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Abstract—Accelerator-enhanced computing platforms have
drawn a lot of attention due to their massive peak com-
putational capacity. Despite significant advances in the pro-
gramming interfaces to such hybrid architectures, traditional
programming paradigms struggle mapping the resulting multi-
dimensional heterogeneity and the expression of algorithm
parallelism, resulting in sub-optimal effective performance.
Task-based programming paradigms have the capability to
alleviate some of the programming challenges on distributed
hybrid many-core architectures. In this paper we take this
concept a step further by showing that the potential of task-
based programming paradigms can be greatly increased with
minimal modification of the underlying runtime combined with
the right algorithmic changes. We propose two novel recursive
algorithmic variants for one-sided factorizations and describe
the changes to the PaRSEC task-scheduling runtime to build a
framework where the task granularity is dynamically adjusted
to adapt the degree of available parallelism and kernel effi-
ciency according to runtime conditions. Based on an extensive
set of results we show that, with one-sided factorizations, i.e.
Cholesky and QR, a carefully written algorithm, supported
by an adaptive tasks-based runtime, is capable of reaching a
degree of performance and scalability never achieved before in
distributed hybrid environments.

Keywords-PaRSEC runtime; GPU; dense linear algebra;
heterogeneous architecture

I. INTRODUCTION

Throughput-oriented architectures, such as GPUs, are
becoming ubiquitous assistants for computationally intensive
tasks in scientific applications. Compared with traditional
CPU, GPU has much higher peak performance and mem-
ory bandwidth. For example, the peak double precision
floating point performance of the Nvidia Kepler K40 is
approximately 1.43 Tflop/s, dwarfing the performance of
any existing CPU family. As a consequence, an increasing
number of production systems feature accelerators1, a trend
that is expected to persist in the future.

Open CL, Nvidia CUDA, and compiler extensions like
OpenACC provide a friendly programming environment
to support general computing on GPUs. Based on these
concepts and APIs, numerous computational linear algebra
routines optimized for GPU offload execution are provided
by companion libraries, such as cuBLAS. However, the non-
trivial integration of these routines into the already complex

1http://top500.org/

ecosystem used to program large scale distributed systems
raises complex composition issues. While an analysis of the
different programming models is outside the scope of this
paper, one can note that the current de-facto programming
paradigm is based on message passing, which encourages a
static, hard-coded execution flow with explicit synchroniza-
tions between compute phases. Such a rigid execution model
limits the capability of applications to adapt to the dynamic
execution conditions faced on hybrid environments.

As a reaction to the multiplication of hardware trends
challenging the status-quo, the dataflow programming
paradigm has seen a revival, with the emergence of numer-
ous task-based programming frameworks, where an algo-
rithm is divided into computations entities (tasks) connected
by data dependencies. This programming paradigm has been
successfully used in different projects to depart from tightly
coupled or fork-join programming paradigms, and express
the parallelism in a form that allows for more execution
flexibility and portability across many types of hardware
resources. One of the early adopters of this programming
paradigm is the PaRSEC [1] framework; which encompasses
a toolbox to help express algorithms in the dataflow pro-
gramming paradigm, and a runtime component whose role
is to efficiently schedule the resultant Direct Acyclic Graph
(DAG), on large scale distributed hybrid systems.

In the context of linear algebra, DAGs have been demon-
strated to be an extremely effective way to describe tiled
linear algebra algorithms [2]. In DAG based tile algorithms,
each node of a DAG represents a compute task, called a
kernel, and edges represent the dependencies resulting from
the dataflow between these tasks. The matrix is divided into
square tiles and each kernel operates on tiles. The size of
tiles is one of the critical tuning parameters that impacts
the efficiency of kernels, the degree of parallelism and the
communication volume. Due to their different architectures,
CPU and GPU require different tile sizes to achieve peak
performance: usually GPUs require large tasks while CPUs
benefit from smaller ones. Traditional tiled algorithms [3],
which require all kernels to have a unique tile size, reach
reasonable performance, but fail to provide the runtime
with the means to achieve an adapted load-distribution on
heterogeneous systems. In this paper, we propose a method
to adapt the granularity of tasks with a multi-level approach,



where tiles of different sizes coexist in the runtime. This
method is called “hierarchical DAG” and is more suitable
in hybrid execution environments. In the hierarchical DAG
approach, large granularity tasks are organized in an outer
DAG level, and GPU kernels operate directly on these
large granularity tiles; Each large granularity task can be
dynamically subdivided into a finer granularity inner DAG,
operating on smaller tiles, so that the larger number of finer
granularity tasks increases the available parallelism to levels
adequate for multi-core processors. While this method is
general, we will focus the rest of the discussion on the
motivating case of linear algebra.

The contributions of this paper are: a) the hierarchical
DAG approach to maximize the occupancy of computational
kernels on heterogeneous computing resources; b) the hierar-
chical DAG implementation within PaRSEC– a high perfor-
mance, production quality distributed dataflow framework;
and c) the application of the principle to the Cholesky and
QR factorizations and their evaluation on accelerated GPU
clusters, notably, the tiled QR algorithm is a modified new
version to enable hierarchical parallelism.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III outlines the general
principle of hierarchical DAG for linear algebra algorithms.
Section IV, presents how the PaRSEC runtime is modified
to handle variable task granularity for GPUs, followed in
Section V by a detailed description of the Cholesky and QR
factorization examples. Section VI is dedicated to evaluating
the performance in a variety of shared and distributed
memory heterogeneous systems. Section VII concludes the
paper and depicts potential future work.

II. RELATED WORKS

In order to motivate and illustrate our discussion, we will
discuss the case of dense linear algebra, but the proposed
approach is general and the runtime adaptations to support
tiled linear algebra also apply to other types of algorithms
that can benefit from varying task granularity. Dense linear
algebra is one of the computing fields most likely to benefit
early from any increase in the computational power of the
hardware. Thus, it is not unexpected that every evolution
at the hardware level is rapidly reflected in dense linear
algebra libraries. MAGMA [2] is a linear algebra library
designed for GPUs, using CUDA and OpenCL. MAGMA,
in addition to the GPU, can take advantage of the CPU
through multi-threaded BLAS libraries, but its static sched-
uler distributes tasks equally over GPUs, limiting the overall
performance on complex heterogeneous architectures. The
current version of the MAGMA library is solely usable on
shared memory, without a version spanning over distributed
resources. Fogue et al. ported the existing PLAPACK li-
brary to GPU-accelerated clusters [4]. Similarly, Quintana-
Orti et al. extended the SuperMatrix runtime to shared-
memory machines with GPUs [5]. However, these solutions

require that GPUs take most of the computation (only the
computationally less-intensive diagonal blocks are factorized
on CPU), which produces load imbalance between CPU and
GPUs. Additionally, all these prior works require an identical
tile size, consequently, all tasks have the same granularity,
and the efficiency of CPU and GPU is decreased.

There are a few prior works trying to resolve the tile
size mismatch between CPUs and GPUs. Song et al. pre-
sented a heterogeneous tile algorithm [6] which divides
square tiles into a skinny tall rectangle tile for CPU and
places the remainder on GPU. It uses a non-uniform 1D
partitioning and data is statically distributed between GPUs,
hence, it is likely to cause imbalance in the Cholesky
factorization. Kim et al. adapted the libFLAME library to
support different block sizes on different devices in a shared
memory environment [7]. However, its write-through GPU
data caching policy may incur too many unnecessary data
movements between the host and the GPU. Lima et al.
reported a similar work for Intel Xeon Phi [8]. However,
the decision to recursively split a task is made statically
at submission time without runtime insight. Furthermore,
in their Cholesky factorization, only the POTRF kernel is
recursively split. Our approach uses a 2D block cyclic data
distribution for each host, and data is dynamically assigned
to GPUs to maintain good load balance. We maximize
the throughput, by allowing all operations with the GPU
to be asynchronous, overlapping data movements and task
submission to the GPU, and allowing threads to migrate
between GPU management and CPU execution. Thanks to
the parameterized DAG of our solution, the decision is taken
dynamically at runtime and is not limited to a single kernel,
an important distinction as several kernels can compose the
critical path of an application. Moreover, our approach is
adapted to both shared and distributed systems.

III. HIERARCHICAL DAG
A. Problem Statement

Tiled linear algebra is a representative class of algorithms
that can be expressed efficiently with a dataflow: the paral-
lelism between operations is represented with a DAG that
symbolizes the flow of data between several tasks called
kernels, which are described as nodes in the DAG. A “tile”
can be considered as a sub-matrix of the original matrix. In
tiled linear algebra algorithms, an N × N matrix is split
into NT × NT tiles, each of size B (dN/Be = NT ).
Therefore, instead of computing element by element, each
kernel executes on tiles. The tile size is a key tuning
parameter that affects the efficiency of kernels tremendously.
In most linear algebra algorithms, the tile size has been
assumed to be constant for all kernels.

In most heterogeneous systems, a computing node fea-
tures several CPU cores and one or more GPUs (note that
in this paper we use the term GPU broadly to describe
any similar type of accelerator, including Intel Xeon Phi.).
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Figure 1. Performance of compute kernels on CPU and GPU depending
on problem granularity

Kernels are executed on CPU cores or GPUs depending on
their performance profile and the occupancy on the target
execution unit. Some kernels experience a huge performance
boost when executed on an accelerator, while some experi-
ence a mild speedup and are better kept executing on CPU
cores. Some can be scheduled efficiently on either the CPU
or GPU, and ideally the decision is then taken based on
online load balance between the CPU and GPU units.

Compared with CPU cores, a GPU has many more
lightweight computing units; GPU kernels reach their op-
timal efficiency for larger tile sizes, as they need to dispatch
computation on many individual units to keep the occupancy
high. On the other hand, CPU cores often reach good
efficiency for moderate or small tile sizes. Figure 1 shows
the different optimal tile sizes for the SGEMM (real single
precision general matrix-matrix multiplication) kernel, on
different environments. Intel MKL SGEMM, running on 8
cores of an Intel Nehalem Xeon E5520 CPU, reaches its
peak performance starting from tile sizes larger than 200;
while in cuBLAS SGEMM, the optimal tile size is larger
than 1000 on a Fermi C2070, and larger than 1500 on a
Kepler K40c. As a consequence, in a heterogeneous envi-
ronment, selecting the proper tile size becomes a dilemma:

• If using the CPU optimal tile size, GPU kernels are
not able to fully utilize the computing resources of the
GPU since the small problem size cannot efficiently
span over all GPU execution units.

• If using the GPU optimal tile size, given a certain
matrix size N, the amount of exploitable parallelism
is limited by the number of tiles, directly depending on
the tile size (N/B). Thereby, for a fixed size problem,
increasing the tile size proportionally decreases the
parallelism. Furthermore, certain kernels (especially
memory bound kernels) are less efficient than their
functionally equivalent decomposition into smaller but
more compute bound kernels. Executing these large
kernels is thereby adding synchronous choke points that
delay the execution of other dependent kernels, further
decreasing the occupancy of all compute resources.

Our previous work employed a middle ground solution [9]
by selecting an intermediate tile size, larger than the CPU
optimal, but smaller than the GPU optimal. Clearly, this
tradeoff solution fails to maximize the computing resource

usage for both the CPU and GPU. To address this issue, we
propose here a new solution called “hierarchical DAG”, in
which the tile size decomposition varies depending on the
target unit executing the kernel, a decision taken dynamically
based on the available parallelism.

B. The Hierarchical DAG Approach

The hierarchical method described below can be general-
ized to any number of hierarchies, but for the sake of the
explanation we will consider a two levels hierarchy, GPU
and CPU. Let the optimal tile size for a GPU be B, and
the one for a CPU be a smaller tile size b. First, the input
matrix is divided into NT × NT tiles of size B × B, and
the linear algebra algorithm is represented by a DAG whose
task granularity is B. At the top level, all kernels in the
DAG operate on large tiles, and the corresponding tasks are
pushed into scheduling queues. When retrieving these tasks
from the scheduling queues, a decision algorithm (described
in Algorithm 1) is executed. If it is a GPU kernel, then it can
be executed directly by calling the GPU kernel functions (as
a cuBLAS function). If the kernel needs to be scheduled on
a CPU core (because the kernel does not map well on GPU,
or because GPUs are overloaded with pending work), then,
the CPU kernel is called only if the granularity is bellow
b. Otherwise instead of calling the CPU kernel functions
directly on the large tile, the task is decomposed into a finer
granularity DAG operating on the smaller tiles of size b.

Algorithm 1 Generic TASK X( A ) code in the “hierarchical
DAG” approach. (b:small tile size)

if OnGPU ||((nbrows(A) < b)||(nbcols(A) < b)) then
ComputeTaskX( A ) // by calling kernel function
ReleaseDeps( Task X, A )

else
o = CreateDAG( Task X, A,

ReleaseDeps( Task X, A ) )
Submit(o)

end if

When a large grain task is scheduled onto a CPU, the
“hierarchical DAG” capable runtime decomposes the CPU
workload into a finer grain parallelism that is more adequate
for this type of execution units. The creation of the metadata
representing the fine grain DAG happens online; no pre-
processing or static decomposition is required. The runtime
engine creates a local data descriptor, a different view of
the input submatrix representing the large tile divided into
smaller tiles. A new DAG is created to represent the fine
grain decomposition of the task’s algorithm applied on these
smaller tiles. Tasks operating on large tiles that are scheduled
for execution on the CPU are divided into finer grain tasks
operating on nt×nt tiles of size b (B = nt×b); the shape of
the resulting multi-level graph for the Cholesky factorization
is presented in Figure 2. These fine grain tasks are pushed
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Figure 2. DAG of “hierarchical DAG” Cholesky factorization, whose size
is 4× 4 large tiles and then each CPU task is split into 3× 3 small tiles.

into the scheduling queues and can execute on any available
CPU core. Upon the completion of the final task in the finer
grain DAG, the parent coarse grain task is completed through
a callback system added as extra-information to the fine
grain DAG: the metadata representing the fine grain DAG
is released and the dependent coarse grain tasks are pushed
into the scheduling queues. Multiple coarse grain tasks can
be decomposed simultaneously and the resultant fine grain
tasks scheduled concurrently on the available CPU cores.

IV. HIERARCHICAL DAG SUPPORT IN PARSEC

PaRSEC focuses on task based applications, expressed as
a DAG of tasks with edges designating data dependencies.
PaRSEC takes this graph-based representation and assigns
work to the computing resources, overlaps communications
and computations and uses a dynamic, fully-distributed
scheduler based on cache awareness, data-locality and task
priority. In this section, we describe the PaRSEC support
for GPU, and the modifications to enable the decomposition
and the scheduling of hierarchical DAG programs.

A. Hierarchical DAG Task Scheduler

In a classical PaRSEC program, creating an instance of
a DAG object, which represents the dataflow dependen-
cies of an algorithm, is a collective operation across the
entire distributed memory domain. The creation operation
generates the local handle that contains the metadata used
to track the state of the progress in the dataflow algo-
rithm, but also allocates a unique identifier used to tag
the internal messages exchanged between nodes to perform
the distributed scheduling and data transfer. However, the
DAG object instances spawned from within the coarse grain
tasks to create the fine grain DAG cannot, and do not
need to be created collectively. The scheduling between
the distributed domains operates on the coarse grain DAG,
without even the knowledge of these sub-graphs; thus it can
remain unchanged. A new, thread-safe and non-collective

DAG object creation operation has been added. It allocates
the instance identifier in a local range that never collides with
the global identifiers used for collectively allocated DAG
objects. Beside this initial difference, the local DAG object
instances are similar and can be managed concurrently by
the same scheduler (with the exception that these tasks must
all be scheduled on a shared memory local domain).

B. Employing Multiple GPU Streams

The execution of each GPU task is decomposed in three
operations: moving data from the main memory into the
GPU, kernel execution, and moving data back to the main
memory. In order to overlap data movement and kernel
execution, each operation type runs in a separate CUDA
stream. Since PCI-E is bidirectional, we reserve one CUDA
stream to handle data movement from CPU to GPU and
another CUDA stream to handle the opposite direction.
A single stream per direction is sufficient to saturate the
PCI-E bandwidth and adding supplementary streams does
not improve data movement speed. The GPU scheduler
aggressively prefetches data to the GPU memory. As soon
as a data is ready, and GPU memory is not full, input
data is immediately pushed, even before the associated tasks
become first in line of the scheduling queues. This ensures
that tasks running on the GPU can start without delay and
overlaps the host-device transfers with kernels computation.

GPU streams are also employed to partially circumvent
the issues stemming from the conflicting goals of preserving
parallelism with smaller tasks and improving per-task GPU
efficiency with larger tasks that can employ all execution
units of a GPU. By scheduling multiple GPU kernels simul-
taneously on multiple CUDA streams, the PaRSEC runtime
improves the occupancy of the GPU units when moderately
sized tasks are submitted: each task employs only a subset
of the GPU processing units, but concurrently submitted
tasks can employ the unused units. Performance results will
demonstrate that even this optimization is insufficient to
achieve maximum compute throughput without employing
hierarchical DAG.

C. Data Coherency between Host and GPUs

PaRSEC minimizes data movement with a careful selec-
tion of the computational unit where a task is to be executed,
based on the current load of the unit but also on the cost of
moving the data needed for the task execution into the unit
memory. Multiple copies of data are supported, coexisting
in different memory layers. They are tracked using a data
coherence protocol, a simplified version of the MOESI [10]
cache coherency protocol. Tasks and data transfer may be
reordered to promote the execution of tasks for which a copy
of the data is already available in a target GPU memory, with
the effect of reducing the amount of data transiting between
the host and the GPUs. Regarding the qualitative aspect of
the transfers, PaRSEC prioritizes the transfer for tasks closer



to the critical path of the algorithm. This guarantees that
when the main PaRSEC scheduler follows the critical path
of the algorithm as closely as possible, the tasks offloaded
to an accelerator adhere to the same imperatives. The data
coherency protocol operates at the coarse grain level and is
oblivious of the existence of fine grain data copies.

D. CPU/GPU Load Balance

In a complex heterogeneous system, composed by CPUs
and GPUs, one additional constraint is to be taken into
account. The tasks generated by the algorithm that are
distributed on the different computing resources should
maintain a balance between the load of the different com-
puting units. Without a load-balance mechanism, the overall
computational throughput will decrease as some of the
resources will become overloaded while other will starve.
Many ways to avoid such situations are available in the lit-
erature. In general, these solutions require knowledge about
the duration of each task execution for each computational
resource, information we decided to ignore. Instead, our
mechanisms are simpler, close to a greedy approach in which
we strive to maintain all resources occupied simply based
on the current workload of all devices (CPUs and GPUs).

When scheduling a hierarchical DAG program, the run-
time load balancing mechanism has two separate levels.
The first level separates the workload between CPUs and
GPUs at the coarse grain level. Based on the assumption that
each task type have similar durations, and that the driving
difference between them is the cost of moving the required
data to and from a device, the runtime computes the inverse
of the theoretical peak performance of a specified device,
and uses it as the weight of a task on this device; a device
with a higher computing capacity will have a smaller cost per
task. When a new task is considered by the scheduler, its cost
is computed for each device, and the task is then assigned to
the device which has the lowest current workload. However,
to minimize data movement, the selection of the GPU execu-
tion device is also determined according to the current data
locality: we prioritize the placement of the computation on a
GPU that already owns most of the data that will be accessed
by the task. The second level of load balancing is realized
between fine grain tasks executed on CPU cores, where
job stealing according to locality proximity is employed to
equilibrate the fine grain tasks workload. Using this simple,
yet efficient, workload management, PaRSEC can distribute
tasks on different heterogeneous devices and maintain good
load balance, as it can be seen in the Section VI.

V. CASE STUDY: HIERARCHICAL DAG ALGORITHMS
FOR DENSE LINEAR ALGEBRA

Cholesky and QR factorizations are linear algebra ap-
plications that are widely used for solving linear systems
Ax = b, and for computing eigenvalues and singular values.
Those factorizations are classic algorithms introduced in
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Figure 3. Step k=2 of tiled Cholesky (left) and QR (right) factorizations.

many recent libraries [3], [11] and exploited to illustrate
tile algorithms and their adaptation to DAG representations.
They are both composed of four kernels that are successively
applied on the trailing sub-matrix at each step, as illustrated
in Figure 3 for matrices of 6× 6 tiles at iteration k = 2.

In heterogeneous systems, the developer determines which
kernels are offloaded to the GPUs. In practice, the imple-
mentation of these kernels rely on the BLAS library (MKL
on Intel CPUs, cuBLAS for Nvidia GPUs). We made the
choice of offloading to GPU only the most computationally
intensive kernels, respectively GEMM for the Cholesky and
TSMQR for the QR factorization. These kernels represents
the bulk of the computation time and experience a great
speedup when executed on GPU, while the outlook for
other kernels is not as favorable. All kernels (including
GPU enabled ones) can also be scheduled on CPUs (when
GPUs are overloaded, referring the load balance strategy
discussed in section IV-D), in which case the hierarchical
DAG strategy decompose them into a fine grain DAG. We
will now discuss how the factorization algorithms can be
adapted to take advantage of the adaptive task granularity,
and the associated implementation of the TSMQR kernel for
GPUs that is required to support sub-decomposition of tiles
in QR.

A. GPU TSMQR kernel for the QR factorization

Algorithm 2 GPU TSMQR kernel.
(B:large tile size, W1, W2: workspaces)

1: function PARFB(A1, A2, V , T , W1, W2)
2: DtoDMemCpy(W1, A1) // W1 = A1

3: cublasGEMM(V, A2, W1) // W1 = W1 + V tA2

4: cublasGEMM(V, T, W2) // W2 = V T t

5: cublasGEMM(T, W1, A1) // A1 = A1 − T tW1

6: cublasGEMM(W2, W1, A2) // A2 = A2 −W2W1

7: end function
8: function TSMQR(A1, A2, V , T , W1, W2)
9: for i do = 0 to B, step ib

10: PARFB(A1(i:B,1:B),A2, V(1:B,i:i+ib),
11: T(1:ib,i:i+ib),W1, W2 )
12: end for
13: end function

An efficient implementation of the QR update kernel, so-
called TSMQR, is essential to an efficient QR factorization,
but also difficult to obtain because of the intrinsic “fork-
join” nature of this kernel. Translating the CPU TSMQR



kernel directly from the PLASMA library leads to sub-
optimal performance mainly due to it’s usage of vector-
matrix multiplication. We partially redesigned the CPU
implementation of TSMQR kernel for the GPU to exploit the
strengths of this architecture; the resulting function is pre-
sented in Algorithm 2. Triangular multiplications (TRMM)
are replaced by general matrix-matrix multiplications due to
the small granularity of the triangle (T is ib× ib) at line 4.
And, with an extra workspace, we experimentally verified
that it is more interesting to compute twice T tW1 (a first
time explicitly at line 5, and a second time hidden at line 6
in the W2W1) than storing the result of this computation to
replace line 5 by a sum of two matrices.

B. Multi-level Decomposition: Cholesky and QR

As discussed in Section III, tile size is a very important
factor to achieve the best performance. Figure 2 shows that
the number of independent kernels grows gradually with the
number of tiles. Using a large tile size decreases the number
of kernels, increase the execution time of each CPU kernel
and thereby delays the release of dependent kernels. The two
effects combine to reduce the efficiency of the CPU and gen-
erate idle time due to task starvation. When the hierarchical
DAG approach is applied, the original DAG is dynamically
transformed into a new DAG (Figure 2) featuring an adapted
granularity for both CPU and GPU units. Ideally, all types of
task should have a fine grain decomposition. In the Cholesky
factorization, all four kernels: POTRF, TRSM, SYRK, and
GEMM are available in the DPLASMA library as tiled
algorithms. When a large tile is decomposed into an nt×nt
tiled matrix with tiles of size b×b, as presented in section III,
the normal tiled Cholesky factorization kernel can be directly
replaced by a tiled algorithms to create the fine grain DAGs,
as shown on Figure 2 where tiles in the coarse DAG are split
into matrices of 3× 3 small tiles.

Such implementations of the tiled QR factorization ker-
nels are not available in dense linear algebra libraries as
of today. To apply the hierarchical DAG approach on QR
factorization, tasks-based implementations of the four under-
lying kernels: GEQRT, UNMQR, TSQRT, and TSMQR have
been added to the DPLASMA library. One can refer to [3],
[12] for details on the sequential implementation of the ker-
nels. Two implementations of those kernels could be made.
The first one, similar to the Cholesky factorization, splits
the kernels as small square tiles of size b× b. The GEQRT
kernel of the coarse-level DAG can then call recursively
the tiled QR algorithm on the diagonal tiles. However, the
Householder reflectors generated with the tiled QR algorithm
on the small tiles are different from the ones normally
generated at the large tile size B. This solution would imply
a modification of all kernels at the outer level to adapt
them to this new Householder reflectors representation (in
particular the backward substitution to compute the solution
of a linear system needs to be altered). Furthermore, those

Figure 4. Different data layout: tile and LAPACK. For sub-tiles in the fine
grain DAG (red), the data layout is the same as the LAPACK layout with
interleaved data, while tile layout (blue) is used for large tiles and permits
a much more efficient data transfer to/from the accelerators.

kernels would suffer from smaller granularity within the
matrix-matrix operations, which should be avoided for GPU
efficiency. Ballard et al. [13] recently proposed an algorithm
to reconstruct the full Householder reflectors, avoiding this
drawbacks at an additional increase in the flops counts.

The alternate approach we have followed is to express
the task-based algorithm of the four kernels with tasks
working on rectangular tiles of size B×b. This provides the
smaller granularity researched for the CPU implementation
that induces parallelism, and does not affect the kernels at
the large level, as the computed Householder reflectors are
the same. The four kernels have been implemented following
this idea and integrated to the DPLASMA library to be
used in our hierarchical DAG approach on QR factorization.
Although, it is possible to use any multiple of ib (the inner
block size specific to QR) for the b parameter, experiments
have shown than using b = ib gives the best performance,
so all experiments have been performed with this setting.

C. Hybrid Data Layout

The hierarchical DAG algorithm divides a matrix into a
set of small and large tiles. In a regular tiled algorithm,
data of each tile is stored in contiguous memory (the so
called tile layout). When the hierarchical DAG approach is
applied, tiles used by CPU kernels are treated as a full matrix
and a finer grain algorithm is applied on smaller sub-tiles.
However, in these sub-tiles, the data layout is not contiguous
anymore. Instead, sub-tiles are in the LAPACK data layout,
where iterating from one column to the next jumps over a
stride. Figure 4 shows the resultant hybrid data layout in
the hierarchical DAG algorithm. We have adapted our tile
algorithms to work indifferently on either tile of LAPACK
layout. As a consequence, our algorithms can be applied
directly onto fine or coarse grain tasks. It should be noted
that this versatility may come at a performance price since
employing LAPACK layout on small tiles may decrease data
locality, but we expect (and demonstrate in the performance
section) a profitable tradeoff. Another approach would be
to perform in-place translation, but this carries a cost of its
own, and in the light of the satisfying performance results
obtained when operating on LAPACK format directly, we
did not pursue such a speculative gain.
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Figure 5. Performance for different tile size parameters (DPOTRF, using
1 GPU on Bunsen).

VI. PERFORMANCE EVALUATION

Experimental Setup: In this section, we investigate
the impact of the hierarchical DAG approach. For a fair
comparison, both the regular tiled and hierarchical DAG
factorizations are implemented using the PaRSEC system
(called h-PaRSEC when it executes hierarchical DAG algo-
rithms). We also compare our implementation with the state-
of-the-art implementation from MAGMA [14] (version 1.4).
All the results presented in this paper use the real double
precision variants DPOTRF and DGEQRF for Cholesky
and QR, respectively. Experiments are carried out on two
systems:

• Bunsen is a machine with 3 Nvidia Kepler K40c GPUs
(12GB of memory per GPU) and 2 Intel Xeon E5-
2650v2 (16 cores total). We use CUDA 5.0.35 and the
Intel compiler 2013.4.183 (includes MKL BLAS).

• Keeneland Full Scale (KFS) is an FDR Infiniband
cluster. Each node is equipped with 3 Nvidia Fermi
M2090 GPUs (6GB of memory per GPU) and 2 Intel
Xeon E5-2670 (16 cores total). We use CUDA 5.5 and
the Intel compiler 14.0.1 (includes MKL BLAS).

A. Tile Size Tuning for Hierarchical DAG

Tuning the tile size has traditionally been a difficult issue
for linear algebra software [15]. In the hierarchical DAG
approach, two tile sizes need to be tuned in unison. Fig-
ure 5 presents the performance of DPOTRF on the Bunsen
machine, when both the inner (b, executed on CPU) and
outer (B, executed on GPU) tile sizes vary. The experiment
is repeated for different matrix sizes (N=16K, 48K) to
emphasize the impact of the tile size on the amount of
parallelism available. Each curve represents a different value
for b, for which B varies (on the x-axis). In addition, the
performance of standard PaRSEC is also presented (then,
the x-axis represents the single tile size used on both GPUs
and CPUs). B is set as a multiple of both b and 64 (due
to the physical organization of the CUDA warps on most
Nvidia cards).

On Bunsen, sequential BLAS kernels executed on the
CPU usually obtain their peak performance for b > 180.
However, and although GPU kernel performance remains
sub-optimal for tile sizes smaller than 1K (see Figure 1),
the overall performance of standard PaRSEC (in dashes
on Figure 5) on a heterogeneous platform decreases when
increasing the tile size. Two intermingled effects are explain-
ing this phenomenon. First, by increasing the tile size, the
number of GEMM operations in the update of the trailing
matrix is reduced, leading to reduced parallelism. Second,
the factorization of the panel itself becomes a bottleneck:
the associated operations apply to a single column of tiles,
yet further progression is conditioned on their completion.
With large tiles, panel parallelism is drastically reduced and
the more parallel trailing matrix update is delayed, leading
to under-utilization of computing resources. As can be seen,
this effect persists even for large matrix sizes.

On the contrary, thanks to hierarchical subdivision of tasks
into sub-DAGs, h-PaRSEC is much less subject to starvation
from lack of parallelism (the panel factorization is divided
into many small tasks whose granularity is adapted to reach
CPU peak performance). Obviously, if the GPU tile size
B is set too small (less than 512), the overall performance
suffers from poor compute kernel efficiency. Increasing the
value of B delivers the expected performance boost from the
compute kernels’ efficiency improvement, without suffering
as much from lack of parallelism and poor performance on
the CPU-executed panel factorization. Another interesting
note is, when using the hierarchical DAG approach, finding
a value of B that delivers acceptable performance is easier
than when tuning for a single tile size. Even for small
matrices that are prone to exacerbate lack of parallelism,
the amplitude of performance difference is reduced; while
for larger matrices, a very wide band of values deliver more
than 90% of the best performing tuning. Developers can
select the smallest tile size that maximizes CPU performance
as the value for b, and then pick any reasonable multiple
(around 1K) to set B. In the remainder of the experiments of
DPOTRF, we apply such a tuning, and b is set to 192, while
B varies between 384 and 1152 depending on the matrix
size. The same tuning method can be applied for DGEQRF,
and B varies between 384 and 1536 based on our tuning
results and performance of DTSMQR in Figure 7.

B. Performance on One Node with Multiple GPUs

Figure 6 presents the performance of the Cholesky and QR
factorization in both h-PaRSEC and PaRSEC implementa-
tion on the Bunsen machine. In both implementations, the
tile size is tuned to perform best for this particular matrix
size (the sizes used by h-PaRSEC are illustrated with a
background color in the figure, the sizes employed in regular
PaRSEC are similarly tuned).

For all matrix sizes, h-PaRSEC always exhibits better
performance than standard PaRSEC, even for small matrices,
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Figure 6. Performance of h-PaRSEC Cholesky and QR compared with regular PaRSEC and MAGMA.

when both employ the same tile size for kernels executed on
the GPU. In this case, the advantage comes from employing
a smaller tile size of 192 for computations executed on
CPUs. For larger sizes, h-PaRSEC reaches 1.36Tflops/s for
Cholesky using 1 GPU, which is 10% faster than standard
PaRSEC, outlining that when more parallelism is available,
higher kernel efficiency gives h-PaRSEC an extra boost.

Since the peak performance of cuBLAS DGEMM on 1
K40c is 1.2 Tflop/s, then based on the performance result
from the 1 GPU experiment (1.36 Tflop/s), it can be inferred
that CPUs contribute 160 Gflop/s on this platform. Based
on these numbers, a perfectly scalable implementation of
Cholesky would achieve approximately 2.56 Tflop/s using
2 GPUs and 3.76 Tflop/s using 3 GPUs (the contribution
of the CPUs being accounted for only once). In practice,
we obtain 2.5 Tflop/s with 2 GPUs and 3.7 Gflop/s with 3
GPUs, which demonstrates the scalability up to 3 GPUs is
almost perfect. The same reasoning holds for QR.

Last, Figure 6 also presents the performance of the state-
of-the-art MAGMA GPU linear algebra package for refer-
ence (please note that the MAGMA results do not include the
cost of the initial transfer of the dataset to the GPU memory,
whereas this cost is implicitly included for h-PaRSEC,
when the relevant data are transferred in the background
meanwhile computation is progressing). The comparison
between MAGMA and h-PaRSEC demonstrates that by
retaining a dynamic distribution of tasks, and dynamic load
balancing between GPUs, while at the same time improving
the efficiency of compute kernels by employing hierarchical
DAG subdivision, h-PaRSEC can outperform (as seen for
Cholesky) production quality software like MAGMA, whose
data distribution and load balancing are static. Even though
h-PaRSEC employs the tiled QR factorization (to improve
parallelism in distributed memory deployments), which per-
forms more floating point operations than the LAPACK
layout QR algorithm employed by MAGMA, it can still
compete closely on this single node experiment.
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Figure 7. Performance of DTSMQR kernel on Fermi C2070 and Kepler
K40 with 1 and 4 CUDA streams.

C. Multiple CUDA Streams

CUDA Streams, which represent multiple available exe-
cution contexts mapped onto the same physical GPU, can
drastically improve the occupancy of GPU units by allowing
the device to overlap executions from different streams on all
available computational units. The potential for improvement
is magnified when executing multiple small grain tasks, as
is the case when employing an improperly tuned tile size.

Figure 7 shows the performance of DTSMQR runs on Ke-
pler K40 and Fermi C2070 in different CUDA streams con-
figurations. All cuBLAS calls comprising a GPU TSMQR
kernel are submitted to a single CUDA stream, and based
on the fact that B is usually about 10 times larger than ib,
each TSMQR expands into more than 40 cuBLAS calls.
The Fermi GPU architecture is unable to look ahead in
the existing streams to execute tasks concurrently from
multiple streams, hence, the independent TSMQR kernels
cannot take advantage of multiple CUDA streams on the
Fermi GPU. The only option to fill-up all computing on
this GPU is to employ a larger B. On the other hand, the
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Kepler architecture nicely handles multiple streams, leading
to smoother and accrued performance.

Beside pure kernel performance, Figure 8 presents the
performance with 1 Kepler K40c for the entire Cholesky
factorization, when employing a variable number of streams
to submit multiple GPU tasks. Employing several CUDA
streams drastically improves the throughput of the GPU for
both the standard PaRSEC and h-PaRSEC. However, even
with this optimization, the performance of standard PaRSEC
can only match that of h-PaRSEC restrained to 1 stream.
When multiple streams are also employed in h-PaRSEC,
it outperforms standard PaRSEC for all matrix sizes and
stream configurations. Overall, these results outline that
multiple streams are not a sufficient optimization to alleviate
the need for employing the hierarchical DAG approach.

D. Distributed Memory

Last, we investigate the effect of hierarchical DAG on
the performance of distributed memory machines. Figure 9
presents the performance of h-PaRSEC and standard PaR-
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Figure 10. Weak Scalability: DPOTRF and DGEQRF performance as a
function of the number of nodes, with a problem size scaled accordingly
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SEC Cholesky and QR factorizations, on 64 nodes (192
GPUs, 1024 cores) of the Keeneland KFS cluster, when
the matrix size (N) varies. For intermediate matrix sizes,
the advantage enjoyed by h-PaRSEC is small; but when
the matrix is either small (thus with reduced available
parallelism), or large (where kernel throughput dominates),
h-PaRSEC outperforms standard PaRSEC by 10%, reaching
59 Tflop/s on Cholesky, which represents 60.5% of the
practical GEMM peak (GEMM performance on 1 node,
multiplied by 64), and reaching 42 Tflop/s on QR, which
represents 62% of the practical TSMQR peak. Although the
overall efficiency is not as high as in the shared memory
machine, one has to consider that the execution platform
is compute over provisioned: Even for compute intensive
algorithms such as QR and Cholesky, the Infiniband 40G
network is insufficient to feed 3 GPUs. This behavior is
customary and can also be observed when comparing the
efficiency per core of ScaLAPACK versus LAPACK.

Figure 10 presents the weak scalability performance of
h-PaRSEC and standard PaRSEC for the Cholesky and QR
factorizations. In a weak scalability experiment, the problem
size is set in accordance to the number of nodes, so that
the workload per node remains constant when the number
of nodes increases (N is 215K for Cholesky on 64 nodes,
245K for QR on 64 nodes.) The experiment demonstrates
a good weak scalability for both standard PaRSEC and
h-PaRSEC. However, as the node count gets higher, the
hierarchical DAG approach exhibits a better scalability. At
64 nodes, h-PaRSEC obtains 78% of the ideal scalability
on both Cholesky and QR factorization (performance at 1
node, multiplied by 64). When deploying data over PxP
nodes based on 2D cyclic, for each task, the chance of a
particular input data being local is 1/P 2. When P is very
small, many tasks can execute w/o communications. For any
larger deployment, the communication/computation ratio is
much lower, but the effect of varying P for large values
of P is negligible. Therefore the scalability curve drops at



first, and then trends to be leveling. Overall the hierarchical
DAG strategy better mitigates the heterogeneity within nodes
which translates into a seizable gain on distributed systems.

VII. CONCLUSION

As heterogeneous compute nodes, featuring different
types of processing units such as CPU cores and acceler-
ators, become more pervasive, the need for a programming
paradigm capable of providing portability and efficiency
across a large range of hybrid environments becomes critical.
The dataflow programming model, in which the inherent
parallelism of the application is expressed as DAG, coupled
with a runtime to manage tasks on any available computing
resources according to dynamic conditions, has been proven
to outperform legacy approaches while at the same time
masking most of the complexity inherent in hybrid pro-
gramming. In this paper, we have proposed a hierarchical
DAG approach that further improves the applicability of
the dataflow model to accelerated compute nodes. Task
granularity becomes variable, and the runtime arbitrates
depending on the type of the target computing unit.

The performance analysis demonstrates that such an
approach improves the asymptotic performance for large
matrices by employing the appropriate task grain on accel-
erators, while retaining a suitable amount of parallelism for
CPU computations. It also enhances the scalability of the
underlying algorithms, by providing a recursive approach
capable of mapping the algorithm on all potential computing
resources, with an immediate positive impact on the perfor-
mance of small workloads, which is of critical importance
for strong scalability. Beside a two level decomposition, the
principle can be extended to a multi-level decomposition on
architectures where this may be necessary, or to relieve the
memory pressure from overly parallel DAGs whose diameter
largely exceeds the number of computing units.
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