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Abstract—In this paper we accelerate the Alternating Least
Squares (ALS) algorithm used for generating product recommen-
dations on the basis of implicit feedback datasets. We approach
the algorithm with concepts proven to be successful in High
Performance Computing. This includes the formulation of the
algorithm as a mix of cache-optimized algorithm-specific kernels
and standard BLAS routines, acceleration via graphics processing
units (GPUs), use of parallel batched kernels, and autotuning
to identify performance winners. For benchmark datasets, the
multi-threaded CPU implementation we propose achieves more
than a 10 times speedup over the implementations available in
the GraphLab and Spark MLlib software packages. For the
GPU implementation, the parameters of an algorithm-specific
kernel were optimized using a comprehensive autotuning sweep.
This results in an additional 2 times speedup over our CPU
implementation.

Index Terms—Collaborative Filtering; Alternating Least
Squares; GPUs; Autotuning; Batched Cholesky

I. INTRODUCTION

The growing popularity of web-based services such as
movie databases and online retailers raises the problem of how
customers can easily find products fitting their preferences. As
addressing this challenge is one of the key factors determining
the success of an online service, significant effort has been
spent on developing recommendation systems [1], [2], [3],
[4] that provide personalized product suggestions to a specific
user. There exist several strategies of how these recommenda-
tions are generated. Content-based recommendation systems
require a profile for each user and each product containing
information like age, gender, and nationality of users; and
genre, size, and color of items. Matching algorithms then asso-
ciate customers with products. Though typically very accurate,
an obvious drawback of this recommendation strategy is that
collecting data requires explicitly populating the database with
profiles. For this reason, much attention has been drawn to
content-free recommendation systems that rely on only past
user behavior, without requiring the creation of user or product
profiles [4]. Content-free recommendation systems based on
the Collaborative Filtering (CF) approach [2], [5] harvest
information collected by a large number of former users to
suggest certain products to a specific customer. Typical appli-
cations are web-based music or movie services like Yahoo [6]
or Netflix [7]. Content-free recommendation systems can be
categorized into two subgroups that differ in the way the data is

collected. Explicit feedback systems collect customer ratings,
such as star ratings or thumbs up/down as a numerical value.
Implicit feedback systems exclusively monitor users’ behavior.
This can be the purchase or browsing history, search patterns,
or even mouse movements [4]. For this type of collaborative
filtering, Hu et al. recently proposed [4] a new algorithm
that allows for the efficient recommendation generation with
a high matching accuracy, reviewed in Section II. As we are
convinced of its high significance, we propose in this paper
multi-core CPU and GPU implementations for the suggested
algorithm that are able to exploit the computing power of
state-of-the-art processors and accelerators. We compare per-
formance with the open source implementations available in
Mahout [8], GraphLab [9], and Spark MLlib [?], [?], and
report significant speedups for selected benchmark datasets.

II. COLLABORATIVE FILTERING

CF algorithms are based on observation data stored in
a relation matrix, R. For explicit feedback, the value rui
indicates how a user u rated item i. For implicit feedback,
the value rui represents the observation value for this user-
item combination. This can be the number of website visits,
amount of time spent watching this item, or the number of
times the customer purchased this product. An obvious result
of these strategies is that most rui entries are zero. However,
only the non-zero values provide useful information, as a value
may be zero for very different reasons: the user may dislike
a product, or may just not be aware of it. To account for the
low confidence in the missing data, Hu et al. propose [4] the
use of binary values,

pui =

{
1 if rui > 0,

0 if rui = 0,

to indicate whether a user u has a preference for item i. But
also the observations rui may carry some noise, as a user may
stay on a webpage because he left the computer, or purchase an
item for a friend—despite not liking it for himself. In general,
however, larger values of rui indicate stronger preference. A
workaround to account for this uncertainty in the values rui >
0 is to introduce a matrix C with entries cui that measure the
confidence of the observation pui via

cui = 1 + αrui.



With increasing α reflecting more confidence, experiments
have revealed α = 40 provides good results [4]. The algorithm
now tries to find a vector xu for each user u and a vector yi for
each product i that reflects the user preferences. These vectors
xu and yi are of length f , representing the feature space
size. In some sense, f represents the number of categories
into which users and items will be grouped. However, these
categories are implicit, without any explicit, a priori meaning
assigned to each category. The feature space size f is typically
small compared to the number of users and items, e.g., from
10 to 100, depending on the application. The user-factors
xu and item-factors yi are computed such that their inner
product approximates in a least-squares sense the preference
pui correlating user u to item i,

xTu yi ≈ pui.

The factors xu and yi can be computed by minimizing the
cost function

min
x∗,y∗

∑
u,i

cui
(
pui − xTu yi

)2
+ λ

(∑
u

‖xu‖2 +
∑
i

‖yi‖2
)
.

(1)

For m users and n products, the above sum contains mn
terms, which can for a real-world application quickly exceed a
few billion [4]. This huge number prohibits the efficient use of
techniques like stochastic gradient descent, which motivated
Hu et al. to derive a different optimization technique based
on the observation that if either the user-factors or the item-
factors are fixed, the cost function becomes quadratic, so an
alternating least square (ALS) algorithm can be used to solve
the problem, as outlined in Figure 1. In the first step, the user-
factors are updated for fixed item-factors. For this purpose,
let Y be a wide f × n matrix of all item-factors, with each
yi being one column. Furthermore, for each u, let Cu be an
n × n diagonal matrix, with diagonal entries from row u of
C, such that cuii = cui, as depicted in Figure 2. Let pu be
a vector containing all the preferences of u (the pui values).
Differentiating the cost function (1) allows us to express the
minimum for the user-factor as

xu =
(
Y CuY T + λI

)−1
Y Cupu. (2)

This step is repeated for all users, i.e., m times. The resulting
user-factors are gathered in a wide f×m matrix X , with each
xu being one column.

In the next step, the item-factors are updated in a similar
fashion: using the diagonal m ×m matrix Ci, with diagonal
entries from column i of C, such that ciuu = cui, and the
vector pi, the minimum item-factor for fixed user-factors is
given as

yi =
(
XCiXT + λI

)−1
XCipi. (3)

This step is repeated for all items, i.e., n times. After this
computation, the updated item-factors are gathered in the
f × n matrix Y , and the user-factors can be updated again.

function ALS( input: α, λ,R; output: X,Y )
set Y to random initial guess
while not converged

// update user-factors X
for u = 1, . . . ,m

solve
(
Y CuY T + λI

)
xu = Y Cupu for xu

end
// update item-factors Y
for i = 1, . . . , n

solve
(
XCiXT + λI

)
yi = XCipi for yi

end
check for convergence

end
end function

Fig. 1. Pseudocode of alternating least square algorithm iterating user-factors
and item-factors.

Au
f × f

=

Ai
f × f =

for users u = 1, ..., m

for items i = 1, ..., n

m
  u

se
rs

n  items

Ri

m × m

Ru

n × n

R

Y
f × n

YT

n × f + YYT + λ I

X
f × m

XT

m × f + XXT + λ I

Fig. 2. Diagram of computation of user-factors and item-factors. R is general
sparse, Ru and Ri are sparse diagonal, X,Y,Au, Ai are dense.

Alternating between these two steps minimizes the cost func-
tion. Experiments have shown that the user- and item-factors
typically converge after a few iterations [4].

The two steps, updating the user-factors and the item-
factors, are identical except for swapping the input and output
matrices. Therefore, in the remainder of the paper we will
focus on updating the user-factors, and the item-factors will
follow similarly.

For computational efficiency, the product can be factored as

Y CuY T = Y Y T + αY RuY T ,

where Ru is a sparse diagonal matrix with entries ruii = rui
from row u of R. As Y Y T is the same for all users, it can be
computed once per iteration [4]. This yields a dense rank-k
update for Y Y T , which is efficiently implemented in the syrk
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Fig. 3. Schematic of A = Y RuY T . Dark boxes represent non-zeros in row
ru. Only corresponding columns of Y and rows of Y T contribute to A.

(symmetric rank-k update) BLAS routine. The remaining term,
αY RuY T , involves a dense matrix Y and the sparse diagonal
matrix Ru, which will require a custom kernel to implement.

With the very mild assumption that Y is full rank, i.e., has
f linearly independent rows, the product Y Y T is symmetric
positive definite (SPD). Assuming Ru contains only non-
negative implicit feedback data like webpage hits or ratings,
and α, λ ≥ 0, the entire term Y Y T + αY RuY T + λI will be
SPD, allowing us to solve it with the Cholesky factorization.

III. CPU IMPLEMENTATION

In the product Y RuY T , the sparse diagonal matrix Ru can
be seen as selecting a few columns of Y , plus scaling columns,
as shown in Figure 3. Columns of Y corresponding to zeros in
Ru can be ignored. As k, the number of non-zeros in Ru, is
typically much less than n, the number of columns of Y (see
Figure 12), the kernel should take advantage of this sparsity.
This reduces the cost from a rank-n update to a rank-k update,
with k � n.

For instance, with the Million Song dataset, described in
Section VI, and f = 64, the problem is to generate and
solve m = 1019318 systems, each formed by a 64 × 64
rank-k update, with the average k = 126. There is not
enough parallelism in a single system for an efficient multi-
core implementation. Instead, we do a batched implementation
that generates and solves the m systems in parallel. For this,
we use OpenMP to parallelize the loops in Figure 4. The
ALS CORE routine solves each user-factor xu and item-factor
yi, and runs single-threaded within each OpenMP thread.

A simple, Level 2 BLAS implementation of ALS CORE is
shown in Figure 5. This loops over the non-zeros in each
row u of R, accumulating outer products, A += rukyky

T
k .

The right-hand side b is also computed at the same time, to
optimize cache reuse of yk. Each outer product does O(n2)
work on O(n2) data, leading to a memory-bound algorithm.

Better efficiency can be attained by relying on optimized
Level 3 BLAS routines, as shown in Figure 6. Level 3 BLAS
routines operate on matrices instead of individual vectors,

function ALS( input: R; output: X,Y )
set Y to random initial guess
while not converged

// update user-factors X
set BLAS to multi threaded
Z = Y Y T using syrk BLAS
set BLAS to single threaded
parallel for u = 1, ...,m

ALS CORE( ru,:, Y, Z, xu )
to solve (Y CuY T + λI)xu = Y Cupu

end
// update item-factors Y
set BLAS to multi threaded
Z = XXT using syrk BLAS
set BLAS to single threaded
parallel for i = 1, ..., n

ALS CORE( r:,i, X, Z, yi )
to solve (XCiXT + λI)yi = XCipi

end
check for convergence

end
end function

Fig. 4. Multi-core CPU ALS algorithm.

function ALS CORE( input: ru,:, Y, Z; output: x )
// A, b are local workspaces
A = 0
b = 0
for k = column indices of non-zeros in row ru,:

A += rukyky
T
k

b += (1 + αruk)yk
end
A = Z + αA+ λI
solve Ax = b for x using Cholesky

end function

Fig. 5. CPU kernel to update one user-factor x, Level 2 BLAS implementa-
tion.

function ALS CORE( input: ru,:, Y, Z; output: x )
// A, b, V, W are local workspaces
b = 0
j = 1
for k = column indices of non-zeros in row ru,:

// copy relevant columns of Y to V and W
vj = rukyk
wj = yk
b += (1 + αruk)yk
j += 1

end
A = Z + αVWT + λI using gemm or syrk BLAS
solve Ax = b for x using Cholesky

end function

Fig. 6. CPU kernel to update one user-factor x, Level 3 BLAS implementa-
tion.



enabling data reuse and optimizations for cache efficiency, im-
proving performance to be compute-bound instead of memory-
bound. To use Level 3 BLAS, we copy the relevant columns of
Y to workspaces V and W , with the column scaling included
in V , then use a gemm (general matrix-matrix multiply) BLAS
call. If all non-zero entries of R are 1, as might be the case for
a thumbs-up/down rating, then V = W , so instead of gemm
we can use a syrk BLAS call, which computes only the lower
triangle of the symmetric matrix A, reducing work by half.

Updating the item-factors is exactly the same, except it uses
columns of R instead of rows of R. For updating the user-
factors, we store R in CSR (compressed sparse row) format,
which gives efficient, contiguous access to each row of R,
but slow access to columns of R. For efficiency in updating
the item-factors, we also store R in CSC (compressed sparse
column) format, which gives efficient, contiguous access to
each column of R.

Because the number of non-zeros per row can vary
significantly (see Figure 12), there will be a load
imbalance between different processors. This is easily
solved by using the OpenMP dynamic scheduler, adding
schedule(dynamic,NB), with a block size NB. We set
NB = 200, but performance is not sensitive to the exact value.

IV. GPU ARCHITECTURE

Before describing our GPU implementation in Section V,
we will briefly review relevant aspects of the GPU architec-
ture that dictate algorithmic choices. The two most promi-
nent features of GPUs are the Single Instruction Multiple
Thread (SIMT) architecture and the memory model.

A GPU computation is divided into a 1D, 2D, or 3D grid of
thread blocks. Thread blocks execute independently; there is
not an easy method to synchronize or exchange data between
thread blocks. A thread block is further organized as a 1D,
2D, or 3D grid of threads. These threads are not independent,
but in SIMT fashion must follow the same execution path
in lock-step, possibly with some threads disabled to handle
conditionals. Within a thread block, threads can synchronize
and exchange data via shared memory. Specific hardware
features (e.g., warps and coalesced reads) affect performance
and so determine optimal configurations of thread blocks.

Figure 7 shows the hardware architecture of NVIDIA GPUs.
The basic execution unit is a CUDA core, which executes a
single floating point operation per cycle. Cores are organized
into multiprocessors. Each thread block is assigned to a multi-
processor, and each multiprocessor can execute multiple thread
blocks. A thread block is executed in sets of 32 threads, called
a warp. In the Kepler architecture, a multiprocessor contains
192 cores, and the GPU contains up to 15 multiprocessors,
for a total of 2880 cores. The Kepler multiprocessor also
contains a large register file of 65,536 32-bit registers, and
64 KB of fast memory that serves as L1 cache and shared
memory. Shared memory is a type of memory specific to
GPUs, introduced to allow for exchanging data among cores.
Conceptually, it is more an extension of the register file than
a cache. A thread block statically allocates arrays in shared

Fig. 7. Architecture of NVIDIA GPUs.

memory, which are then accessible by all threads in the thread
block.

The fastest memory in the multiprocessor is the register file.
Registers are partitioned among threads and each thread has
a private set of registers. The second fastest memory is the
shared memory and L1 cache. The slowest memory in the
system is main GPU memory in DRAM. Reads from DRAM
pass through the L2 cache and either the L1 cache or read-only
data cache. DRAM bandwidth is a precious commodity for
batched matrix operations, which are very close to being
memory bound.

V. GPU IMPLEMENTATION

Due to the GPU architecture, the GPU implementation,
shown in Figure 8, is structured differently than the CPU
implementation in Figure 4. Multiple thread blocks work to
compute each matrix Au, after which each matrix can be
solved. As with the CPU implementation, a single system
has insufficient parallelism to fill the GPU. Therefore, to
fully occupy all of the GPU’s cores, we use a batched
implementation, where a single GPU kernel generates a batch
of Au matrices using the BATCHED SPARSE SYRK routine,
then a batched Cholesky routine factors them, and finally
batched triangular solvers solve the resulting systems. We use
the batched Cholesky and triangular solves from the BEAST
open source package [10].

The implementation of the BATCHED SPARSE SYRK GPU
kernel is given in Figure 9 and shown schematically in
Figure 10. A 3D grid of thread blocks is used. One dimension
covers the batch of s systems to be formed, A1, . . . , As. The
memory requirement is O(fm + fn + sf2 + z), where z is
the number of non-zeros in R. To minimize the memory used,
we use a modest batch size of s = 4096 systems, rather than
launching a single batch of s = m systems. The other two grid
dimensions divide each Au matrix into an dn/nbe × dn/nbe
grid of tiles of size nb× nb (light orange in Figure 10). Each
tile will be handled by one thread block on the GPU.



function ALS GPU( input: R; output: X,Y )
// workspaces: A is f × f × s, B is f × s
set Y to random initial guess
while not converged

// update user-factors X
Z = Y Y T

for u = 1, . . . ,m by batch size s
BATCHED SPARSE SYRK( u, R, Y, Z, A, B )

to compute Aj = (Y CjY T + λI)
and bj = CjY pj for j = u, . . . , u+ s

BATCHED CHOLESKY( A )
to factor Aj for j = u, . . . , u+ s

BATCHED SOLVE( A, B, xu:u+s )
to solve Ajxj = bj for j = u, . . . , u+ s

end
// update item-factors Y
Z = XXT

for i = 1, . . . , n by batch size s
BATCHED SPARSE SYRK( i, R, X, Z, A, B )

to compute Aj = (XCjXT + λI)
and bj = CjXpj for j = i, . . . , i+ s

BATCHED CHOLESKY( A )
to factor Aj for j = i, . . . , i+ s

BATCHED SOLVE( A, B, yi:i+s )
to solve Ajyj = bj for j = i, . . . , i+ s

end
check for convergence

end
end function

Fig. 8. GPU implementation of ALS, using batched operations.

Each tile is further subdivided into sub-tiles of size dx×dy
(dark orange), corresponding to the thread dimensions of the
thread block, i.e., each thread block has dx× dy threads. We
require that dx and dy both evenly divide nb. Each thread is
responsible for (nb/dx)×(nb/dy) entries in the output matrix
A. In Figure 10, each thread computes 6 entries, one in each
sub-tile of rA. Intermediate values are stored in registers in
rA; at the end, the final sum is saved back to main GPU
memory in A.

The algorithm proceeds by loading kb non-zero values of ru
and their column indices. For off-diagonal blocks, an nb× kb
portion of Y is loaded into shared memory in sY (blue in
Figure 10) from the kb columns corresponding to non-zero
values in ru. Likewise, a kb×nb portion of Y T is loaded into
shared memory in sY T (red). The shared memory matrices sY
and sY T are also sub-tiled by the dx× dy thread block, and
we further required that dy evenly divides kb. After loading,
all the threads synchronize to ensure that data loads have
completed. Then each thread loops over the kb columns in
sY and sY T , performing a rank-1 outer-product update of
rA for each pair of columns. This is repeated, loading the
next kb non-zero values of ru, until the entire row has been
processed. Finally, the results are saved from rA in registers

function BATCHED SPARSE SYRK( input: u,R, Y ; output:
A,B )

// has df/nbe × df/nbe × (batch size s) thread blocks
// rA is (nb/dx)× (nb/dy) registers per thread
// sY is nb× kb elements, shared
// sY T is nb× kb elements, shared
// sR is kb elements, shared
(bx, by, bz) = thread block indices
rA = 0
j = u+ bz
for p = R.rowptr[j], . . . , R.rowptr[j + 1] by step kb

load sR = R.values[p : p+ kb]
load cols = R.colind[p : p+ kb]
load sY = Y [bx ∗ nb : (bx+ 1) ∗ nb, cols]
load sY T = Y [by ∗ nb : (by + 1) ∗ nb, cols]
synchronize threads
for k = 0, . . . , kb− 1

rA[0 :nb, 0:nb] += sR[k]∗sY [:, k]∗sY T [:, k]T
end
synchronize threads

end
save rA to (bx, by) tile of Aj

end function

Fig. 9. Batched sparse-syrk GPU kernel. Operations have implicit inner loops
for sub-tiling the given ranges by dx × dy threads, which are omitted for
simplicity.
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Fig. 10. Schematic of sparse-syrk GPU kernel.



Dataset # users # items # edges
rec-eachmovie 1,623 61,265 2,811,717
Million Song Dataset 1,019,318 384,546 48,373,586
Netflix Challenge 480,190 17,771 100,480,508
Yahoo! Song Dataset 130,558 136,736 49,770,695

TABLE I
DATASET PROPERTIES

to A in main GPU memory.
For diagonal blocks, a similar procedure is followed, with

two changes. The portion that would be loaded into sY T is
identical to sY , so loading sY T can be skipped. Also, only the
lower triangle needs to be saved, as shown in gray in Figure 10.
The upper triangle is known implicitly by symmetry. The
diagonal blocks also accumulate the right hand side, bj .

A few optimizations can be made. Only the tiles on or
below the diagonal need to be computed; tiles above the
diagonal are known by symmetry. Also, since matrix Y is
read-only, it is beneficial to bind its memory to GPU texture
memory, which has optimized caching for read-only data.
Texture memory also simplifies the code by dealing with out-
of-bounds memory accesses in hardware—the software can
pretend that Y is bigger than it actually is. This allows for
fixed loop bounds and eliminates cleanup code, enabling more
compiler optimizations. When saving data from rA to A at the
end, bounds are checked so no invalid data is written back to
memory.

VI. IMPLICIT FEEDBACK DATASETS

We use different recommendation datasets to ensure correct
convergence and to compare the performance of the developed
CPU and GPU implementation to the reference implementa-
tions that are part of popular software packages used for data
analytics.

In the runtime comparisons, we target the Million Song
Dataset [11], the Netflix Challenge Dataset [12], [7], and
the Yahoo! Song Dataset [6]. To identify a good parameter
configuration for the GPU implementation, we employ an
autotuning sweep using the BEAST framework [13]. For this
purpose, we choose rec-eachmovie, a significantly smaller
dataset that allows for executing a comprehensive set of
kernel configurations in a moderate runtime. Like the Netflix
Challenge, it contains data connecting users to movies [14].
All datasets are listed along with some key properties in
Table I.

For the Million Song Dataset, we visualize in Figure 11
the nonzero pattern of the first 2000 rows of the adjacency
matrix. Although this is only a small portion of the data, it
already allows us to identify some typical characteristics in
the sparsity pattern:

• For all users u and items i with i > u, ru,i = 0.
• There exist some users who have listened to a lot songs

(many entries in one row) and others who have listened
to only few (few entries in a row). This results in a
structure of horizontal lines. Furthermore, for users who
have listened to many songs, there is a high chance that

Fig. 11. Sparsity structure of subset of Million Song Dataset.

they have also listened to songs that none of the previous
users have listened to before.

• There exist popular songs (many entries in a column) and
unpopular songs (few entries in a column). This gives the
vertical stripes in the sparsity plot.

• For a popular song, chances are low that a user with a
high ID is the first who has listened to it. Therefore, there
is a tendency for the columns to become less dense when
going from left to right.

For all target databases, we visualize in Figure 12 the
nonzero distribution. Each bar of the histograms represents the
number of rows (left-hand plot) or columns (right-hand plot)
with a certain number of nonzeros. The minimum, median,
mean, and maximum number of nonzeros per row and column
are annotated in each graph. As previously noted, the wide
range of nonzeros per row and column means different users
and items incur widely different costs in computing Y CuY T

and XCiXT , potentially leading to load imbalance.

VII. HARDWARE AND SOFTWARE SETUP

For comparison, we chose three ALS implementations from
data analytics software stacks: Mahout (version 0.9) [8], [15]
GraphLab (version 1.3) [9], [16], [17], and Spark MLlib
(version 1.5) [?]. All these software packages support multi-
threading and are popular in data analytics.

The runtime results for our developed CPU implementation,
Mahout, GraphLab, and Spark MLlib were obtained on a two-
socket Intel Sandy Bridge Xeon E5-2670 running at 2.6 GHz,
featuring 8 cores in each socket, with a theoretical peak of
666 Gflop/s in single precision and 333 Gflop/s in double
precision. The system has 64 GB of main memory that
can be accessed at a theoretical bandwidth of 51 GB/s. All
CPU implementations were linked against Intel’s Math Kernel
Library (MKL) version 11.1.2 [18].

GPU results are on an NVIDIA Kepler K40c with 15
multiprocessors, each containing 192 CUDA cores. The the-
oretical peak floating point performance is 4,290 Gflop/s in
single precision and 1,682 Gflop/s in double precision. On
the GPU, 12 GB of main memory can be accessed at a
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Fig. 12. Nonzero distribution of rows (top) and columns (bottom) of target datasets.

theoretical bandwidth of 288 GB/s. The implementation of
all GPU kernels is realized in CUDA version 7.0 [19].

VIII. AUTO TUNING

The optimal parameters for the sparse-syrk GPU kernel are
not obvious and not easy to derive by an analytical formula.
Therefore the factorization calls for a real autotuning sweep.
To achieve high performance, classic heuristic automatic soft-
ware tuning methodology is applied, where a large number of
kernels are generated and run, and the fastest ones identified.
Different values are possible for the tile size nb, block size
kb, and thread block dimensions dx and dy. The kernel is
generalized so that any value of nb can be used for any feature
space size f .

The BEAST autotuning framework enumerates and tests all
possible kernel configurations. Various constraints are applied
to limit the search space. Correctness constraints include that
nb is divisible by dx and dy, and that kb is divisible by dy.
These ensure that sub-tiles exactly cover the matrix tile. Addi-
tional constraints include hardware limits: maximum threads
per thread block, maximum registers per thread, maximum
registers per thread block, and maximum shared memory per
thread block. Configurations violating those constraints would
either not compile or not run correctly.

To further eliminate kernels that are unlikely to perform
well, we also applied several soft constraints. These include:
thread block size is a multiple of the warp size, ratio of load
instructions to multiply-add instructions is not below a thresh-
old (0.5), and the number of threads that can be scheduled
on each multiprocessor (occupancy) is not below a threshold
(512). While kernels that violate these soft constraints will run
correctly, they will not keep the GPU fully occupied, leading
to lower performance.

After applying these constraints, BEAST generated 330
kernel configurations to test. The kernels were tested on the

modest sized rec-eachmovie dataset, timing the sparse-syrk for
both the user-factor and the item-factor matrix generation. Due
to differences in the size of Y and X and the sparsity of Ru

and Ri, the performance was not identical between these two.
We ran tests for sizes of f that are multiples of 8 and multiples
of 10, from 8 to 100.

The performance of all these kernels is plotted in gray in
Figure 13. Kernels that were best for some size are highlighted
with colored markers. For each size f , the circled kernel
was chosen as the best overall kernel, having the highest
geometric mean performance between the user-factor and the
item-factor performance. Configurations are specified by a
tuple (nb, kb, dx, dy).

Inspecting the data reveals that no one kernel was optimal
across all feature space sizes. Taking the yellow diamond
(80, 8, 16, 16) kernel as an example: for small f it is a poor
performer, but the performance increases as f increases, until
it is the best kernel for f = 80, where f = nb. For the next
size, f = 88, its performance plummets to less than half the
optimal performance. This occurs because it goes from one
tile to four tiles covering each matrix A, wasting three large
tiles to cover the extra 8 rows and columns. This saw tooth
pattern is evident for all the configurations.

While often the best kernel for user-factors (left in Fig-
ure 13) and item-factors (right) is the same, there are several
instances where this is not true. At f = 48, the blue diamond
(48, 8, 16, 16) is best for user-factors, but the red diamond
(48, 8, 8, 16) is best for item-factors. The red diamond is cho-
sen as best overall, but loses 12% of the optimal performance
for user-factors. In a couple instances, the best overall kernel
is not the best for either user-factors or item-factors, but the
best compromise between the two. At k = 32, the green
circle (32, 8, 16, 16) is chosen instead of the top performers,
the yellow circle (32, 8, 32, 16) and red circle (32, 8, 8, 8).
While the performance does depend on the sparsity pattern—
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Fig. 13. Performance of all kernels (gray lines), highlighting ones that are best for some size. Circled kernel is chosen as best for each size.

and therefore on the dataset—none of the chosen kernels
performed poorly in either case, losing at most 22% of the
optimal performance.

This analysis highlights the need for autotuning. The per-
formance difference between the best and worst kernels is
dramatic—between a factor of 6 and 72 times for a particular
f . Also, the optimal kernel configuration depends heavily on
the size f , and to a lesser extent on the actual dataset. While
some kernel configurations make sense in retrospect, such as
nb = 80 for f = 80, it was infeasible to predict optimal
kernels in all cases.

IX. PERFORMANCE EVALUATION

We first ran performance scaling studies of the ALS al-
gorithm in the Mahout, GraphLab, and Spark reference im-
plementations to ensure correct usage. Figure 14 shows time
vs. number of cores for the rec-eachmovie dataset with feature
space size f = 96 in log-log scale. Perfect linear scaling would
be a straight line, as shown by the dashed lines. This was a
small enough dataset that running a complete parallel scaling
study was feasible; however, due to its small size, we would
not expect linear scaling.

Mahout scales well, achieving slightly super-linear parallel
speedup (usually due to a larger combined cache on multiple
cores), with 18.3 times parallel speedup on 16 cores over its
single core performance. GraphLab scales reasonably well for
this small problem, achieving 9.6 times parallel speedup on 16
cores. Spark exhibited worse scaling, with a 6.9 times parallel
speedup on 16 cores.

Our own CPU implementation scales nearly linearly up to
4 cores, then loses some parallel efficiency for more cores,
achieving 8.3 times speedup on 16 cores. For the larger
datasets shown in Figure 15, it achieves better efficiency, up
to 14.1 times parallel speedup for the Netflix dataset. Similar
parallel speedups are achieved for different feature space sizes,
ranging from 11.5 to 14.6 times on 16 cores.
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Fig. 14. Parallel scaling in log-log scale for rec-eachmovie dataset with f =
96.
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Fig. 15. Parallel speedup of CPU implementation for f = 64.
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The large performance difference between implementations
is evident in the parallel scaling. Mahout is nearly two orders-
of-magnitude slower than GraphLab and Spark. This is not
surprising, as Mahout is written in Java while GraphLab is a
newer implementation written in C++. Spark, while written in
Scala/Java, links with native optimized BLAS to achieve good
performance. GraphLab is an order-of-magnitude slower than
our CPU implementation, while for this small problem size,
Spark is 2 to 3 times faster than GraphLab, and 4 to 5 times
slower than our CPU implementation.

For the three large benchmark databases—Netflix, Million
Song, and Yahoo! Song—execution time for a single ALS
iteration (updating user-factors and item-factors once) is pre-
sented in Figure 16, in both log and linear scale. This covers
a range of feature space sizes, all using 16 cores or the
GPU. As it was clear that Mahout was a slow performer, we
did not do a complete sweep of its sizes. With these larger
datasets, Spark is slower than GraphLab for small f . For larger
f ≥ 50 with the Yahoo! Song and Netflix datasets, Spark
had performance comparable to GraphLab. However, with
the Million Song dataset, the Spark execution time increased
markedly for f ≥ 50, and it encountered an exception for
f ≥ 80.

Examining our GPU performance in detail, there are a few
notable plateaus that occur from f = 10 to 16, from f = 40 to
48, and from f = 50 to 64. All these ranges end at multiples
of 16, which are sizes that often do well on GPU hardware due
to matching the size of warps and coalesced reads (a kind of
vector load). Nonetheless, performance remains good across a
variety of sizes.

The speedup of our GPU implementation over Mahout,
GraphLab, Spark, and our CPU implementation is given in
Figure 17. The GPU achieves between 1.2 and 2.9 times
speedup, with average 2.1 times, over our CPU implemen-
tation. Compared to GraphLab, the GPU achieves from 11.5
to 29.9 times speedup, with an average of 20.9. Compared to
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Fig. 17. Speedup in log scale of GPU implementation over Mahout,
GraphLab, Spark, and CPU implementations using 16 cores.

Spark, it achieves from 12.6 to 74.9 times speedup, with an
average of 35.3. Mahout performs poorly, taking 1684 times
longer, on average, to compute a single ALS iteration.

While speedups are similar across datasets, our GPU imple-
mentation consistently gets the best speedups for the Netflix
dataset and the least speedups for the Million Song dataset.
This may be because the Million Song dataset has the smallest
average nonzeros-per-row and nonzeros-per-column, with a
mean of 47 nonzeros per row and 126 per column, compared
to 209 and 5654 for the Netflix dataset (Figure 12). Having
more nonzeros means a higher floating point operation count
in the sparse-syrk routine to amortize memory reads.

X. CONCLUSION

In this paper, we have proposed a multi-core CPU and a
GPU implementation for the alternating least-squares algo-
rithm to compute recommendations based on implicit feedback
datasets. One central feature of the developed implementa-
tion is sparse syrk, an algorithm-specific kernel achieving



compute-bound performance for the multiplication of two
dense matrices scaled by a sparse diagonal matrix. Further-
more, we proposed to reorder the sequential system generation
and system solve into a batched system generation and a
batched solve, to compute many systems simultaneously. We
attain good performance over several different datasets and
a range of feature space sizes. Our CPU implementation
achieves speedups of 10.0 times over GraphLab and 19.0 times
over Spark MLlib, while our GPU implementation achieves
speedups of 20.9 times over GraphLab and 35.3 times over
Spark MLlib.
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