

Code Generation
C++11 features will be used as much as possible. Additional
needs will be handled by defining a domain specific embedded
language (DSEL). This technique is used in C++ to take advantage
of DSL features while using the optimizations provided by a
standard compiler. It will handle the generation of versions (index
reordering, next) to be empirically evaluated and be part of the
autotuning framework.

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of
generic versions are developed and parametrized for
performance. The parameters are autotuned (empirically) to find
“best” kernels for specific size.

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and
Then, , or omitting the E subscript
 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is
dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product
structure, we can decompose dofs and quadrature point indices in
logical coordinate axes
 i = (i1, …, id), j = (j1, …, jd), k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd.

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below
● Evaluations of M times V, referred as equations (3) & (4) below

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM
simulations, can be expressed through tensors. Examples are
computation of FE matrices and SpMV products expressed as
generalized tensor contractions. Contractions by the first index
can often be represented as tensor index reordering plus gemm,
which is a key factor to achieve high-performance. We present
ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize
tensor contractions, data storage, and parametrization related to
batched execution of large number of small tensor contractions.
We apply auto-tuning and code generation techniques to provide
an architecture-aware, user-friendly interface.

Motivation
Numerous important applications can be expressed through
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)
● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface
To provide various interfaces, including one using C++11.
Top level design to provide features similar to the
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir = j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for
something better: code generation, index reordering, and
autotuning will be used, e.g., contractions (3a) - (4f) can be
implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
 Tensor<2,5,2> ts;
 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
 Tensor<2,5,5,gpu_> d_ts;
 // Call a thrust function to set values to 9
 thrust::fill(d_ts.begin() , d_ts.end() , 9);
 // Send back values to the cpu tensor
 ts = d_ts ;
 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
 view<2,10> mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure:
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance
CUBLAS for “small” sizes, currently
tuned for above 32. Current work is
concentrated on kernels for fixed
smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

https://github.com/dmlc/mshadow
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/

