with full pivoting on matrices
of size up to 32. Although the problems considered were
often small enough to fit in the GPU’s shared memory, e.g.,
48 KB on a K40 GPU, and thus to benefit from data reuse
(n2 data for 2

3
n3 flops for LU), the results showed that the

performance in these approaches, up to about 20 Gflop/s in
double precision, did not exceed the maximum performance
due to memory bound limitations (e.g., 46 Gflop/s on a
K40 GPU for DGEMV’s 2n2 flops on n2 data; see also the
performance analysis in Section 5.2).

Here we developed an approach based on batched BLAS
plus some batched-specific algorithmic improvements that
exceeds in performance the memory bound limitations men-
tioned above. A batched LU based on batched BLAS
has been also recently developed and released through
CUBLAS [21], but has lower performance compared to our
approach when the algorithmic improvements are added.

3. ONE-SIDED FACTORIZATIONS
In this section, we present a brief overview of the linear

algebra aspects for development of either Cholesky or LU
factorizations based on block outer-product updates of the
trailing matrix. Conceptually, one-sided factorization maps
a matrix A into a product of matrices X and Y :

F :

[
A11 A12

A21 A22

]
7→

[
X11 X12

X21 X22

]
×

[
Y11 Y12

Y21 Y22

]
.

Algorithmically, this corresponds to a sequence of in-place
transformations of A, whose storage is overwritten with
the entries of matrices X and Y (Pij indicates currently
factorized panels):A

(0)
11 A

(0)
12 A

(0)
13

A
(0)
21 A

(0)
22 A

(0)
23

A
(0)
31 A

(0)
32 A

(0)
33

→

P11 A
(0)
12 A

(0)
13

P21 A
(0)
22 A

(0)
23

P31 A
(0)
32 A

(0)
33

→

→

XY11 Y12 Y13

X21 A
(1)
22 A

(1)
23

X31 A
(1)
32 A

(1)
33

→

XY11 Y12 Y13

X21 P22 A
(1)
23

X31 P32 A
(1)
33

→

→

XY11 Y12 Y13

X21 XY22 Y23

X31 X32 A
(2)
33

→

XY11 Y12 Y13

X21 X22 Y23

X31 X32 P33

→

→

XY11 Y12 Y13

X21 XY22 Y23

X31 X32 XY33

→
[
XY

]
,

where XYij is a compact representation of both Xij and Yij

in the space originally occupied by Aij .
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Table 1: Panel factorization and trailing matrix up-
date routines.

Cholesky LU

PanelFactorize xPOTF2 xGETF2
xTRSM

xSYRK2 xLASWP
TrailingMatrixUpdate xGEMM xTRSM

xGEMM

There are two distinct phases in each step of the transfor-
mation from [A] to [XY ]: panel factorization (P ) and trailing

matrix update A(i) → A(i+1). Implementation of these two
phases leads to a straightforward iterative scheme shown in
Algorithm 1.

Algorithm 1 is called block algorithm since every panel
P is of size nb which allows the trailing matrix update to
use the Level 3 BLAS routines. Note that if nb = 1 the
algorithm falls back to the standard algorithm introduced
by LINPACK in the 80’s. The factorization of each panel is
accomplished by a non-blocked routine. Table 1 shows the
BLAS and the LAPACK routines that should be substituted
for the generic routines named in the algorithm. Most of

Algorithm 1: Two-phase implementation of a one-sided
factorization.

for Pi ∈ {P1, P2, . . . , Pn} do
PanelFactorize(Pi)

TrailingMatrixUpdate(A(i))

the current libraries focus on large matrices by using hybrid
(CPU-GPU) algorithms [12]. Because the panel factorization
is considered a latency-bound workload, which faces a num-
ber of inefficiencies on throughput-oriented GPUs, it was
preferred to perform its factorization on the CPU. Due to
their high performance rate exhibited on the update oper-
ation, and the fact that the update requires the majority
of floating-point operations, the GPU has to perform the
trailing matrix update. Note that a data transfer of the panel
to and from the CPU is required at each step of the loop.
The classical implementation as described in Algorithm 1
lacks of efficiency because either the CPU or the GPU is
working at a time. The MAGMA library modified further
the algorithm to overcome this issue and to achieve closer
to optimal performance. In fact, the ratio of the computa-
tional capability between the CPU and the GPU is orders of
magnitude, and thus the common technique to alleviate this
imbalance and keep the GPU loaded is to use lookahead.

Algorithm 2 shows a very simple case of lookahead of
depth 1. The update operation is split into an update of the
next panel, and an update of the rest of the trailing matrix.
The splitting is done to overlap the communication and the
factorization of the panel with the update operation. This
technique let us hide the memory bound operation of the
panel factorization and also keep the GPU loaded by the
trailing matrix update.

In the batched implementation, however, we can not afford
such a memory transfer at any step, since the trailing matrix
is small and the amount of computation is not sufficient to
overlap it in time with the panel factorization. Many small

Algorithm 2: Lookahead of depth 1 for the two-phase
factorization.

for Pi ∈ {P1, P2, . . . , Pn} do
CPU: PanelFactorize(Pi)

GPU: TrailingMatrixUpdate of only next panel of (A(i)

which is P2)
CPU and GPU work in parallel: CPU go to the next loop
while GPU continue the update
GPU: continue the TrailingMatrixUpdate of the remaining
(A(i−1)) using the previous panel (Pi−1)

data transfers will take away any performance advantage
enjoyed by the GPU. In the next section, we describe our
proposed implementation and optimization for the batched
algorithm.

4. BATCHED ONE-SIDED FACTORIZA-
TIONS

The purpose of batched routines is to solve a set of inde-
pendent problems in parallel. When the matrices are large
enough to fully load the device with work, there is no need
for batched routines: the set of independent problems can
be solved in serial as a sequence of problems. Moreover, it is
preferred to solve it in serial, and not in batched fashion, to
better enforce locality of data and increase the cache reuse.
However, when matrices are small (for example matrices of
size less than or equal to 512), the amount of work needed to
perform the factorization cannot saturate the device, either
CPU or GPU), and thus there is a need for batched routines.

4.1 Batched Factorizations for Multicore
CPUs

In broad terms, there are two main ways to approach
batched factorization on multicore CPU. The first one is to
parallelize each small factorization across all the cores and the
second one is to execute each factorization sequentially on a
single core with all the cores working independently on their
own input data. With these two extremes clearly delineated,
it is easy to see the third possibility: the in-between solution
where each matrix is partitioned among a handful of cores
and multiple matrices are worked on at a time as the total
number of available cores permits.

The tall-and-skinny matrix factorization scenarios were
studied before [8, 9, 16] which has some relation on batched
factorization on multicore CPUs. The problem can either
be of reduced size and be fully cache-contained even for
Level 1 cache in which case the algorithm becomes compute-
bound because the cache can fully satisfy the issue rate of the
floating-point units. For our target matrix sizes, the cache
containment condition does not hold and, consequently, the
most efficient scheme is to employ fixed matrix partition-
ing schemes with communication based on cache coherency
protocols to achieve nearly linear speedup over purely se-
quential implementation [8, 9, 16]. To our knowledge, this
work constitutes nearly optimal implementation scenario
that by far exceeds the state-of-the-art vendor and open
source implementations currently available. Unfortunately,
the bandwidth still remains the ultimate barrier: the achieved
performance could be a multiple times better than the next
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best solution but it is still a fraction of the peak performance
of the processor.

For batched operations, the cache partitioning techniques
did not work well in our experience because of the small size
of matrices which is not the intended target for this kind of
optimization. We tested various levels of nested parallelism
to exhaust all posiblities of optimization available on CPUs.
The two extremes mentioned above get about 40 Gflop/s (one
outer task and all 16 cores working on a single problem at a
time – 16-way parallelism for each matrix) and 100 Gflop/s
(16 outer tasks with only a single core per task – sequential
execution each matrix), respectively. The scenarios that
between these extremes achieve somewhere in between in
terms of performance. For example, with 8 outer tasks with
2 cores per task we achieve about 50 Gflop/s. Given these
results and to increase clarity of the presentation, we only
report the extreme setups in the results shown below.

4.2 Batched Factorizations for GPUs
One approach to the batched factorizations problem for

GPUs is to consider that the matrices are small enough and
to therefore factor them using the non blocked algorithm.
The implementation in this case is simple but the perfor-
mance obtained turns out to be unacceptably low. Thus the
implementation of the batched factorization must also be
blocked, and therefore follow the iterative scheme (panel fac-
torization and trailing matrix update) shown in Algorithm 1.
Note that the trailing matrix update consists of Level 3 BLAS
operations (Xsyrk for Cholesky, Xgemm for LU), which are
compute intensive and therefore can perform very well on
the GPU. Thus, the most difficult phase of the algorithm is
the panel factorization.

4.2.1 Mapping Batched Kernles to GPU Hardware
A recommended way of writing efficient GPU kernels is to

use the GPU’s shared memory – load it with data and reuse
that data in computations as much as possible. The idea
behind this is to do the maximum amount of computation
before writing the result back to the main memory. However,
the implementation of such technique may be complicated for
the small problems considered as it depends on the hardware,
the precision, and the algorithm. Moreover, our experience
showed that this procedure provides very good performance
for simple GPU kernels but is not that appealing for batched
algorithm for two main reasons. First, the current size of
the shared memory is 48 KB per streaming multiprocessor
(SMX) for the newest Nvidia K40 (Kepler) GPUs, which is a
low limit for the amount of the batched problems data that
can fit at once. Second, completely saturating the shared
memory per SMX can decrease the performance of memory
bound routines, since only one thread-block will be mapped
to that SMX at a time. Indeed, due to a limited parallelism
in the factorization of a small panel, the number of threads
used in the thread block will be limited, resulting in low
occupancy, and subsequently poor core utilization. In our
study and analysis we found that redesigning the algorithm
to use small amount of shared memory per kernel (less than
10KB) not only provides an acceptable data reuse but also
allows many thread-blocks to be executed by the same SMX
in parallel, and thus taking a better advantage of its resources.
As a results the performance obtained is more than 3× better
than the one where the entire shared memory is used. Since
the CUDA warp consists of 32 threads, it is recommended

to develop CUDA kernels that use multiple of 32 threads
per thread-block. For our batched algorithm, we discovered
empirically that the best value for nb is 32.

Below we describe our batched routines based on batched
BLAS – the way they are implemented, and all the rele-
vant optimizations that have been incorporated in order to
achieve performance. All routines are batched and denoted
by the corresponding LAPACK routine names. We have im-
plemented them in the four standard floating-point precisions
– single real, double real, single complex, and double complex.
For convenience, we use the double precision routine name
throughout the paper.

4.2.2 Methodology Based on Batched BLAS
In a batched problem solution methodology that is based

on batched BLAS, there are many small dense matrices
that must be factorized simultaneously (as illustrated in
Figure 1). This means that all the matrices will be processed
simultaneously by the same kernel. Yet, each matrix problem
is still solved independently, identified by a unique batch ID.
We follow this model in our batched implementations and
developed the following set of new batched CUDA kernels
for the LU and Cholesky factorizations:

• Cholesky panel: Provides the batched equivalent
of LAPACK’s dpotf2 routine. At step j of a panel
of size (m,nb), the column vector A(j : m, j) must
be computed. This requires a dot-product using row
A(j, 1 : j) to update element A(j, j), followed by a
dgemv A(j + 1, 1) A(j, 1 : j) = A(j + 1 : m, j), and
finally a dscal on column A(j + 1 : m, j). This routine
involves two Level 1 BLAS calls (dot and scal), as
well as a Level 2 BLAS dgemv. Since there are nb
steps, these routines are called nb times, and thus
one can expect that the performance depends on the
performances of Level 2 and Level 1 BLAS operations.
Hence, it is a slow, memory bound algorithm. We used
shared memory to load both row A(j, 1 : j) and column
A(j + 1 : m, j) to reuse them, and wrote a customized
batched dgemv kernel to read and write these vectors
from/into the shared memory.

• LU panel: This provides the batched equivalent of
LAPACK’s dgetf2 routine to factorize panels of size
m× nb at each step of the batched LU factorizations.
It consists of three Level 1 BLAS calls (idamax, dswap
and dscal) and one Level 2 BLAS call (dger). The
dgetf2 procedure proceeds as follow: Find the maximum
element of the ith column, then swap the ith row with
the row owning the maximum, and scale the ith column.
To achieve higher performance and minimize the effect
on the Level 1 BLAS operation, we implemented a tree
reduction to find the maximum where all the threads
contributes to find the max. Since it is the same column
that is used to find the max then scaled, we load it to
the shared memory. This is the only data that we can
reuse within one step.

• Trailing matrix updates: The trailing matrix up-
dates are mainly Level 3 BLAS operations. However,
for small matrices it might be difficult to extract per-
formance from very small Level 3 BLAS kernels. The
dgemm is the best Level 3 BLAS kernel – it is GPU
friendly, highly optimized, and achieves the highest
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performance among BLAS. For that, high-performance
can be achieved if we redesign our update kernels to be
represented by dgemms. For Cholesky, the update con-
sists of the dsyrk routine. It performs a rank-nb update
on either the lower or the upper portion of A22. Since
CUBLAS does not provide a batched implementation of
this routine, we implemented our own. It is based on a
sequence of customized dgemms in order to extract the
best possible performance. The trailing matrix update
for the Gaussian elimination (LU) is composed of three
routines: the dlaswp that swaps the rows on the left
and the right of the panel in consideration, followed
by the dtrsm to update A12 ← L−1

11 A12, and finally a
dgemm for the update A22 ← A22 −A21L

−1
11 A12. The

swap (or pivoting) is required to improve the numerical
stability of the Gaussian elimination. However, piv-
oting can be a performance killer for matrices stored
in column major format because rows in that case are
not stored continuously in memory, and thus can not
be read coalescently. Indeed, a factorization stored
in column-major format can be 2× slower (depending
on hardware and problem sizes) than implementations
that transpose the matrix in order to internally use a
row-major storage format [28]. Nevertheless, experi-
ments showed that this conversion is too expensive in
the case of batched problems. Moreover, the swapping
operations are serial, that is row by row. This limits
the parallelism. To minimize this penalty, we propose
a new implementation that emphasizes a parallel swap
and allows coalescent read/write. We also developed
a batched dtrsm. It loads the small nb× nb L11 block
into shared memory, inverts it with the dtrtri routine,
and then the A12 update is accomplished by a dgemm.
Generally, computing the inverse of a matrix may suffer
from numerical stability, but since A11 results from the
numerically stable LU with partial pivoting and its size
is just nb× nb, or in our case 32× 32, we do not have
this problem [6].

• Batched BLAS: We developed our Batched BLAS as
needed and explained in the items above. Most notably,
this includes the batched Xgemm, Xtrsm, Xgemv, and
Xsyrk routines in the four standard precisions – single
and double real, and single and double complex. We im-
plemented our Level 3 BLAS batched routines based on
a batched Xgemm that was derived from the MAGMA
Xgemm for Fermi GPUs [19]. We note that this routine
was also used as the bases for the CUBLAS Xgemm
on Fermi and the current CUBLAS batched Xgemm
partially due to its better suitability for computations
on small matrices (see also Section 4.4).

4.3 Techniques for High-Performance
Batched Factorizations

4.3.1 Parallel Swapping
Profiling the batched LU reveals that more than 60% of

the time is spent in the swapping routine. Figure 2 shows the
execution trace of the batched LU for 2000 matrices of size
512. We can observe on the top trace that the classical dlaswp
kernel is the most time consuming part of the algorithm. The
swapping consists of nb successive interchanges of two rows
of the matrices. The main reason that this kernel is the

most time consuming is because the nb row interchanges are
performed in a sequential order, and that the data of a row
is not coalescent, thus the thread warps do not read/write it
in parallel. It is clear that the main bottleneck here is the
memory access. Indeed, slow memory accesses compared to
high compute capabilities have been a persistent problem for
both CPUs and GPUs. CPUs for example alleviate the effect
of the long latency operations and bandwidth limitations by
using hierarchical caches. Accelerators on the other hand, in
addition to hierarchical memories, use thread level parallelism
(TLP) where threads are grouped into warps and multiple
warps assigned for execution on the same SMX unit. The idea
is that when a warp issues an access to the device memory, it
stalls until the memory returns a value, while the accelerator’s
scheduler switches to another warp. In this way, even if some
warps stall, others can execute, keeping functional units busy
while resolving data dependencies, branch penalties, and
long latency memory requests. In order to overcome the
bottleneck of swapping, we propose to modify the kernel to
apply all nb row swaps in parallel. This modification will
also allow the coalescent write back of the top nb rows of
the matrix. Note that the first nb rows are those used by
the dtrsm kernel that is applied right after the dlaswp, so one
optimization is to use shared memory to load a chunk of the
nb rows, and apply the dlaswp folloed by the dtrsm at the
same time. We changed the algorithm to generate two pivot
vectors, where the first vector gives the final destination
(e.g. row indices) of the top nb rows of the panel, and the
second gives the row indices of the nb rows to swap and
bring into the top nb rows of the panel. Figure 2 depicts
the execution trace (bottom) when using our parallel dlaswp
kernel. The experiment shows that this reduces the time
spent in the kernel from 60% to around 10% of the total
elapsed time. Note that the colors between the top and
the bottom traces do not match each other; this is because
the Nvidia profiler puts always the most expensive kernel in
green. As a result, the performance gain obtained is about
1.8× as shown by the purple curve of Figure 3. We report
each of the proposed optimization for the LU factorization in
Figure 3 but we would like to mention that the percentage
of improvement obtained for the Cholesky is similar and to
simplify we reported the LU factorization only. Note that,
starting from this version, we were able to be faster than the
CUBLAS implementation of the batched LU factorization
algorithm.

swap kernel 60%	


gemm kernel 15%	


gemm kernel 30%	


swap kernel 10%	


classical swap: 

parallel swap: 

Figure 2: Execution trace of the batched LU factor-
ization using either classical swap (top) or our new
parallel swap (bottom).
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Figure 3: Performance in Gflops/s of the different
versions of our batched LU factorizations compared
to the CUBLAS implementation for different matrix
sizes where m = n.

4.3.2 Recursive Nested Blocking
The panel factorizations described in Section 4.2.2 factorize

the nb columns one after another, similarly to the LAPACK
algorithm. At each of the nb steps, either a rank-1 update is
required to update the vectors to the right of the factorized
column i (this operation is done by the dger kernel for LU),
or a left looking update of column i by the columns on its
left, before factorizing it (this operation is done by dgemv for
the Cholesky factorization). Since we cannot load the entire
panel into the shared memory of the GPU, the columns to the
right (in case of LU) or to the left (in case of Cholesky) are
loaded back and forth from the main memory at every step.
Thus, one can expect that this is the most time consuming
part of the panel factorization. A detailed analysis using
the profiler reveals that the dger kernel requires more than
80% and around 40% of the panel time and of the total
LU factorization time respectively. Likewise, the dgemv
kernel used within the Cholesky panel computation needs
around 91% and 30% of the panel and the total Cholesky
factorization time respectively. This inefficient behavior of
these routines is also due to the memory access. For that,
to overcomes this bottleneck, we propose to improve the
efficiency of the panel and to reduce the memory access by
using a recursive level of blocking technique as depicted in
Figure 4. In principle, the panel can be blocked recursively
until a single element. Yet, in practice, 2-3 blocked levels are
sufficient to achieve high performance. The above routines
must be optimized for each blocked level, which complicates
the implementation. More than 30% boost in performance is
obtained by this optimization, as demonstrated in Figure 3
for the LU factorization. The same trend has been observed
for the Cholesky factorization.

4.3.3 Trading Extra Computation for Higher Perfor-
mance

The challenge discussed here is the following: for batched
problems there is a need to minimize the use of low perfor-
mance kernels on the GPU even if they are Level 3 BLAS.
For the Cholesky factorization this concerns the dsyrk routine
that is used to update the trailing matrix. The performance
of dsyrk is important to the overall performance, since it takes
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Figure 4: Recursive nested blocking

panel: classical getf2 38%	
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nested blocking of dgetf2: 

Figure 5: Execution trace of the batched LU factor-
ization using either classical getf2 (top) or our recur-
sive getf2 (bottom).

a big part of the run-time. We implemented the batched
dsyrk routine as a sequence of dgemm routines, each of size
M = m,N = K = nb. In order to exclusively utilize the
dgemm kernel, our implementation writes both the lower and
the upper portion of the nb×nb diagonal blocks of the trailing
matrix. This results in nb3 extra operations for the diagonal
block. However, since nb is small (e.g., nb = 32) these ex-
tra operations can be considered free. In practice the extra
operation allows us to use dgemm and thus achieve higher
performance than the one that touches the lower/upper por-
tion of the nb × nb diagonal blocks. Tests show that our
implementation of dsyrk is twice faster than the dgemm kernel
for the same matrix size. This shows that our dsyrk is very
well optimized in order to reach the performance of dgemm
(which is twice slower as it computes twice more flops).

Similarly to dsyrk, we implemented the batched dtrsm (that
solves AX = B) by inverting the small nb× nb block A and
using dgemm to get the final results X = A−1B.

4.4 Streamed dgemm
As our main goal is to achieve higher performance, we

performed deep analysis of every kernel of the algorithm.
We discovered that 70% of the time is spent in the batched
dgemm kernel after the previously described optimizations
were applied. An evaluation of the performance of the dgemm
kernel using either batched or streamed dgemm is illustrated
in Figure 6. The curves let us conclude that the streamed
dgemm is performing better than the batched one for some
cases, e.g., for k = 32 when the matrix size is of order
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Figure 7: Execution trace of the batched LU factorization using either batched dgemm (top) or
streamed/batched dgemm (bottom).

m > 200 and n > 200. We note that the performance of the
batched dgemm is stable and does not dependent on k, in
the sense that the difference in performance between k = 32
and k = 128 is minor. However it is bound by 300 Gflop/s.
For that we propose to use the streamed dgemm whenever is
faster, and to roll back to the batched one otherwise. Figure 7
shows the trace of the batched LU factorization of 2, 000
matrices of size 512 using either the batched dgemm (top
trace) or the combined streamed/batched dgemm (bottom
trace). We can see that the use of the streamed dgemm (when
the size allows it) can speed up the factorization by about
20%.
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Figure 6: Performance comparison between the
streamed and the batched dgemm kernel for different
value of K and different matrix sizes where m = n.

5. PERFORMANCE RESULTS

5.1 Hardware Description and Setup
We conducted our experiments on Intel multicore system

with two 8-cores socket Intel Xeon E5-2670 (Sandy Bridge)
processors, each running at 2.6 GHz. Each socket had 20

MB of shared L3 cache, and each core had a private 256 KB
L2 and 64 KB L1 cache. The system is equipped with 52 GB
of memory and the theoretical peak in double precision is
20.8 Gflop/s per core, i.e., 332.8 Glop/s in total for the two
sockets. It is also equipped with a NVIDIA K40c cards with
11.6 GB of GDDR memory per card running at 825 MHz.
The theoretical peak in double precision is 1, 689.6 Gflop/s.
The cards are connected to the host via two PCIe I/O hubs
with 6 GB/s bandwidth.

A number of software packages were used for the experi-
ments. On the CPU side, we used the MKL (Math Kernel
Library) [14] with the icc compiler (version 2013.sp1.2.144)
and on the GPU accelerator we used CUDA version 6.0.37.

Related to power, we note that in this particular setup the
CPU and the GPU have about the same theoretical power
draw. In particular, the Thermal Design Power (TDP) of the
Intel Sandy Bridge is 115 W per socket, or 230 W in total,
while the TDP of the K40c GPU is 235 W. Therefore, we
roughly expect that a GPU would have a power consumption
advantage if it outperforms (in terms of time to solution) the
16 Sandy Bridge cores. Note that based on the theoretical
peaks the GPU’s advantage should be about 4 to 5×. This
also is observed in practice, especially for regular compute
workloads for large data-parallel problems that can, in fact,
be efficiently implemented for GPUs.

5.2 Performance Analysis
The performance of the non-blocked versions can be

bounded by the performance of the rank-1 update. Its
Flops/Bytes ratio for double precision numbers is 3n

16+16n

(for m = n). Therefore, a top performance for n = 500 and
read/write achievable bandwidth of 160 Gflop/s would be

160× 3× 500

16 + 16× 500
= 29.9 Gflop/s.

This shows that our non-blocking LU from Figure 3 achieves
this theoretically best performance. This is the limit for the
other non-blocking one-sided factorizations as well.
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Similar analysis for a best expected performance can be
done for the block algorithms as well. Their upper perfor-
mances are bounded in general by the rank-nb performance,
e.g., illustrated in Figure 6 for nb = 32 and 64. Although
we do not reach the asymptotic performance of 400 GFlop/s
at n = 500, as we show, our performances grow steadily
with n, indicating that the O(n2) flops besides the rank-nb
are slow and n needs to grow in order for their influence on
the performance to become less significant compared to the
rank-nb’s O(n3) flops.

5.3 Comparison with CUBLAS on a K40c
Getting high performance across accelerators remains a

challenging problem that we address with the algorithmic
and programming techniques described in this paper. The
efficient strategies used exploit parallelism and increase the
use of Level 3 BLAS operations across the GPU. We high-
lighted this through a set of experiments that we performed
on our system. We compare our batched implementations
with the CUBLAS [21] library whenever possible (CUBLAS
features only a dgetrfBatched routine). Our experiments were
performed on batches of 2, 000 matrices of different sizes
going from 32× 32 to 512× 512.

Figure 8 shows the performance of the LU factorization.
The dgetrfBatched version, marked as “CUBLAS”, reaches
a performance of around 70 Gflop/s for matrices size of
512 × 512. We first compare to a naive implementation
that is based on the assumption that matrices of size (<
512) are very small for block algorithms, and therefore uses
the non blocked version. For example, for the case of LU
this is the dgetf2 routine. The routine is very slow and
the performance obtained reaches less than 30 Gflop/s, as
shown in Figure 3. Note that although low, this is also the
optimal performance achievable by this type of algorithms,
as explained in Section 5.2.

Our second comparison is to the classic LU factorization,
i.e., the one that follows LAPACK’s two-phases implementa-
tion described in Algorithm 1. This algorithm achieves 63
Gflop/s as shown in Figure 3.

To reach beyond 100 Gflop/s, we used the technique
that optimizes pivoting with parallel swap. Next step in
performance improvement was the use of two-level block-
ing of the panel, which enables performance levels that go
slightly above 130 Gflop/s. The final two improvements are
streamed/batched gemm, which moves the performance be-
yond 160 Gflop/s, and finally, the two-levels blocking update,
(also what we called recursive blocking) completes the set of
optimizations and takes the performance beyond 180 Gflop/s.
Thus our batched LU achieves up to 2.5× speedup compared
to its counterpart from the CUBLAS library.

5.4 Comparison to Multicore CPU Solutions
Here we compare our batched LU to the two CPU im-

plementations proposed in Section 4.1. The simple CPU
implementation is to go in a loop style to factorize matrix af-
ter matrix, where each factorization is using the multi-thread
version of the MKL Library. This implementation is limited
in terms of performance and does not achieve more than 50
Gflop/s. The main reason for this low performance is the fact
that the matrix is small – it does not exhibit parallelism and
so the multithreaded code is not able to feed with work all
16 threads used. For that we proposed another version of the
CPU implementation. Since the matrices are small (< 512)
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Figure 8: Performance in Gflops/s of our different
version of the batched LU factorization compared
to the CUBLAS implementation for different matrix
sizes where m = n.

and at least 16 of them fit in the L3 cache level, one of the
best technique is to use each thread to factorize indepen-
dently a matrix. This way 16 factorizations are conducted
independently in parallel. We think that this implementation
is one of the best optimized implementations for the CPU.
This later implementation is twice faster than the simple
implementation. It reaches around 100 Gflop/s in factorizing
2, 000 matrices of size 512× 512. Experiments show that our
GPU batched LU factorization is able to achieve a speedup
of 1.8× vs. the best CPU implementation using 16 Sandy
Bridge cores, and 4× vs. the simple one.
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Figure 9: Performance in Gflops/s of the GPU vs.
the CPU versions of our batched Cholesky factori-
zations for different matrix sizes where m = n.

The performances obtained for the Cholesky factorization
is similar to the results for LU. A comparison againts the
two CPU implementations for Cholesky is given in Figures 9.

Similarly to the LU, our first GPU implementation of the
batched Cholesky factorization follows the classical LAPACK
implementation. Compared to the non-blocking algorithm
this version increases the use of shared memory and attains
at n = 500 an upper bound of 60 Gflop/s. The different opti-
mization techniques from Section 4.3 drive the performance

66



of the Cholesky factorization up to 200 Gflop/s. The two
CPU implementations behave similarly to the ones for LU.
The simple CPU implementation achieves around 60 Gflop/s
while the optimized one reaches 100 Gflop/s. This yields a
speedup of 2× against the best CPU implementation using
16 Sandy Bridge cores.

5.5 Energy Efficiency
For our energy efficiency measurements we use power and

energy estimators built into the modern hardware platforms.
In particular, on the tested Sandy Bridge CPU, Intel Xeon
E5-2690, we use RAPL (Runtime Average Power Limiting)
hardware counters [15, 26]. By the vendor’s own admission,
the reported power/energy numbers are based on a model
which is tuned to match well against the actual measurements
for various workloads. Given this caveat, we can report that
the idle power of the tested Sandy Bridge CPU, running
at fixed frequency of 2600 MHz, consumes about 20 W of
power per socket. Batched operations raise the consump-
tion to above 125 W-140 W per socket and the large dense
matrix operations, that reach the highest fraction of the
peak performance, raise the power draw to about 160 W per
socket. These numbers do not include the power consumed
by the main memory as the memory modules do not report
their voltage levels to the CPU’s memory controller on this
particular system, which renders RAPL ineffective for the
purpose of estimating temporal energy consumption. Based
on estimates from similarly configured systems, we estimate
that the power consumption for the main memory under load
is between 30 W and 40 W.

For the GPU measurements we use NVIDIA’s NVML
(NVIDIA Management Library) library [20]. NVML pro-
vides a C-based programmatic interface for monitoring and
managing various states within NVIDIA Tesla line of GPUs.
On Fermi and Kepler cards (like the K40c used) the read-
ings are reported to be accurate to within +/-5% of current
power draw. The idle state of the K40c GPU consumes
about 20 W. Batched factorizations raise the consumption to
about 150−180 W, while large dense matrix operations raise
the power draw to about 200 W. Unlike the CPU energy
reporting, the GPU sensors do indicate the power inclusive
of the main memory modules.

We depict in Figure 10 the comparison of the power
consumption required by the three implementations of the
batched LU factorization: the best GPU and the two CPU
implementations. The problem solved here is about 4, 500
matrices of size 512 × 512 each. The green curve shows
the power required by the simple CPU implementation. In
this case the batched LU proceeds as a loop over the 4, 500
matrices where each matrix is factorized using the multi-
threaded dgetrf routine form the Intel MKL library on the
16 Sandy Bridge cores. The blue curve shows the power
required by the optimized CPU implementation. Here, the
code proceeds by sweep of 16 parallel factorizations each us-
ing the sequential dgetrf routine form the Intel MKL library.
The red curve shows the power consumption of our GPU
implementation of the batched LU factorization. One can
observe that the GPU implementation is attractive because it
is around 2× faster than the optimized CPU implementation,
and moreover, because it consumes 3× less energy.

According to the experiments we conduct to measure the
power we found that the GPU implementations of all of the
batched one-sided factorizations reach around 2× speedup

Figure 10: Comparison of the power consumption
for the LU factorization of 4, 500 matrices of size 512×
512.

over their best CPU counterpart and are 3× less expensive
in term of energy.

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

Designing algorithms to work on small problems is a con-
cept that can deliver higher performance through an im-
proved data reuse. Many applications have relied on this
design concept to get higher hardware efficiency, and users
have requested it as a supported functionality in linear al-
gebra libraries. Besides having the potential to improve the
overall performance of applications with computational pat-
terns ranging from dense to sparse linear algebra, developing
these algorithms for the new low-powered and power-efficient
architectures can bring significant savings in energy consump-
tion. We demonstrated how to accomplish this in the case
of batched dense solvers for GPU architectures.

We showed that efficient batched dense solvers can be
implemented relatively easily for multicore CPUs, relying
on existing high-performance libraries like MKL for building
blocks. For GPUs, on the other hand, the development is
not straightforward. Our literature review pointed out that
the pre-existing solutions were either just memory-bound, or
even if highly optimized, did not exceed in performance the
corresponding CPU versions (if they are highly optimized as
the ones developed in this work and use a number of cores
scaled to ensure the same CPUs power draw as a GPU). We
demonstrated that GPUs, with proper algorithmic enhance-
ments and with the batched BLAS approach used, can have
an advantage over CPUs on this workload. In particular, the
algorithmic work on blocking, variations of blocking like in
the recursive nested blocking, adding extra flops to improve
parallelism and regularity of the computation, streaming,
and other batched/algorithm-specific improvements as in the
LU’s parallel swapping, contributed most in enabling the
GPUs to outperform the CPUs on a workload that was pre-
viously favored for execution on multicore CPU architectures
due to their larger cache sizes and well developed memory
hierarchy.

To illustrate the improvements, we compared the results
obtained on current high-end GPUs and CPUs. In particular,
we considered a single NVIDIA K40c GPU vs. two Intel
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Sandy Bridge CPUs (16 cores in total) as this configuration
has the same accumulative power draw on the two systems.
While the power draw is the same (around 240 W), the
GPU has about 4× higher theoretical performance peak, and
therefore is expected to have around 3−4× advantage in both
performance and energy efficiency. Indeed, improvements
like these have been observed on large classical numerical
algorithms in both dense and sparse linear algebra, where
efficient GPU implementations are possible. In this paper,
we demonstrated that one can take advantage of the GPUs
for small batched linear solvers as well. In particular, we
achieved around 2× speedup compared to our optimized
CPU implementations and 3× better energy efficiency.

As the development of efficient small problem solvers gets
more intricate on new architectures, we envision that users
will further demand their availability in high-performance
numerical libraries, and that batched solvers will actually
become a standard feature in those libraries for new archi-
tectures. Our plans are to release and maintain this new
functionality through the MAGMA libraries for NVIDIA
GPU accelerators, Intel Xeon Phi coprocessors, and OpenCL
with optimizations for AMD GPUs.

The batched algorithms and techniques can be used and
extended to develop totally GPU implementations for stand-
alone linear algebra problems. These would be useful, for
example, to replace the hybrid CPU-GPU algorithms in cases
where energy consumption, instead of higher-performance
through use of all available hardware resources, is the top
priority. Moreover, totally GPU implementations can have a
performance advantage as well, when the host CPU becomes
slower compared to the accelerator in future systems. For ex-
ample, in mobile devices featuring ARM processors enhanced
with GPUs, like the Jetson TK1, we have already observed
that the totally GPU implementations have a significant ad-
vantage in both energy consumption and performance. This
has motivated another future work direction – the devel-
opment and release of a MAGMA Embedded library that
would incorporate entirely GPU/coprocessor implementa-
tions for stand-alone, as well as batched, dense linear algebra
problems.
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