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ABSTRACT
This paper presents a heterogeneous CPU-GPU imple-
mentation for a sparse iterative eigensolver – the Lo-
cally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG). For the key routine generating the Krylov
search spaces via the product of a sparse matrix and
a block of vectors, we propose a GPU kernel based on
a modified sliced ELLPACK format. Blocking a set of
vectors and processing them simultaneously accelerates
the computation of a set of consecutive SpMVs signifi-
cantly. Comparing the performance against similar rou-
tines from Intel’s MKL and NVIDIA’s cuSPARSE li-
brary we identify appealing performance improvements.
We integrate it into the highly optimized LOBPCG im-
plementation. Compared to the BLOBEX CPU im-
plementation running on two eight-core Intel Xeon E5-
2690s, we accelerate the computation of a small set
of eigenvectors using NVIDIA’s K40 GPU by typically
more than an order of magnitude.
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INTRODUCTION
The main challenges often associated with numerical lin-
ear algebra are the fast and efficient solution of large,
sparse linear systems, and the appertaining eigenvalue
problems. While linear solvers often serve as a backbone
of simulation algorithms based on the discretization of
partial differential equations, eigensolvers play a central
role, e.g., in quantum mechanics, where eigenstates and
molecular orbitals are defined by eigenvectors, or prin-
cipal component analysis. With increasing system size
and sparsity, dense linear algebra routines, usually based
on direct solvers like LU factorization, or, in the case of
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an eigenvalue problem, Hessenberg decomposition [38],
become less suitable as the memory demand and com-
putational cost may exceed the available resources. Iter-
ative methods providing solution approximations often
become the method of choice. However, as their per-
formance is, at least in case of sparse linear systems,
usually memory bound, leveraging the computing power
of today’s supercomputers, often accelerated by copro-
cessors like graphics processing units (GPUs), becomes
challenging.

While there exist numerous efforts to adapt iterative lin-
ear solvers to coprocessor technology, sparse eigensolvers
have so far remained outside the main focus. A possi-
ble explanation is that many of those combine sparse
and dense linear algebra routines, which makes port-
ing them to accelerators more difficult. Aside from the
power method, algorithms based on the Krylov subspace
idea are among the most commonly used general eigen-
solvers [38]. When targeting symmetric positive definite
eigenvalue problems, the recently developed Locally Op-
timal Block Preconditioned Conjugate Gradient method
(LOBPCG, see [27]) belongs to the most efficient algo-
rithms. LOBPCG is based on maximizing the Rayleigh
Quotient, while taking the gradient as the search direc-
tion in every iteration step. Iterating several approxi-
mate eigenvectors, simultaneously, in a block in a simi-
lar locally optimal fashion, results in the full block ver-
sion of the LOBPCG. Applying this algorithm efficiently
to multi-billion size problems served as the backbone of
two Gordon-Bell Prize finalists that ran many-body sim-
ulations on the Japanese Earth Simulator [42][41]. One
of the performance-crucial key elements is a kernel gen-
erating the Krylov search directions via computing the
product of the sparse system matrix and a set of vectors.
With the sparse matrix vector product performance tra-
ditionally limited by memory bandwidth, LOBPCG, de-
pending on this routine, has for a long time been con-
sidered unsuitable for GPU acceleration.

In this paper we present an LOBPCG implementation
for graphics processing units able to efficiently leverage
the accelerator’s computing power. For this purpose, we
employ a sophisticated sparse matrix data layout, and
develop a kernel specifically designed to efficiently com-
pute the product of a sparse and a tall-and-skinny dense
matrix composed of the block of eigenvector approxima-
tions. As this kernel also is an integral part of other
block-Krylov solvers, the significance of its performance



carries beyond the example integration into LOBPCG we
present in this paper. We benchmark the routine against
a similar implementation provided in Intel’s MKL [1] and
NVIDIA’s cuSPARSE [35] library, and analyze the im-
provement it renders to the performance of the LOBPCG
GPU implementation. Finally, we also compare it to the
state-of-the-art multi-threaded CPU implementations of
LOBPCG based on the BLOPEX [24] code for which
the software libraries PETSc and hypre provide an in-
terface [28]. For matrices taken from the University of
Florida Matrix Collection, we achieve significant acceler-
ation when computing a set of the respective eigenstates.

RELATED WORK
Blocked sparse matrix vector product: As there
exists significant need for blocked sparse matrix vec-
tor products, NVIDIA’s cuSPARSE library provides this
routine for the CSR format [35]. Aside from a straight-
forward implementation assuming the set of vectors be-
ing stored in column-major order, the library also con-
tains an optimized version taking the block of vectors
as row-major matrix as input, that can be used in com-
bination with a preprocessing step transposing the ma-
trix to achieve significantly higher performance [34]. The
blocked sparse matrix vector product we propose in this
paper not only outperforms the cuSPARSE implementa-
tions for our test cases, but the detailed description also
allows porting it to other architectures.

Orthogonalizations for GPUs: Orthogonalization of
vectors is a fundamental operation for both linear sys-
tems and eigenproblem solvers, and many applications.
There has been extensive research on both its acceler-
ation and stability. Besides the classical and modified
Gram-Schmidt orthogonalizations [19] and orthogonal-
izations based on LAPACK (xGEQRF + xUNGQR ) [4]
and correspondingly MAGMA for GPUs [22][39], recent
work includes communication-avoiding QR [16], also de-
veloped for GPUs [5][3]. For tall and skinny matrices
these orthogonalizations are in general memory bound.
Higher performance, using Level 3 BLAS operations, is
also possible in orthogonalizations like the Cholesky QR
or SVD QR, but they are less stable (error bounded by
the square of the condition number of the input ma-
trix). These were developed for GPUs in MAGMA, in-
cluding a mixed-precision Cholesky QR that removes the
square by selectively using higher than the working pre-
cision arithmetic [43] (also applied to a CA-GMRES for
GPUs).

For the LOPBPCG method, the most time consuming
operation after the SpMM kernel is the orthogonalization
(two orthogonalizations of m vectors per iteration, see
Section ).

LOBPCG implementations: The BLOPEX pack-
age maintained by A. Knyazev may be considered as
state-of-the-art for CPU implementations of LOBPCG,
as the popular software libraries PETSc and hypre pro-
vide an interface [28]. Also Scipy [23], octopus [14]
and Anasazi [8] part of the Trilinos library [20] feature

LOBPCG implementations.
The first GPU implementation of LOBPCG is from 2011
in the ABINIT material science package [17]. The im-
plementation, realized in fortran90, benefits from utiliz-
ing the generic linear algebra routines available in the
CUDA [37] and MAGMA [22][39] GPU libraries. More
recently, NVIDIA anounced that LOBPCG will be in-
cluded in the GPU-accelerated Algebraic Multigrid Ac-
celerator AmgX 1.

LOBPCG
LOBPCG stands for Locally Optimal Block Precondi-
tioned Conjugate Gradient method [27][26]. It is de-
signed to find m of the smallest (or largest) eigenvalues
λ and corresponding eigenvectors x of a symmetric and
positive definite eigenvalue problem:

Ax = λx.

Similarly to other CG-based methods, this is accom-
plished by the iterative minimization of the Rayleigh
quotient:

ρ(x) =
xTAx

xTx
,

which results in finding the smallest eigenstates of the
original problem. In the LOBPCG method the mini-
mization at each step is done locally, in the subspace of
the current approximation xi, the previous approxima-
tion xi−1, and the preconditioned residual P (Axi−λixi),
where P is a preconditioner for A. The subspace mini-
mization is done by the Rayleigh-Ritz method.

Note that the operations in the algorithm are blocked
and therefore can be very efficient on modern archi-
tectures. Indeed, the AXi is the SpMM kernel, and
the bulk of the computations in the Rayleigh-Ritz mini-
mization are general matrix-matrix products (GEMMs).
The direct implementation of this algorithm becomes un-
stable as the difference between Xi−1 and Xi becomes
small, and therefore special care and modifications must
be taken (see [27][21]). While the LOBPCG conver-
gence characteristics usually benefit from using an an
application-specific preconditioner [7][12][29][30][25], we
refrain from including preconditioners as we are par-
ticularly interested in the performance of the top-level
method. Our implementation is hybrid, using both the
GPUs and CPUs available. In particular, all data re-
sides on the GPU memory and the bulk of the compu-
tation – the preconditioned residual, the accumulation
of the matrices for the Rayleigh-Ritz method, and the
update transformations – are done on the GPU. The
small and not easy to parallelize Rayleigh-Ritz eigen-
problem is done on the CPU using vendor-optimized
LAPACK. For stability, various orthogonalizations are
performed, following the LOBPCG Matlab code from
A. Knyazev 2. We used our highly optimized GPU

1https://developer.nvidia.com/amgx
2http://www.mathworks.com/matlabcentral/fileexchange/48-
lobpcg-m



implementations based on the Cholesky QR to get the
same convergence rates as the reference CPU implemen-
tation from BLOPEX (in HYPRE) on all our test ma-
trices from the University of Florida sparse matrix col-
lection (see Section ). More stable versions, including
Cholesky/SVD QR iterations and the mixed-precision
Cholesky QR [43], as well as LAPACK/MAGMA based,
CGS, and MGS for GPUs are also an option that we
provide.

SPMM PRODUCT
A key building block for the LOBPCG algorithm and
other block-Krylov solvers is a routine generating the
Krylov search directions by computing the product of
a sparse matrix and a set of vectors. This routine can
obviously be implemented as a set of consecutive sparse
matrix vector products; however, the interpretation as a
product of a sparse matrix and a tall-and-skinny dense
matrix composed of the distinct vectors may promote
a different approach (sparse matrix dense matrix prod-
uct, SpMM). In particular, already cached data of the
sparse matrix may be reused when processing multiple
vectors simultaneously. This would render performance
improvement to the memory-bound kernel. In the GPU
implementation of LOBPCG, we realize this routine by
handling the sparse matrix using the recently proposed
SELL-P format (padded sliced ELLPACK format [6]).
In the following we first describe the SELL-P format,
provide details on how we implement the SpMM kernel,
and then analyze its performance by comparing against
the CSRSpMM taken from NVIDIA’s CUSPARSE li-
brary [35].

Implementation of SpMM for SELL-P
While for dense matrices it is usually reasonable to store
all matrix entries in consecutive order, sparse matrices
are characterized by a large number of zero elements,
and storing those is not only unnecessary, but would
also incur significant storage overhead. Different storage
layouts exist that aim to reducing the memory footprint
of the sparse matrix by storing only a fraction of the
elements explicitly, and anticipating all other elements
to be zero, see [10][40134013]. In the CSR format [10],
this idea is taken to extremes, as only nonzero entries
of the matrix are stored. In addition to the array val-
ues containing the nonzero elements, two integer arrays
colind and rowptr are used to locate the elements in
the matrix. While this storage format is suitable when
computing a sparse matrix vector product on processors
with a deep cache-hierarchy, as it reduces the memory
requirements to a minimum, it fails to allow for high
parallelism and coalesced memory access when comput-
ing on streaming-processors like GPUs. On those, the
ELLPACK-format, padding the different rows with zeros
for a uniform row-length, coalesced memory access, and
instruction parallelism may, depending on the matrix
characteristics, outperform the CSR format [11]. How-
ever, the ELLPACK format incurs a storage overhead
for the general case: The maximum number of nonzero
elements aggregated in one row determines how many

elements are stored per row – eventually filled with ex-
plicit zeros. Hence, the overhead is determined by the
maximum number of nonzeros in one row and the av-
erage number of nonzeros per row (see Table 1). De-
pending on the associated memory and computational
overheads, using ELLPACK may result in poor perfor-
mance, despite that coalesced memory access is highly
favourable for streaming processors.

A workaround to reduce memory and computational
overhead is to split the original matrix into row blocks
before converting these into the ELLPACK format. In
the resulting sliced ELLPACK format (SELL or SELL-
C where C denotes the size of the row blocks [32][31]),
the overhead is no longer determined by the matrix row
containing the largest number of nonzeros, but by the
row with the largest number of nonzero elements in the
respective block. While sliced SELL-C reduces the over-
head very efficiently (i.e., choosing C=1 results in the
storage-optimal CSR format), assigning multiple threads
to each row requires padding the rows with zeros, such
that each block has a rowlength divisible by this thread
number. This is the underlying idea of the SELL-P for-
mat: partition the sparse matrix into row-blocks, and
convert the distinct blocks into ELLPACK format [11]
with the rowlength of each block being padded a multi-
ple of the number of threads assigned to each row when
computing a matrix vector or matrix multi-vector prod-
uct.

Although the padding introduces some zero fill-in, the
comparison between the formats in Table 1 reveals that
the blocking strategy may still render significant memory
savings compared to ELLPACK, which directly translate
into reduced computational cost for the SpMV kernel. For
the design of the SpMM routine it is not sufficient to re-
duce the computational overhead, as performance also
depends on the memory bandwidth. Therefore, it is es-
sential to optimize the memory access pattern, which re-
quires the accessed data to be aligned in memory when-
ever possible [37]. For consecutive memory access, and
with the motivation of processing multiple vectors si-
multaneously, we implement the SpMM assuming the tall-
and-skinny dense matrix composed of the vectors being
stored in row-major order. Although this requires a pre-
processing step transposing the dense matrix prior to the
SpMM call, the more appealing aligned memory access to
the vector values may compensate for the extra work.

The SpMM kernel then arises as a natural extension of the
SpMV routine for the SELL-P format proposed in [6]. Like
in the SpMV kernel, the x-dimension of the thread block
processes the distinct rows of one SELL-P block, while
the y-dimension corresponds to the number of threads
assigned to each row, see Figure 1. Partial products
are written into shared memory and added in a local
reduction phase. For the SpMM it is beneficial to pro-
cess multiple vectors simultaneously, which motivates for
extending the thread block by a z-dimension, handling
the distinct vectors. While assigning every z-layer of



ELLPACK SELL-P

Acronym Matrix #nonzeros (nz) Size (n) nz/n nrow
z nELLPACK

z overhead nSELL−P
z overhead

audi audikw 1 77,651,847 943,645 82.28 345 325,574,775 76.15% 95,556,416 18.74%
bmw bmwcra1 10,641,602 148,770 71.53 351 52,218,270 79.62% 12,232,960 13.01%
bone010 bone010 47,851,783 986,703 48.50 64 62,162,289 23.02% 55,263,680 13.41%
crank crankseg 2 14,148,858 63,838 221.63 3423 218,517,474 93.53% 15,991,232 11.52%
F1 F1 26,837,113 343,791 78.06 435 149,549,085 82.05% 33,286,592 19.38%
inline inline 1 38,816,170 503,712 77.06 843 424,629,216 91.33% 45,603,264 19.27%
ldoor ldoor 42,493,817 952,203 44.62 77 73,319,631 42.04% 52,696,384 19.36%

Table 1: Matrix characteristics and storage overhead for selected test matrices from the Tim Davis Matrix Collec-
tion [15] when using ELLPACK, or SELL-P format. SELL-P employs a blocksize of 8 with 4 threads assigned to
each row. nFORMAT

z refers to the explicitly stored elements (nz nonzero elements plus the explicitly stored zeros for
padding).

the block to one vector would provide a straight-forward
implementation, keeping the set of vectors (respectively
the tall-and-skinny dense matrix), in texture memory,
makes an enhanced approach more appealing. The mo-
tivation is that in CUDA (version 5.5) every texture read
fetches 16 bytes, corresponding to two IEEE double or
four IEEE single precision floating point values. As us-
ing only part of them would result in performance waste,
every z-layer may process two (double precision case) or
four (single precision case) vectors, respectively. This
implies that, depending on the precision format, the z-
dimension of the thread block equals half or a quarter
the column count of the tall-and-skinny dense matrix.

As assigning multiple threads to each row requires a local
reduction of the partial products in shared memory (see
Figure 1), the x- y- and z- dimensions are bounded by the
characteristics of the GPU architecture [37]. An efficient
workaround when processing a large number of vectors
is given by assigning only one thread per z-dimension to
each row (choose y-dimension equal 1), which removes
the reduction step and the need for shared memory.

EXPERIMENTAL RESULTS
Hardware Setup: We use two Intel Xeon E5-2670
(Sandy Bridge) CPUs accelerated by an NVIDIA Tesla
K40c GPU with a theoretical peak performance of
1,682GFLOP/s. The host system has a theoretical peak
of 333GFLOP/s, main memory size is 64 GB, and theo-
retical bandwidth is up to 51 GB/s. On the K40 GPU, 12
GB of main memory are accessed at a theoretical band-
width of 288 GB/s. The implementation of all GPU
kernels is realized in CUDA [37], version 5.5 [36], while
we also include in the performance comparisons routines
taken from NVIDIA’s cuSPARSE [35] library. On the
CPU, Intel’s MKL [1] is used in version 11.0, update
5. Note that the CPU-based implementations use the
”numactl –interleave=all” option when beneficial.

Performance of SpMM for SELL-P: In Table 2 we
compare the asymptotic performance achieved by the
SpMV and SpMM kernels taken from Intel’s MKL library [1]
and NVIDIA’s cuSPARSE library [35] with the devel-
oped SELL-P SpMV and SpMM kernels that are available
in the MAGMA open source software stack [22].

Both GPU implementations for the SpMM (cuSPARSE
and MAGMA) assume the vectors to be stored in row-

Intel MKL NVIDIA cuSPARSE MAGMA
Matrix CSR SpMM CSR HYB SpMM SELL-P SpMM

audi 7.24 22.5 21.9 19.3 88.95 22.1 104.21
bmw 6.86 32.2 17.7 16.9 93.04 23.6 112.46
bone010 7.77 30.5 22.3 20.7 87.71 22.3 108.26
F1 5.64 20.1 24.2 19.1 82.15 19.6 99.63
inline 8.10 28.9 15.5 14.9 87.76 21.1 102.00
ldoor 6.78 41.5 25.2 19.3 83.09 20.7 99.37

Table 2: Asymptotic DP performance [GFLOP/s] of
sparse test matrices and a large number of vectors with
a set of consecutive SpMVs (MKL CSR, cuSPARSE CSR,
cuSPARSE HYB, MAGMA SELL-P SpMV) and the re-
spective SpMM kernels. See Table 1 for the respective
matrix characteristics.

major data format. This typically results in significantly
higher performance [34]. As most algorithms require
column-major storage, and for a fair comparison to the
CPU implementation, the transposition operation is in-
cluded in the performance of those kernels. The CPU
runs are using the numactl --interleave=all policy,
which is well known to improve performance. The per-
formance obtained for the MKL routines is consistent
with benchmarks provided by Intel [2].

Depending on the matrix characteristics, the GPU SpMVs
are between 2 and 4× faster than MKL. This is expected
from the compute and bandwidth capabilities of the two
architectures. Comparing the performance of the GPU
kernels, the SELL-P kernel is the winner in 4 or 6 cases.
On the CPU, the MKL SpMM routine achieves abut 4.1×
better performance than the SpMV kernel. Similar im-
provements can be observed on the GPU: The perfor-
mance of the cuSPARSE SpMM kernel is 4.1× higher than
the CSR kernel, and 4.7× higher than the HYB ker-
nel; The MAGMA SpMM kernel achieves 4.8× better per-
formance than the SpMV kernel. Comparing CPU with
GPU, the cuSPARSE SpMM is on average 3× faster than
the MKL SpMM, however outperformed for all test matri-
ces by the developed SELL-P SpMM kernel, accelerating
the computation by factors between 2.5 and 5. With an
average speedup of 3.6 over the MKL, the SELL-P SpMM
performance typically exceeds 100 GFLOP/s.

LOBPCG GPU Performance: Finally, we want to
quantify how the developed SpMM improves the perfor-
mance of the LOBPCG GPU implementation. For this
purpose, we benchmark two versions of the LOBPCG
implementation, one using a set of consecutive SpMVs
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Figure 1: SELL-P memory layout and SpMM kernel including the reduction step using blocksize b = 4 (SELL-4), and
assignement of two threads to row (t = 2). Adding a z-dimension to the thread-block allows to process multiple vectors
simultaneously.

to generate the search directions, and one where we
integrate the developed SpMM kernel. Furthermore, we
compare against the multithreaded CPU implementa-
tion of LOBPCG provided by Andrew Knyazev in the
BLOPEX package [24]. As popular software libraries
like PETSc [9] and Hypre [18] provide interfaces to this
implementation [28], we may consider this code as the
state-of-the-art CPU implementation of LOBPCG. For
the benchmark results, we used the BLOPEX code via its
the Hypre interface. For optimal utilization of the Sandy
Bridge architecture, we enable hyperthreading and exe-
cute the eigensolver using 32 OpenMP threads.

The LOBPCG implementation in BLOPEX is matrix
free, i.e., the user is allowed to provide their choice of
SpMV/SpMM implementation. In these experiments we
use the Hypre interface to BLOPEX, linked with the
MKL library.

The convergence on the GPU is matching the BLOPEX
convergence. The number of operations executed in ev-
ery iteration of LOBPCG can be approximated by

2 · nnz · nv + 36 · n · n2
v (1)

where nnz denotes the number of nonzeros of the sparse
matrix, n the dimension and nv the number of eigenvec-
tors (equivalent to the number of columns in the tall-

and-skinny dense matrix). The left part of the sum
reflects the SpMM operation generating the Krylov vec-
tors, the right part contains the remaining operations
including the orthogonalization of the search directions.
Due to the n2

v term, we may expect the runtime to in-
crease superlinearly with the number of vectors, which
can be observed in Figure 2 where we visualize the time
needed to complete 100 iterations on the audi problem
using either the BLOPEX code via the Hypre interface
or the GPU implementation using either a sequence of
SpMVs or the SpMM kernel to generate the search direc-
tions. Comparing the results for the audi problem, we
are 1.3 and 1.2× faster when computing 32 and 48 eigen-
vectors, respectively, using the SpMM instead of the SpMV
in the GPU implementation of LOBPCG. Note that al-
though in this case the SpMM performance is about 5×
the SpMV performance, the overall improvement of cor-
respondingly 30% and 20% reflects that only 12.5% and
8.7% of the overall LOBPCG flops are in SpMVs for the
32 and 48 eigenvector problems, respectively (see equa-
tion (1) and the matrix specifications in Table 1). While
the BLOPEX implementation also shows some variances
for different numbers of vectors, the runtime pattern of
the GPU LOBPCG reflects the efficiency of the orthog-
onalization routines favoring cases where 16, 32, or 48
vectors are processed. This pattern is amplified when



replacing the consecutive SpMVs with the SpMM, as this
kernel also promotes certain column-counts of the tall
and skinny dense matrix.

To complete the performance analysis, we report in Fig-
ure 3 the speedup factors of the GPU LOBPCG vs. the
BLOPEX code via its Hypre interface. We observe that
as soon as 16 eigenvectors are needed, the GPU imple-
mentation using the consecutive SpMVs outperforms the
CPU by more than 5×, while for the SpMM-based algo-
rithm the acceleration is on average close to 8×. The 5×
speedup when using the consecutive SpMVs on the GPU
indicates that the Hypre interface to LOBPCG is not
blocking the SpMVs. Based on the kernels’ analysis, the
expectation is that an optimized CPU code (blocking the
SpMVs) would achieve about the same performance as the
GPU LOBPCG without blocking, which is about 3 to 5×
slower than the blocked version. Computing more vec-
tors reduces the fraction of SpMV flops to the total flops
(see equation (1)), and thus making the SpMV implemen-
tation less critical for the overall performance. The fact
that the speedup of the GPU vs. the CPU LOBPCG
continues to grow, reaching 20 and up to 35× for 48
vectors, shows that there are other missed optimization
opportunities in the CPU implementation. In particu-
lar, these are the GEMMs in assembling the matrix rep-
resentations for the local Rayleigh-Ritz minimizations,
and the orthogonalizations. These routines are highly
optimized in our GPU implementation, especially the
GEMMs, which due to the specific sizes of the matri-
ces involved – tall and skinny matrices A and B with a
small squere resulting matrices ATB – required modifi-
cations to the standard GEMM algorithm for large ma-
trices [33]. Benefits are in particular drawn from split-
ting the ATB GEMM into smaller GEMMs based on
tuning the MAGMA GEMM [33] for small sizes. The
execution is then grouped into a single batched GEMM,
followed by addition of the local results [43]. Based on
our performance analysis, the acceleration factor against
a similarly optimized CPU code would be in the range
of 2.5 to 5×.

SUMMARY AND OUTLOOK
We presented a heterogeneous CPU-GPU algorithm de-
sign for the LOBPCG eigensolver. The benefit of using
blocking routines like the LOBPCG is based on a more
efficient use of hardware. As opposed to running at the
low performance of a SpMV kernel, which is typical for
Krylov subspace methods, the presented LOBPCG runs
at the speed of a SpMM kernel designed for the SELL-P
format. On NVIDIA’s K40 GPU, this kernel outper-
forms Intel’s SpMM on two eight-core Intel Sandy Bridge
cores by 2.5 to 5×. Instead of the standard Krylov sub-
space methods’ memory-bound performance of 20 to 25
GFlop/s (in double precision on a K40), the LOBPCG
computes a small set of eigenstates at a typical rate of
100 to 140 GFlop/s. Our heterogeneous LOBPCG out-
performed the Hypre interface of the BLOPEX CPU im-
plementation by more than an order of magnitude when
computing a small set of eigenstates. This reveals that
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Figure 2: Runtime to complete 100 iterations on the
audi problem using either the BLOPEX code via the
Hypre interface or the GPU implementation using either
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search directions.
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even for multicore CPUs, where the HPC software stack
is considered to be better established than the HPC soft-
ware stack for the more recent GPU architectures, there
are many missed optimization opportunities. The devel-
oped SpMM routine, the specific GEMMs, and orthogo-
nalizations, serve as key building blocks not only block-
Krylov, but also for other methods that rely on blocking
strategies. Hence, the kernel design and findings pre-
sented in this paper may be used to accelerate other
methods in a similar fashion.
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