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SUMMARY

In this paper, we report extensive results and analysis of autotuning the computationally intensive graphics
processing units kernel for dense matrix–matrix multiplication in double precision. In contrast to tradi-
tional autotuning and/or optimization for runtime performance only, we also take the energy efficiency into
account. For kernels achieving equal performance, we show significant differences in their energy balance.
We also identify the memory throughput as the most influential metric that trades off performance and energy
efficiency. As a result, the performance optimal case ends up not being the most efficient kernel in overall
resource use. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For the longest time, runtime performance was the sole metric of interest in high performance com-
puting (HPC). The popularity of this metric is reflected in the longevity of the High Performance
LINPACK benchmark (HPL) [1], which serves as the basis for the TOP500 list [2] that ranks the
supercomputing installations. In particular, the LINPACK number is the performance achieved when
solving a large dense system of linear equations via the LU factorization, a compute-bound oper-
ation that is known to deliver a floating-point operations per second (FLOP/s) rate close to that of
the dense matrix–matrix product (DGEMM), and therefore the theoretical peak performance of the
underlying platform. A consequence of supercomputers growing not only in floating-point perfor-
mance but also in size and core count is a significant increase in power consumption. Current HPC
facilities used for scientific applications typically require multiple megawatts (MW) of power for
operation. Power usage of 1 MW a year costs roughly $1 million USD, which means that energy has
become a significant portion of the cost to acquire, maintain, and operate a large-scale supercom-
puter. As a result, the energy needs of HPC systems have become a constraint for both hardware and
software design‡.

Hardware manufacturers responded with the development of low-power processors and the inte-
gration of manycore accelerators like graphics processing units (GPUs), which traditionally achieve
high performance per Watt ratios [3]. For the software stack, dynamic voltage and frequency scaling
[4] allows for trading lower power consumption for an extended runtime. This technique particularly
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pays off for memory-bound operations where the computing cores idle while waiting for data.
To this end, significant research has focused on improving the energy balance of sparse linear
algebra routines that are traditionally limited by the memory bandwidth [3]. At the other end of
the spectrum, dense linear algebra operations are traditionally expected to provide the best resource
efficiency at the fastest execution (race-to-idle).

In our autotuning work and HPC code design, we follow two particular examples of succesful
open-source solutions for very efficient matrix–matrix multiplication. One was done by Volkov et al.
[5] and the other was done by Nath et al. [6, 7]. These efforts showed how it was possible to discover
the unknown parameters of the GPU hardware and autotune the kernels of interest accordingly.
Sadly, the era of autotuning based on open-source software and using openly available information
has ended with the introduction of highly optimized codes inside NVIDIA’s cuBLAS library that
use assembly instructions and binary codes not available to a regular user [8, Section 5].

For manycore accelerators, running at a fixed voltage-frequency setting, tuning for energy effi-
ciency is mostly considered to be equivalent to performance tuning. In this paper, we will show that
tuning for performance is not equivalent to tuning for energy, even in the case of dense linear alge-
bra applications. The investigation will focus on NVIDIA GPUs executing the dense matrix-matrix
product in double precision (DGEMM), often considered the most basic dense linear algebra routine.
We generate a large set of DGEMM kernels using the Bench-testing Environment for Automated
Software Tuning (BEAST) [9] autotuner and analyze their performance and energy characteristics.
The data reveal that several kernels may perform at the same level but produce a wide variety of
energy efficiency results. We explore kernel performance, energy efficiency, and relate to several
GPU metrics to identify dependencies. Also, we demonstrate that energy-efficient kernels are not
always the fastest kernels as one may assume.

The rest of the paper is structured as follows: in the remainder of this section, we provide a brief
review about existing work in the fields of energy analysis, resource-efficient hardware, and auto-
tuning. We then describe in Section 2 the BEAST autotuning framework and the search space and
filters that we apply to generate the set of DGEMM kernels we based this paper on. We also intro-
duce the hardware platform with its energy measurement capabilities, and the analysis methodology
we follow to guarantee a high accuracy and reproducibility of the results. The main experimental
contribution of the paper is Section 3, where we report the experimental results, identify relevant
GPU metrics, and analyze the data for dependencies and tradeoffs. We conclude in Section 4 with a
short summary of the findings and list future research directions.

1.1. Energy analysis on high performance computing systems

Monitoring power and energy consumption of an application executed on a specific computing
platform can be a complicated and tedious process. This problem is exacerbated by the size and
complexity of modern HPC systems. The simplest, but very coarse-grained, method is to monitor
power between the power outlet and the system and to subtract the idle power to get the application’s
energy usage. However, this method does not account for alternating current/direct current (AC/DC)
loss, increasing fan-speed when heating up, and may therefore provide only a very rough estimate.

A fine-grained external measurement requires monitoring of the current and the voltage in
the power lines for distinct components via a third-party system [10, 11]. The beauty of this
non-intrusive approach is that the performance of the application subject to energy profiling is
not affected by the measurement process if the data are collected in a remote system. Using
high-resolution power meters allows for fine-grained resource analysis, which makes this method
particularly interesting for moderate-sized clusters [11] or experimental processors [3]. The infras-
tructure required for the measurement, however, makes the integration into large-scale HPC clusters
less attractive.

The increasing focus on resource efficiency has motivated hardware manufacturers to start
embedding energy counters in the processors themselves [12, 13]. Profiling tools like performance
application programming interface [14] provide user interfaces to these metrics, and allow devel-
opers to correlate the power and energy consumption to other application-specific metrics [15].
Similarly, when Cray introduced the XC-30 line, they included the Power Management Data Base
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(PMDB) [16] tool that makes power and energy information readily available. In particular, it col-
lects power measurements from a comprehensive set of hardware sensors located throughout the
system and allows developers to access the power consumption, energy, current, and voltage of
the racks, blades, and nodes of an XC-30 system through simple database queries. The Piz Daint
GPU-accelerated supercomputer [17] used for the experiments in this paper is equipped with this
technology, and a comprehensive study has revealed a very good match between the reported values
and external measurement techniques [16].

1.2. Execution parameter tuning for energy efficiency

Significant research has been conducted in order to improve the energy efficiency of scientific algo-
rithms and applications. On CPU-based clusters, a popular non-intrusive method is to optimize the
hardware execution parameters like the amount of required computing resources (number of nodes,
number of cores, and communication strategy). Also, modifying the task list scheduling can improve
the energy balance [18, 19]. Utilizing voltage and frequency scaling exposed by the hardware pro-
vides another method to reduce the energy consumption [20, 21]. On manycore accelerators, where
modification of the execution parameters is restricted, improving the energy efficiency typically
requires a reformulation of the underlying algorithm or a redesign of the implementation [22].
For sparse linear algebra operations, the implementation redesign often aims to reduce the com-
munication and memory transfers. Dense linear algebra operations, typically compute-bound, are
traditionally expected to achieve the highest efficiency when reducing the overall runtime.

1.3. Autotuning

Autotuning kernel code for efficient GPU execution has been investigated on different levels of
abstraction: from elementary basic linear algebra (BLAS) kernels [23, 24] to high-level languages
[25, 26] and directive-based GPU programming [27].

Sparse linear algebra operations have also been targeted: Monakov et al. present an autotuning
strategy for the sparse matrix vector product based on a problem-adapted matrix storage format
[28] and Choi et al. [29] propose to use a model-driven framework for autotuning the sparse matrix
vector product. Mametjanov et al. [30] address the challenge of autotuning stencil operations.

2. AUTOTUNING SETUP

This section will introduce the BEAST autotuning framework and the GEMM kernel configuration.
The hardware and data collection methodology is also presented.

2.1. Bench-testing environment for automated software tuning framework

Figure 1 shows the overall design of the BEAST framework, which is currently only partially
realized, with the initial software release anticipated to happen at the beginning of 2015. Cur-
rent implementation includes the hardware probing component, a prototype generation and pruning
engine, and an ad hoc infrastructure for compiling and benchmarking (not distributed yet). Results
of the initial work on the visualization component have been published [31]. So far, only NVIDIA
devices supporting the CUDA framework have been targeted [32].

The current implementation of the generation and pruning component provides a declarative nota-
tion for defining the search space and a set of filters for pruning it. The notation is currently based
on the Lua language [33]. The user defines the search space through a set of iterators, which can
be as simple as (start, stop, step) triplets or as complicated as closures. Closure iterators contain
arbitrary Lua, and return the next value along with an end-of-sequence flag. While the simple iter-
ators address the most common cases, the closure-based iterators allow for handling more complex
cases, such as the canonical example of generating the Fibonacci series and returning all possible
prime number factorizations of a number. Filters are boolean functions, either accepting or rejecting
a set of parameters, and can be defined using values of the iterators, device-dependent constants,
user-defined constants, and arbitrarily complex functions thereof.
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Figure 1. Overall design of the bench-testing environment for automated software tuning framework.

Ongoing efforts in BEAST focus on improving the power of expression and the processing speed
of the generation and pruning engine, implementing a distributed engine for benchmarking and
profiling, developing a machine learning toolset for analysis of the results, and improving the overall
workflow of the entire toolchain.

The BEAST framework acts on the high-level language Compute Unified Device Architecture
(CUDA). This implies, that kernels generated may achieve the best performance that can possibly
be attained using the CUDA language; however, a better implementation of the operation may be
possible when going deeper in the abstraction level. In particular, implementations based on an
assembly code might achieve higher performance and energy efficiency ratios.

2.2. GEMM stencil

The tunable GEMM implementation, called the stencil, is completely parametrized using the pyex-
pander preprocessor [34]. Figure 2 shows the five dimensions of tiling in the GEMM stencil. Each
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Figure 2. Tiling in the parametrized GEMM stencil.

Table I. Example configuration of the parameters for the GEMM kernel.

dimension of computed tile partitioning into stripes arrangement of reads

A
blk_m = 128 blk_m_a = 64
blk_k = 32 blk_n_a = 64

B
blk_k = 32 blk_m_b = 16
blk_n = 128 blk_n_b = 64

C
dim_m = 128
dim_n = 128

thread block consists of dim_m�dim_n threads and computes a blk_m�blk_n tile of the matrix
C . In doing so, each thread block passes through a block of rows of matrix A of height blk_m
and a block of columns of matrix B of width blk_n. In one iteration, the thread block loads a
blk_m�blk_k stripe of A and blk_k�blk_n stripe of B . The stripes are first loaded to the shared
memory and subsequently loaded to registers by individual threads and applied towards the final
product. When reading the stripes, the threads are arranged in the blk_m_a � blk_n_a shape for
reading A and in the blk_m_b � blk_n_b shape for reading B .

For an example kernel using the configuration, see Table I. Each thread block is dim_m �
dim_n D 32�32 in size, and the total number of threads per block is 1024. Each thread block com-
putes a tile of C of size blk_m�blk_n D 128�128. For this, each thread block loads a stripe of A
and a stripe of B to shared memory at a time. The stripe of A is of size blk_m�blk_k D 128�32,
and the stripe of B is of size blk_k � blk_n D 32 � 128. When reading a stripe of A, threads are
shaped in a blk_m_a � blk_n_a D 64 � 16 rectangle. When reading a stripe of B , threads are
shaped in a blk_m_b � blk_n_b D 16 � 64 rectangle.

The stencil is parametrized to support both real arithmetic and complex arithmetic in both single
precision and double precision, and all cases of transposition ofA and B . In this paper, we only con-
sider the real arithmetic, double precision case (DGEMM), where A and B are not transposed. As
further explained in Section 2.2.1, the stencil allows for accessing A and B with or without the use
of texture reads. In this paper, we always use texture reads, which seems to generally provide higher
performance. Also, as further explained in Section 2.2.2, the stencil provides implementations of the
kernel with or without the use of Single Instruction Multiple Data (SIMD) vector intrinsics. Here, we
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simultaneously tune both implementations. And finally, the stencil provides two implementations
for reading A and B , one reading them in sequence (first A, then B), the other one reading A and
B simultaneously in a single loop, with appropriate cleanup code if their dimensions do not match.
Here, we always use the interleaved reading, which seems to always provide higher performance.

The current implementation is a simplification of previous versions [32] and lacks any attempts
at multibuffering. The kernel follows a simple cycle:

� read A and B from DRAM to shared memory,
� synchronize threads,
� compute the product, accessing A and B in shared memory,
� synchronize threads,
� advance pointers.

In the process of looping, each thread accumulates the product of A � B . When the looping
completes, C is updated by a read-modify-write operation.

2.2.1. Texture reads. Compute Unified Device Architecture supports a subset of the texturing hard-
ware that the GPU uses for graphics to access texture and surface memory. Reading data from texture
or surface memory instead of global memory can have several performance benefits (see Section
5.3.2. or the CUDA Programming Guide [35] for more details). The A and B matrices can be read
using either regular memory reads or texture fetches. Also, they can be defined as either 1D or 2D
textures. We have observed that the use of texture fetches is generally beneficial to performance. At
the same time, there is no performance difference between using 1D and 2D textures. In this paper,
we always read A and B using 1D texture fetches.

There are two different APIs to access texture and surface memory: the texture reference API,
which is supported on all devices, and the texture object API, which is only supported on devices of
compute capability 3.x. The use of the object API is more convenient from the software development
perspective; therefore, we are currently using the object API. The choice of texture API has no effect
on performance.

Textures also offer an elegant mechanism for eliminating the cleanup code, that is, the code
required for dealing with the boundary regions of matrices not divisible by the tiling sizes. The
matrix dimensions are rounded up, and texture clipping is used to nullify accesses to elements
outside of theA andB matrices. Matrix boundaries are only checked for theC matrix when applying
the update at the end of the kernel execution.

Devices of compute capability 3.5 offer a bit simpler alternative to explicit use of textures. A
global memory read performed using the __ldg() function (see section B.10 of the CUDA Pro-
gramming Guide [35]) is always cached in the read-only data cache. When applicable, the compiler
will also compile any regular global memory read to __ldg(). A requirement for data to be cached
in the read-only cache is that it must be read-only for the entire lifetime of the kernel. In order to
make it easier for the compiler to detect that this condition is satisfied, pointers used for loading
such data should be marked with both the const and __restrict__ qualifiers. Performace-
wise, both techniques are equivalent, and right now, we are explicitly using textures for backward
compatibility with older devices.

2.2.2. Single instruction, multiple data vectorization. Although the main form of parallelism in
CUDA is the Single Instruction Multiple Thread (SIMT) model, CUDA also offers SIMD vector
types, such as float4 and double2, which can improve reads from both DRAM and shared
memory (see Section B.3.1 of the CUDA Programming Manual). For instance, the use of the
float4 type, instead of float, replaces four ld.global.nc.f32 instruction in PTX with a
single ld.global.nc.v4.f32 instruction (four LDG.E instructions with a single LDG.E.128
instruction in assembly). Similarly, when accessing shared memory, four ld.shared.f32
instructions in PTX are replaced with a single ld.shared.v4.f32 instruction (four LDS
instructions with a single LDS.128 instruction in assembly).

Although SIMD instructions are available to access data, there are no SIMD arithmetic instruc-
tions. Arithmetic relies on the SIMT model. Therefore, when arrays are declared using floating point
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Figure 3. Search space iterators.

vector types, such as float4 or double2, individual components have to be accessed using the
x, y, (z, w) fields. The SIMD vectorization complicates coding, as dimensions have to be divided
or multiplied by the vector size. Furthermore, the divisibility of dimensions introduces a set of new
constraints in the process of pruning the search space, which heavily narrows down the number
of valid parameter configurations. Nevertheless, we see the SIMD vectorization as an important
addition, and we tune both vectorized and non-vectorized GEMM kernels.

2.3. GEMM search space

Like most software autotuners, BEAST relies on the idea of sweeping a search space that is large to
start with, but pruned to a managable size by a set of conditions, eliminating cases that would result
in invalid kernels or kernels performing poorly. In the two subsections to follow, we describe the
set of iterators defining the search space (2.3.1) for the GEMM stencil and a set of filters used for
pruning that space (2.3.2).

2.3.1. Iterators. Figure 3 shows the set of iterators defining the search space for the GEMM stencil,
using the current notation in the BEAST project. An exhaustive search would sweep through all
possible values of all iterators. Here, we introduce some arbitrary constraints to set up a small-scale
experiment. The changes are indicated by the grayed out text and further commented on in the rest
of this section.

� The dim_m and dim_n iterators (line 1 and 2) define the shape of the thread block. In an
exhaustive search, the increment would be 1. For the purpose of this experiment, the increment
is 16. They go up to the hardware limit for the thread block size, which on the Kepler is 1024.
� The blk_m, blk_n, and blk_k iterators (lines 3 to 5) define the basic tiling factors. blk_m

and blk_n define the shape of the tile of C that the thread block is responsible for and iterate
in steps of dim_m and dim_n, respectively. blk_k defines the width of the stripe of A and
the height of the stripe of B in shared memory and iterates with the step of 1. Theoretically,
the upper limit is infinity. In practice, an arbitrary large number is set, for example, 1024, and
never reached because of the actions of the filters, described in Section 2.3.2.
� The blk_m_a, blk_n_a, blk_m, blk_m iterators (lines 6 to 9) define the arrangements of

the threads in the block for reading the stripes of A and B .
� The simd iterator (line 10) defines if the SIMD vectorization is used or not, as discussed in

Section 2.2.2.
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� The read_a and read_b iterators define if texture reads are used for reading A and B . For
the purpose of this experiment, we always use texture reads for both A and B .
� The read_ab filter defines if A and B are read in an interleaved fashion (inside one loop nest)

or not (first A, then B). Here, we always use interleaved reading.
� The shared_mem_bank iterator defines if the width of shared memory banks is 4 bytes or 8

bytes. Because we are targeting double precision only, we always use 8-byte wide banks.
� The cache_config iterator defines if the 64 KB cache is split into 32 KB of L1 and 32 KB

shared memory, 16 KB of L1 and 48 KB of shared memory, or the other way around. Because
the GEMM kernel relies on heavy use of shared memory, here, we use the default 16/48
L1/shared memory split.

In the general case, the search space is 15-dimensional. In this particular case, the search space is
10-dimensional. Even with 10 dimensions, defining the search space using imperative code becomes
difficult and error-prone, and even more so with 15 dimensions. This motivates our work on a declar-
ative input format, like the one in Figure 3. This comes with its own set of challenges, the main
concerns being the power of expression and the speed of evaluation.

2.3.2. Filters. Filters play a vital role in pruning the search space to a manageable size. Our search
space is already of manageable size because of the use of a non-unit step for the dim_m and dim_n
iterators and eliminating the last 5 iterators (lines 11–15 in Figure 3). The application of filters
is still important for two reasons: First, the GEMM stencil is not completely generalized, that is,
some configurations result in invalid code. Filters preserve correctness by, for example, enforcing
divisibility of certain dimensions. Second, there are configurations guaranteed to result in inferior
performance. Filters eliminate configurations that stand no chance of producing fast code. For this
experiment, we used the following set of filters eliminating invalid or low-performing cases:

� The number of threads in the block exceeds the hardware limit. The number of registers in the
block equals dim_m � dim_n. The hardware limit is a device property (1024 for the Kepler
architecture).
� The number of registers per block exceeds the hardware limit. We are using a heuristic here.

The assumption is that a tile of C has to fit entirely in registers, that is, the number of registers
per block is computed as blk_m�blk_n. The actual number of registers required by the kernel
depends on the compiler and is usually larger.
� The number of registers per thread exceeds the hardware limit. The number of registers per

thread is computed as the number of registers per block divided by the number of threads.
� The amount of shared memory per block exceeds the hardware limit. The amount of required

shared memory equals the combined size of the stripe ofA and the stripe ofB , that is, blk_m�
blk_k C blk_k � blk_n.
� The number of threads in the block is not divisible by the warp size, that is, dim_m �
dim_n mod 32 ¤ 0.
� The computational intensity is too low. The computational intensity is computed as the size of

the stripes of A and B in shared memory in bytes over the number of floating point operations,
specifically the Fused Multiply-Add (FMA) operations. Here, we are enforcing no less than
four FMA operations per one byte of shared memory.
� The occupancy, defined as the ratio between the number of threads (grouped in thread blocks)

that are scheduled in parallel and the hardware-imposed thread limit (threads per streaming
multiprocessor), is too low (limited by registers). The occupancy is computed as the maximum
number of threads that can be launched in one multiprocessor, given the register usage. Here,
we require no less than 512 threads per multiprocessor.
� The occupancy is too low (limited by shared memory). The occupancy is computed as the

maximum number of threads that can be launched in one multiprocessor, given the shared
memory usage. Here, we also require no less than 512 threads per multiprocessor.
� If vector types are not used, we enforce blk_m_a divides blk_m; blk_n_a divides blk_k;
blk_m_b divides blk_k; and blk_n_b divides blk_n. If vector types are used, then we enforce
blk_m_a � sizeof .double2/ divides blk_m, and so on.
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The filters are simple heuristics, meant to eliminate kernels that are invalid or guaranteed to
perform poorly. Specifically, the formula used for register usage usually underestimates the actual
number, that is, the compiler assigns many more registers per thread. Because the size of the thread
block is not known until launch time, also unknown is the actual number of registers required by
the thread block. Therefore, a number of kernels will fail to launch if exceeding the register file
size. Right now, we catch failures to launch and discard the failed kernels. In the future, we plan to
retrieve the actual register usage from the compilation step and skip benchmarking of faulty kernels.

2.4. Hardware and energy measurement capabilities

The Piz Daint Supercomputer at the Swiss National Computing Center in Lugano was listed in
November 2014 as the sixth fastest supercomputer on the TOP500 [36], while its energy efficiency
ranked number nine in the Green500 [37]. A single node is equipped with an 8-core 64-bit Intel
Sandy Bridge CPU (Intel Xeon E5-2670), an NVIDIA Tesla K20X with 6GB GDDR5 memory, and
32GB of host memory. The nodes are connected by the ‘Aries’ specialized interconnect from Cray,
with a dragonfly network topology [17]. Piz Daint has 5272 compute nodes, corresponding to 42,176
CPU cores in total – with the possibility to use up to 16 virtual cores per node when hyperthreading
is enabled, that is, 84,352 virtual cores in total – and 5,272 GPUs. The peak performance is 7.8
Petaflops [17]. PMDB enables the user to monitor power and energy usage for the host node and
separately for the accelerator at a frequency of 10 Hz [16].

2.5. Profiling methodology

In a preprocessing step, we use the cascaded filtering process of the BEAST autotuner to identify
770 kernel configurations valid for a DGEMM kernel on Kepler K20 GPUs. The target system size
of 4096 for the dense matrix–matrix multiplication in double precision ensures that we are in the
asymptotic range of performance and energy efficiency; see Figure 4. In the profiling process, we
run every kernel for at least 30 s, to ensure a sufficient number of power measurements of the PMDB
power monitoring tool [17]. To avoid temperature-related variations, every executable prefixes a
heatup phase using the respective target kernel. An additional kernel launch is used to measure
runtime performance, and one more to analyze the kernel metrics using NVIDIA’s nvprof profiler
[38]. Also, we include a cuBLAS DGEMM kernel to identify possible hardware slowdown. In order
to examine the reproducibility of the data, we launched some kernels 10 times and reported the
average, minimum, and maximum energy consumption, as well as the mean deviations. The analysis
revealed performance differences of less than 1%, and the energy differences within a range of 3%
when running on the same node of the Piz Daint cluster. We therefore consider the data based on
a single sweep as valid. At this point, we want to stress that although we observed only negligible
differences when comparing the results from different nodes, a particular hardware device may have
slightly higher or lower performance and energy characteristics. This, however, does not affect the
relevance of the experimental results, as the ratios are expected to remain constant, and we executed
all tests on the same node. The target metric we use to quantify the energy efficiency is GFLOPs/W,
which serves as the basis for the Green500 list [37], and provides insight about how many operations
can be executed using a given energy budget:

performance

power
D

work per time unit

energy per time unit
D

work

energy
: (1)

The advantage of using this metric over the plain consumed energy is that it is independent of the
size of the target problem, assuming asymptotic performance of the GEMM kernel.

Recently, metrics accounting for performance and energy efficiency have become popular [39].
This approach is generally designed as a tradeoff between energy usage e and runtime t using a
weight ˛ in the objective function to minimize

M.t; e/ D ˛ � t C .1 � ˛/ � e: (2)
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Figure 4. Scaling of performance (top) and energy efficiency of selected kernel configurations with respect
to system size.

3. EXPERIMENTAL RESULTS

In the following sections, we report the experimental results and identify metrics that are meaningful
when quantifying the kernel’s performance and resource efficiency. For these metrics, we present a
correlation analysis to detect dependencies and tradeoffs.

We analyze the results under the assumption that the autotuning sweep contains kernels that
reach a local limit of attainable performance and energy efficiency while the other metrics vary.
This allows us to enclose the datapoints in a convex hull (Figure 5) and to assume that any other
kernel configuration obtained by varying the tuning parameters we used in the BEAST DGEMM
framework will be included in this area. The kernel configurations determining the corner points of
the convex hull are listed in Table II.

3.1. Performance analysis

In Table II, we list the parameter configurations along with the runtime performance and energy effi-
ciency for the kernels that form the convex hull in Figure 5. The achieved performance ranges from
308 GFLOPs to 904 GFLOPs, with an average of 567 GFLOPs. Most kernels provide between 400
and 700 GFLOPs. The configuration providing the best performance achieves 63% of the theoretical
peak [40]. For the execution of the DGEMM, it required 30.87Joules, which results in an energy
efficiency of 4.49 GFLOPs/W. Although outside the main focus of this paper, for completeness, we
mention that the cuBLAS DGEMM achieves 1146 GFLOPs on this hardware and hence outperforms
all kernels generated by this BEAST autotuning sweep. Also, the corresponding energy efficiency
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Figure 5. Energy efficiency (GFLOPs/Watt) versus performance (GFLOPs)

Table II. Parameter configurations of selected kernels defining the convex hull in Figure 5 along with the
achieved runtime performance and energy efficiency.

Parameter configuration Perf. Energy eff.

dim_m dim_n blk_m blk_n blk_k m_a n_a m_b n_b [GFLOPs] [GFLOPs/W]

up
pe

r
ar

c

16 16 64 96 16 64 4 16 16 904 4.4867
32 16 128 128 16 32 16 8 64 782 4.5849
16 16 128 128 8 64 4 8 32 703 4.5754
16 16 128 128 8 32 8 4 64 656 4.4415
16 16 64 256 8 32 8 4 64 516 3.8891
16 16 128 128 2 128 2 2 128 389 3.2539
16 16 64 128 4 64 4 2 128 345 2.8617

lo
w

er
ar

c

48 16 48 96 16 48 16 8 96 308 2.3473
64 16 64 64 16 64 16 16 64 311 2.3488
16 48 96 48 16 48 16 16 48 318 2.3590
64 16 64 64 48 64 16 16 64 355 2.4323
32 16 64 64 24 64 8 8 64 633 3.2919
16 16 64 80 16 32 8 16 16 843 4.0591
16 16 80 80 16 16 16 16 16 901 4.4317

The displayed kernel order is obtained from traversing the convex hull counterclockwise, starting at the maximum
energy efficiency.

of 5.98 GFLOPs/W is not achieved by any of the BEAST-generated kernels. The primary reason
for this performance gap and efficiency loss is the fact that the autotuning framework, sophisticated
as it is, relies on the CUDA language, which, in this particular instance, is unable to exploit the
full performance potential of the Kepler GPU. On the other hand, the cuBLAS DGEMM includes
proprietary assembly instruction mixes that are not easily generated by the compiler. This implies
that, at the present time and likely in the future, these two performance levels cannot be matched by
either a pure CUDA implementation or a specific mix of PTX instructions [8, Section 5]. Moreover,
the close nature of cuBLAS does not give us any information with regard to the performance-energy
trade-offs that the NVIDIA team made when shipping their current implementation. Our approach
provides a limited view into the kinds of choices that face an HPC kernel coder.

3.2. Energy efficiency

In Figure 5, we visualize the energy efficiency of the DGEMM kernels with respect to their run-
time performance. The most resource-efficient kernel requires 29.98 Joules for the execution at
782 GFLOP/s, which results in an energy efficiency of 4.58 GFLOPs/W; see Table II. This kernel
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performs GEMM with 3% higher energy efficiency while executing 16% slower than the fastest ker-
nel. Although these differences look marginal, they already contradict the common assumption that
tuning for runtime performance is sufficient to identify the configuration with the highest energy
efficiency. The theoretical energy efficiency of this GPU is 6.08 GFLOPs/W when computed as a
ratio between the theoretical peak of 1430 GFLOPs and the maximal power draft of 235 W, The
most energy efficient kernel achieves 75%, while the average kernel achieves (3.55 GFLOPs/W)
58% of the efficiency peak. We notice that the generated kernels are closer to the optimal energy
efficiency than to the optimal performance in terms of the average and metric-specific winner.

3.3. Performance and energy spread

In Figure 5, a convex hull is used to define an enclosure of the attainable performance-energy-
efficiency ratios. Any vertical line provides information about the energy efficiency range of kernels
providing the same runtime performance. Similarly, any horizontal line identifies kernel configura-
tions achieving different GFLOP rates for a fixed energy efficiency. The length of the section of line
that intersects the convex hull provides the spread for performance or energy efficiency when fixing
the other parameter.

As previously identified, the performance winner achieves 904 GFLOPs at a resource efficiency of
4.49 GFLOPs/W. Kernels located on the horizontal line need the same amount of energy to compute
the DGEMM, but require up to 25% longer runtimes. The GFLOP rate of the most resource-friendly
configuration is achieved by other kernels located on the vertical line that require up to 1.2 times
the energy. This implies that ignoring the resource usage when developing GPU kernels close to the
attainable performance limit can result in up to 20% energy overhead.

3.4. Multi-objective optimization

The horizontal and vertical lines partition the convex hull into four segments. Kernels located in the
area right of the vertical line achieve higher performance than the most resource friendly configura-
tion – at the cost of lower energy efficiency. For our BEAST sweep, 36 kernels (4.6%) are located
in this area. Similarly, the 12 kernels located in the area above the horizontal line achieve a higher
energy efficiency than the performance winner – at the cost of extended runtime.

The upper, right quadrant represents the kernels that are more resource-friendly than the
performance winner and achieve a performance higher than the most energy-friendly kernel.

When trading off energy efficiency and performance, the arc of this segment is of particular
interest, as kernels located on it optimize the metric given in function (2) for a particular value of ˛.

Figure 6. Correlation coefficients of the collected performance metrics and the GFLOPs value.
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3.5. Correlation of metrics

We now turn to the statistical analysis of the data resulting from the autotuning process. Using
NVIDIA’s nvprof profiler [35], we collected the values of the performance counters, which gave us
a multidimensional view into the kernel characteristics of the individual DGEMM kernels, which
we can now relate to the performance and energy efficiency of the GPU. Figures 6, 7, and 8 show
the correlation coefficient between the collected counter readings and raw performance, energy effi-
ciency, and the product of both of them (performance � energy efficiency) combined, respectively.
The correlations are computed against statistically normalized values. All three figures sort the coun-
ters based on their correlation coefficient (negative correlation left, positive correlation right). To
track the movement of labels between the figures, which indicates a change in how a counter read-
ing affects the correlated metric, we mark the counters moving significantly between performance
(Figure 6) and energy efficiency (Figure 7) in bold. These metrics are as follows: L2 texture read
hit rate (l2_texture_read_hit_rate), shared memory load throughput (shared_load_throughput), stalls

Figure 7. Correlation coefficients of the collected performance metrics and the GFLOPs/W value.

Figure 8. Correlation coefficients of the collected performance metrics and the GFLOPs value.
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due to an unfetched instruction (stall_inst_fetch), DRAM read throughput (dram_read_throughput),
and DRAM utilization (dram_utilization). The first three metrics move from left to right when
switching from performance to energy efficiency. This may be expected, as larger values of any
of these metrics contribute to short range data movement within the GPU and thus have a posi-
tive effect on the energy efficiency. The last two metrics moving from right to left relate to DRAM
communication, which may be expected to incur high energy cost. It is worth noting the highly
influential performance counters remain the same across Figures 6, 7 , and 8. The negatively corre-
lated counters include shared_load_transactions, which counts the number of shared memory load
transactions, and inst_issued, ldst_issued, inst_executed, and ldst_executed counters accounting for
various types of instructions. As a general trend, we observe that more instructions decrease perfor-
mance, energy efficiency and the combination of both. We have positive correlation for the counters
for global load (gld_requested_throughput) and store (gst_requested_throughput), and, generally,
IPC-related (Instructions Per Cycle) metrics (issued_ipc, ipc_instance, ipc). This, again, is an intu-
itively understood observation that high IPC levels indicate good performance, and from the energy
efficiency standpoint, high IPC indicates lack of data movement stalls, which are detrimental to
energy consumption.

3.6. Kernel metrics and energy/performance tradeoff

In Section 3.5, we have identified some metrics that are either strongly correlated for both
performance and energy efficiency or show significant differences in their influence on per-
formance and energy efficiency. We choose DRAM_read_throughput, L2_read_ throughput,
texture_memory_read_throughput, executed_instructions_per_cycle, and occupancy for a deeper
analysis. For each of those metrics, we compute the mean over the complete sweep of 770 kernels,
and for each kernel, we determine whether its metric value is above or below the average. Figure 9
contains five rows and three columns. Each of the rows represents one of the metrics, while the
columns show runtime performance versus metric, energy efficiency versus metric, and energy effi-
ciency versus runtime performance. Each kernel is color-coded in red or green to indicate whether
the metric being described is above or below the average of all kernels in the dataset.

� Occupancy
High occupancy implies that few threads are unused during the execution of an application.
The generated kernels separate in four discrete occupancy levels at 12.5%, 25%, 37.5%, and
50%; see Figure 9 first row, left. The natural intuition is that high occupancy is necessary for
high runtime performance; however, the DGEMM kernels running at high occupancy generally
achieve lower GFLOPs. This is consistent with observations that reducing occupancy can lead
to performance benefits for specific algorithms [5]. The corresponding resource efficiency plot
(center of first row in Figure 9) reveals that higher occupancy rates can also lead to lower
energy efficiency for a fixed level of performance. If the data are broken into four subsets based
on the four distinct values for occupancy and the mean for each set is calculated and plotted,
an inverse correlation between energy efficiency and occupancy emerges. The final plot on the
top row shows clustering of high occupancy kernels near the bottom, left corner of the convex
hull. This demonstrates that lower occupancy can clearly lead to a more energy efficient kernel.
� Instructions per cycle (IPC)

The left of the second row in Figure 9 reveals a linear trend: a high instruction per cycle rate
is essential to achieve high performance. Varying the different kernel parameters, it is possible
to generate configurations providing higher or lower GFLOP rates at a constant IPC rate, but
for exceeding a certain performance limit, the IPC has to increase. The absolute values are
interesting: the top performers execute close to two instructions per cycle, which indicates high
resource utilization. Concerning energy efficiency, things are not as clear (center plot). Kernels
with a low IPC rate can still provide very good energy efficiency. Also, the right in Figure 9
shows that for a certain performance rate, it is possible to improve energy efficiency without
changing the IPC rate.
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Figure 9. Classification of the generated kernels with respect to the values of different metrics above (red)
or below (green) average along with the achieved runtime performance and energy efficiency.
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� DRAM read throughput
In the third row of Figure 9, we analyze the correlation between DRAM throughput, per-
formance, and energy efficiency. The center of the third row in Figure 9 indicates that
DRAM-stressing kernels provide lower energy efficiency. This confirms research results iden-
tifying the memory access as being among the most energy-consuming operations [41–43]. At
the same time, the bandwidth rates for all kernels exceeding 820 GFLOPs are above the mean
(see the right plot). This indicates that pressure on the memory reduces the energy efficiency,
but is needed to achieve good performance. The right plot shows a clear separation of the red
squares and the green circles along the efficiency/performance diagonal. Kernels putting less
pressure on the memory bandwidth form the upper half of the convex hull, and all kernels
below the diagonal have a DRAM throughput rate higher than the average.
� L2 read throughput

A first observation when analyzing the L2 read throughput in the fourth line in Figure 9 is
that the kernels arrange, in discrete bands, linearly correlating increasing L2 read through-
put with increasing runtime performance (see left). Furthermore, only kernels with throughput
rates above the average exceed the 800 GFLOPs limit. But, like for the DRAM metric, also
accessing L2 cache increases the resource cost. As a result, kernels with high L2 read through-
put achieve lower energy efficiency than other kernels providing the same performance (see
the center plot). Another interesting observation is that in neglecting two artifacts, a lower
bound for the energy efficiency relates linearly to the L2 read throughput. While increasing
L2 read throughput generally results in low efficiency, it ensures that the efficiency does not
drop below a certain lower bound. Like the DRAM throughput, the L2 throughput rate splits
the convex hull relating energy efficiency by the diagonal, and almost all kernels located above
this diagonal have an L2 throughput rate below average (see the fourth row of Figure 9, right).
� Texture read throughput

Texture cache is a read-only option to bypass the L1 cache [35]. Concerning the impact on
performance and energy, however, it shows similar trends like accessing data via the cache
hierarchy: performance and throughput are correlated in a characteristic pattern of discrete
stripes (left), and high throughput is necessary for high performance (left), but detrimental for
energy efficiency (center). The right plot shows even sharper separation of the energy efficient
kernels requiring less texture read throughput and the performance-tuned kernels pushing the
throughput to the limit.

Embracing the different types of memory access (DRAM, L2 cache, texture cache) with the
general term memory throughput, we conclude that when tuning the DGEMM kernel for energy
efficiency, low throughput is preferred. At the same time, only high memory throughput allows
for high performance. Moderate occupancy is beneficial for both runtime performance and energy
efficiency. A high IPC rate is required for high performance, but is less important for energy
efficiency.

4. SUMMARY AND FUTURE WORK

In this paper, we have summarized observations from autotuning of the dense matrix–matrix mul-
tiplication for energy efficiency on NVIDIA GPUs. For a set of 770 kernels, we have collected
performance, energy, and GPU metrics. Investigating the trade-off between performance and energy
efficiency, we have identified metrics that can be used to classify the kernels. In particular, we
have shown that stressing the memory bandwidth is detrimental to the kernels’ energy efficiency,
but necessary to achieve high performance. As a result, the most resource-friendly configura-
tion does not provide the highest runtime performance, contradicting the race-to-idle assumption
of the fastest kernel being also the most energy-efficient. Future research will focus on more
complex kernels that combine compute-bound with memory-bound computations. Also, we want
to develop a model capable of predicting energy efficiency and performance of a kernel based
on the respective parameter configuration and a calibrating sweep covering only a subset of the
search space.
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