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ABSTRACT
Increased parallelism and use of heterogeneous computing
resources is now an established trend in High Performance
Computing (HPC), a trend that, looking forward to Ex-
ascale, seems bound to intensify. Despite the evolution of
hardware over the past decade, the programming paradigm
of choice was invariably derived from Coarse Grain Paral-
lelism with explicit data movements. We argue that message
passing has remained the de facto standard in HPC because,
until now, the ever increasing challenges that application de-
velopers had to address to create efficient portable applica-
tions remained manageable for expert programmers.

Data-flow based programming is an alternative approach
with significant potential. In this paper, we discuss the Pa-
rameterized Task Graph (PTG) abstraction and present the
specialized input language that we use to specify PTGs in
our data-flow task-based runtime system, PaRSEC. This lan-
guage and the corresponding execution model are in contrast
with the execution model of explicit message passing as well
as the model of alternative task based runtime systems. The
Parameterized Task Graph language decouples the expres-
sion of the parallelism in the algorithm from the control-
flow ordering, load balance, and data distribution. Thus,
programs are more adaptable and map more efficiently on
challenging hardware, as well as maintain portability across
diverse architectures. To support these claims, we discuss
the different challenges of HPC programming and how PaR-

SEC can address them, and we demonstrate that in today’s
large scale supercomputers, PaRSEC can significantly out-
perform state-of-the-art MPI applications and libraries, a
trend that will increase with future architectural evolution.

1. INTRODUCTION
High performance parallel computing is the vehicle through
which scientific discovery through simulation is achieved.
Over the years, parallel machines worthy of the supercom-
puter title have become increasingly more complex, while
the application development process and paradigms have

generally remained the same. As highlighted in [34], the
isomorphism of parallel architectures over the last couple
of decades is one of the major factors for the hegemony
of the flat MPI+X type of programming paradigm. Such
a programming model exposes the underlying architecture
as a simplistic two dimensional space; one dimension being
inter node with MPI as the major programming paradigm,
and one dimension being intra node where a complementary,
shared memory, programming paradigm (e.g., OpenMP, Ope-
nACC, OpenCL, CUDA) is involved. However, the drastic
increase in the number of potential computational resources,
supported by the growth of heterogeneity at all the levels of
the parallel architecture (memory, network, computational
resources), highlight a need for a revolutionary change in
the way algorithms and applications are programmed, an
approach completely orthogonal to the current MPI+X. The
need to be able to expose a dynamic degree of parallelism,
one that can be adapted to the underlying capabilities of
the execution architecture must become one of the drivers
of programming paradigms, language, and runtime research.
Looking more carefully, we can identify multiple sources of
complexity facing the application developers:

The number of processing units (sockets and cores per
socket) has been increasing, providing a higher raw compu-
tational performance, but demanding from the applications
to expose an increased level of parallelism. This is not al-
ways feasible, but even when it is, efficient execution requires
a mapping of work onto compute resources that avoids idle
resources and balances the workload. This challenge, known
as scheduling, has been an active field of research for several
decades and involves particularly difficult problems.

The memory hierarchy has become more complex.
In modern hardware a core may access data from its L1
cache, or caches that it probably shares with other cores in
the same socket, or parts of the RAM that may be controlled
by its local memory controller, or a remote controller. While
any data that resides in local memory – at any level of the
hierarchy – can be accessed by an application that is oblivi-
ous to the hierarchy, such an application will most certainly
face increased latencies in comparison to one that is aware
of the memory hierarchy. On the other hand, developing
applications that take advantage of the memory hierarchy is
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significantly more complex than treating the local memory
as a flat address space with uniform access latencies.

When remote data storage is considered, the picture
becomes even more complex. Some software solutions (most
notably HPF [26]) attempt to remove this source of com-
plexity by providing the application developer with a view
of the globally distributed memory as a single shared ad-
dress space. While this level of abstraction seems desirable,
HPF and similar solutions failed to gain traction in the HPC
community [24]. Other solutions, such as the PGAS lan-
guages [11, 19, 12, 28], offer a partitioned view of the global
address spaces. In this abstraction, the application devel-
oper is aware of the distribution of memory between nodes
and makes explicit references to remote memory, but does
so using language primitives and abstractions.The least ab-
stract programming model is that of explicit message passing
using communication libraries (such as MPI) at the applica-
tion layer. At the time of this writing, this model – where
the whole burden of managing the communication and load
balancing of an HPC application falls on the application de-
veloper – is by far the most widely used programming model
for distributed memory machines.

Heterogeneity of computing resources adds yet an-
other source of complexity in modern hardware. In super-
computers that contain processing resources other than tra-
ditional CPUs – GPUs, APUs, Xeon Phi’s, etc. – applica-
tions must manage these resources in order to harness the
full processing power of the computer. However, accelera-
tors often have a separate address space, so duplicate buffers
must be kept, and explicit copying must be performed by
the application. Synchronization, and, most importantly,
load balancing between the CPUs and the accelerators is
also necessary and can prove to be challenging for achieving
high performance execution. Furthermore, load balancing
requires a different solution in every hardware environment
with a different balance between the processing power of the
CPUs and the accelerators.

Despite all these challenges, application developers still de-
velop applications using a Coarse Grain model where paral-
lelism, message passing, and resource management are ex-
plicitly handled at the application layer. This has been
the case because, until now, doing so delivered a reason-
able level of performance on large scale heterogeneous su-
percomputers. In this paper we present a different approach
to programming hybrid architectures, reviving the concept
of data-flow. We demonstrate that such a modernized ap-
proach, presents a highly efficient alternative programming
paradigm able to tackle all the above mentioned challenges.
The underlying infrastructure is a task-based runtime called
PaRSEC. PaRSEC is an engine for scheduling tasks on dis-
tributed hybrid environments. It offers a flexible API to de-
velop moldable domain specific languages, minimizing the
disturbance on application developers by allowing them to
shift their focus from repetitive architectural details toward
meaningful algorithmic improvements. By calling attention
to one of the domain specific languages supported by PaR-

SEC, the Parameterized Task Graph (PTG), we will stress
the language features supporting portable efficient applica-
tion development that can drastically outperform MPI-based
state-of-the-art applications at scale.

2. CONTROL-FLOW & DATA-FLOW BASED
PROGRAMMING

In the era of serial execution and simple processing units,
implementing an algorithm as a computer program meant
specifying the statements that the program must execute
and the sequential order in which those statements should
execute. In other words, application developers dictated the
control-flow of their program. With the advent of more ad-
vanced hardware capabilities, such as vector instructions,
super-scalar, out-of-order, and Very Long Instruction exe-
cution, the need for explicitly inferring and analyzing the
data-flow of a program arose. Data-flow analysis became
necessary because such hardware features enable different
instructions to execute concurrently and independently, i.e.,
instruction level parallelism. As a consequence, the control
flow of the original serial program is no longer strictly obeyed
– some of the instructions execute out-of-order – but the ap-
plication data-flow must be obeyed in order to preserve the
semantics of the algorithm. However, instruction level par-
allelism was implemented by the hardware and the backend
of compilers and applications remained serial programs with
an explicit control-flow and an implicit data-flow.

As the need for ever-higher performance escalated, archi-
tectures with multiple processing elements appeared. Such
machines were capable of executing different programs, or
instances of the same program, in parallel. Even further
need for performance brought us clusters with distributed
memory. Several programming paradigms were proposed
over the decades to program complex algorithms on parallel
machines, but the one that prevailed was Coarse Grain Par-
allelism (CGP) with explicit message passing (what most
HPC developers colloquially refer to as “MPI”). While this
is the de facto standard, and most researchers and practi-
tioners in the field are comfortably accustomed to it, it is a
peculiar turn of events.

Parallel applications written using CGP are not structured
in a fundamentally different way than serial applications.
In essence, an “MPI application” consists of a long serial
code, with the same control flow structure that a purely
serial application would have, a few calls to the communica-
tion library, and potentially some branches that differentiate
the behavior of the code for different processes of the paral-
lel program. Research [10, 16, 17] has aimed at improving
communication computation overlapping for MPI programs.
Sancho et al. [31] studied the potential of overlapping com-
putation with communication in large-scale codes and found
a high degree of potential overlap. Parts of the application
could be re-factored so the work is performed between the
initiation of a data transfer and the point in the code where
the transferred data is needed. While this appears benefi-
cial for the communication latency, it is detrimental to the
programming paradigm. If there are parts of the application
that could execute when the application is waiting for a par-
ticular data transfer, why is this information not available in
the original formulation of the code? Why does the original
code specify a control-flow between parts of the application
that do not depend on one another? And why does a third
party researcher have to discover these independent code
regions and propose that they be used to overlap communi-
cation with computation, instead of them being immediately
available to the execution runtime?



In a data-flow programming model the units of work in a
program are not ordered as a sequence, but rather are or-
ganized on a graph where each node is a unit of work and
each edge defines precedence constraints between the two
nodes that it connects, due to data-flow between them. If
we define a procedure to be the unit of work, we arrive at
a practical and efficient programming model. In this model,
each procedure that is considered as a unit of work becomes
a task and programs are collections of tasks and the data-
flow between them. Clearly, a runtime engine capable of
scheduling a program represented as tasks (with dependen-
cies to other tasks), would automatically overlap communi-
cation and computation by executing the next available task
at any given time. This is because in a data-flow program-
ming model, tasks are not connected by loops and if-then-
else branches, but by incoming and outgoing data. When a
task is done and its output data is available, the program
itself contains the information regarding which task can use
this data to start its execution. The artificial and unneces-
sary constraints imposed by the control flow of CGP pro-
grams become irrelevant in this context and no deep code
inspection is required to discover which parts of the code
(i.e., tasks) are connected and which are independent.

In the following section, we present the Parameterized Task
Graph (PTG), which constitutes the center piece of the data-
flow based programming model that is supported by our task
scheduling runtime, PaRSEC.

3. PTG SPECIFICATION IN PaRSEC
The original concept of the Parameterized Task Graph was
described by Cosnard et al. [15, 14]. The main idea was
that a program is written as a collection of task classes.
The representation is problem size independent in that each
task class can be described using a (small) finite amount of
bytes, regardless of how many task instances of this task
class will be executed when the program runs. We derived
our specification from this original concept by extending it
with additional constructs, and providing extra information
allowing for a more detailed understanding of the unfolding
of the application execution and the dependencies between
consecutive algorithms.

Each task class contains information that enables the cre-
ation and execution of the task instances. In Figure 1 we
show a sample PTG for a ping-pong operation that contains
two task classes. In the following text we use this example
to explain the different fields that each task class contains.

The class name and the symbolic parameters that are used
in the other fields of the class. In this example the names of
the two classes are “PING” and “PONG” and both use a single
parameter called “s”.

The valid ranges of values for each of the class parameters.
We call this set of parameter ranges the execution space of
the task class. In the example of Figure 1 “PING” has an ex-
ecution space that is larger than that of “PONG” by one, so it
will generate one more task instance, “PING(max_steps-1).”
In contrast with the description of the PTG by Cosnard et
al., PaRSEC allows for arbitrary expressions in the bounds of
the parameters (including calls to external pure functions),
accepts non-linear steps, and uses the execution space more

1 PING(s)
2 s = 0.. max_steps -1
3 : A(s)
4 RW A0 <- A(s)
5 -> A0 PONG(s)
6 READ A1 <- (s != 0) ? PONG(s-1)
7 BODY verify_response(A0 , A1); END
8
9 PONG(s)

10 s = 0.. max_steps -2
11 : A(s+1)
12 RW A0 <- A0 PING(s)
13 -> A1 PING(s+1)
14 BODY /* do nothing on data */ END

Figure 1: PTG for ping-pong.

as an iterator than as a loop. The only limitation imposed
by PaRSEC is that these bounds must be identically com-
puted by all participants in a distributed execution. In the
rest of this document, when we use the term PTG, we will
refer to the augmented form accepted by PaRSEC.

An affinity field. This field is shown in lines 3 and 11
in the example. It is a parameterized symbolic reference
to a data element and specifies that the task instance with
the given parameters should execute on the same physical
location as where the specified data resides. In our example,
task instance “PONG(17)” will execute on the node where the
data element “A(18)” is stored. We discuss this field and its
scheduling implications in greater detail in Section 5.

A set of precedence constraints. PaRSEC schedules
tasks by following 1) true data-flow edges and 2) prece-
dence constraints that do not involve data (for satisfying
anti-dependency constraints and for user-defined execution
throttling purposes). A data-flow edge may involve reading
from initial data (as shown in line 4), or writing to final data.
Alternatively, a flow could specify the transmission of data
to another task class, as shown in line 5, or the reception of
data from another task class as shown in line 12. In addi-
tion, all flows may be conditioned using an arbitrary logical
expression, as shown in line 6. A task instance of any task
class can be used to specify the peer in a data-flow. Finally,
the expression that specifies which task instance is the peer
can be arbitrary, including calls to external C functions.

A set of code regions contained by the keywords “BODY”
and “END” as shown in Figure 1, lines 7 and 14. Each such
region may include source code that will execute verbatim
on the CPU, or accelerators of the node where this task
instance will execute. In other words, this segment contains
the work performed by this task instance, typically using the
input data to produce the output data of the task instance.

As is evident by this specification, the PTG describing a
program is independent of the problem size that will be
solved by the program. This concise representation of the
task graph is a feature unique to PaRSEC among all task-
based execution engines that are currently actively devel-
oped. Other systems, such as TBB [2], CnC [1] and the
OpenMP-4.0 Task API offer parameterized task dependency
specifications at the source code level. However, at run time



these systems enumerate tags and store information per tag
to differentiate between different task instances. These stor-
age requirements grow with the number of task instances,
and constructing the dynamic DAG of dependencies requires
lookups into these structures. PaRSEC maintains the sym-
bolic representation at run time and uses only that to eval-
uate the ancestors and descendants of each task instance.

4. PTG AS A PROGRAMMING PARADIGM
FOR EXASCALE

In the following paragraphs, we contrast the PTG against
two other programming models. First, the Coarse Grain
model with explicit message passing, which is currently the
de facto standard in HPC. Second, the approach taken by
all other actively developed task scheduling runtimes, where
the DAG of task instances is constructed, stored in memory,
and used by the runtime to make scheduling decisions. In
the rest of this document we will borrow the term Dynamic
Task Graph (DTG) from Adve et al. [3] to refer to this
approach.

In an attempt to classify the PTG of different programs
based on how complex it must be in order to express a given
algorithm, we realize that there is a spectrum of categories.
Simpler PTGs can be scheduled efficiently by the runtime,
but can express a limited set of algorithms. Conversely, more
complex PTGs can express arbitrarily complex algorithms,
but incur additional runtime overhead.

4.1 PTG: Performance versus Expressibility
Programs that contain only affine loop nests and array ac-
cesses result in PTGs that are fully algebraic. That is, not
only does the representation of the PTG occupy O(1) space,
but the analysis of the data-flow of a task instance, at run-
time, takes O(1) time. Such PTGs can be generated au-
tomatically from compilation tools that perform polyhedral
analysis, such as the front-end compiler of PaRSEC [9], but
the set of algorithms that can be expressed using only affine
loops and array accesses is limited.

Close to the other end of the spectrum, one can create PTGs
for highly dynamic applications. Such PTGs cannot encap-
sulate the behavior of the program a priori, since it is dy-
namic, and therefore must keep dynamic meta-data struc-
tures that are updated and consulted at run-time to enable
the program to change behavior based on dynamically gen-
erated program data. Unlike the fully algebraic PTG of the
affine codes, fully dynamic PTG can spend an unbounded
amount of time building and traversing dynamic meta-data
in memory.

In between these extreme cases there are PTGs whose com-
plexity matches that of applications that are dynamic, but
obey some patterns. An example from this category is a
binary tree reduction algorithm. The shape and size of the
tree depends on the problem size in ways that cannot be
expressed with a closed formula. Figure 2 shows the part
of the PTG for a binary reduction operation that specifies
the most common task. Although the PTG is not affine, it
still contains a small number of task classes, and most task
instances will be of the class that describes a node in the
middle of the tree (i.e., the type of task that reduces its two

inputs and passes the result to the next task). These tasks
have well formed inputs and outputs that can be computed
programmatically once the parameters are instantiated by
runtime computed static expressions.

4.2 Parameterized Task Graph (PTG) versus
Dynamic Task Graph (DTG)

As one can observe, in Figure 2, the execution space of the
task class is dynamically determined through calls to the
arbitrary functions count_bits(), compute_offset(), and
log_of_tree_size(), and so are the data-flows. However,
the task class has a very limited set of possible data-flows,
which are known a priory. The total number of task classes is
also known a priori (i.e., there are exactly three task classes
in the PTG of the binary tree reduction). This is in con-
trast with the Dynamic Task Graph (DTG) approach taken
by all other actively developed task execution runtimes. In
the DTG approach, the DAG connecting the individual task
instances for a given execution is completely unknown before
it is discovered, expanded in memory, and traversed at run-
time in order to make scheduling decisions. This has several
drawbacks that the PTG is not susceptible to.

The memory requirements for storing a DTG grow with
the problem size. In contrast, the PTG for the binary tree
reduction will contain the same three task classes, and those
task classes will require the same amount of memory whether
the tree being reduced has two leaves, or two million leaves.

A skeleton program that “submits” the tasks (i.e., inserts
them in a queue) must be used in runtimes following the
DTG approach, so that the runtime can detect the tasks that
should be scheduled and the dependencies between them. In
the case where PaRSEC uses a PTG with lookups to meta-
data a skeleton program must also run at the beginning of
the execution to populate this meta-data. However, in the
case of DTG, the skeleton does not merely populate some
meta-data that depend on input parameters. DTG based
runtimes assume nothing about the shape of the DAG. In-
stead, they need to record the pointers to the program data
that is read and modified by each task. Then the runtime
must use these pointers, for each newly discovered task, to
identify the previous task that read or modified the same
data, in order to build the DAG that represents the execu-
tion of the program. This is clearly a more time-consuming
operation than what is needed in PaRSEC.

A fixed size window of task instances that is stored in
memory at any given time can be used by DTG runtimes to
throttle the task submission, so that the memory consump-
tion is remedied. However, this does not come without a
price. Since the skeleton program is a serial program with
a fixed control flow, an arbitrarily set window size W will
prevent the discovery of available tasks when these tasks
happen to be more than W tasks away, based on the control
flow ordering.

Consider the pseudo-code shown in Figure 3. This code
defines W chains of tasks. Each chain is completely inde-
pendent from the others, but within each chain, each task
has to wait for the one before it. This behavior is depicted,
graphically, by the DAG of this program, shown in Figure 4.



BT_REDUC(tree , step , i)
tree_count = count_bits(NT)
tree = 1 .. tree_count
max_step = log_of_tree_size(NT, tree)
step = 1 .. max_step
i = 0 ..(1<<(max_step -step))-1
offset = compute_offset(NT, tree)

: dataA(offset+i*2,0)

READ A <- (1== step) ? A REDUCTION(offset+i*2)
<- (1!= step) ? B BT_REDUC(tree ,step -1,i*2)

RW B <- (1== step) ? A REDUCTION(offset+i*2+1)
<- (1!= step) ? B BT_REDUC(tree , step -1, i*2+1)
-> (( max_step !=step) && (0==i%2)) ? A BT_REDUC(tree , step+1, i/2)
-> (( max_step !=step) && (0!=i%2)) ? B BT_REDUC(tree , step+1, i/2)
-> (max_step ==step) ? C LINEAR_REDUC(tree)

BODY int j; for(j=0; j<NB; j++){ REDUCE( A, B, j ); } END

Figure 2: PTG for main task class of binary reduction.

for(i=0; i<W; i++)
Task1( RW:Data[i][0] );
for(j=1; j<c*W; j++)

Task2( R:Data[i][j-1], W:A[i][j]);

Figure 3: Code that creates independent chains.

A scheduling engine that follows the control flow of the serial
program of Figure 3 is unable to discover any of the available
parallelism, as it has to wait until the completion of the
sequential execution of each chain of c∗W tasks before it can
discover the tasks of the next chain. In contrast, PaRSEC

will immediately recognize that each chain is independent
from the rest, and schedule them in parallel.

Figure 4: DAG for the independent chains.

The PTG representation of this program is shown in Fig-
ure 5. The lack of dependency between chains can be seen in
the PTG, since there is no data flow from any task Task1(i)
or Task2(i, j) to a task Task1(i′) or Task2(i′, j′) for i 6= i′.
That is, no precedence edge crosses chains. As a conse-
quence of this difference in scheduling decisions, a system
that uses a Dynamic Task Graph and a window W will re-
quire a number of steps to complete the execution of the
example program equal to:

SDTG = c ∗W + (W − 1) ∗ (c− 1) ∗W

Task1(i)
i = 0..W-1
: Data(i,0)
A <- Data(i,0)

-> A Task2(i,1)
BODY ... END

Task2(i,j)
i = 0..W-1
j = 1..c*W-1
: Data(i,j)
A <- (j == 1) ? A Task1(i)

<- (j > 1) ? A Task2(i,j-1)
-> (j < c*W-1) ? A Task2(i,j+1)
-> Data(i,j)

BODY ... END

Figure 5: PTG for the independent chains.

This is the case because the first chain will take c ∗W steps
to execute and then all remaining W −1 chains will have W
tasks that were discovered and executed in parallel with the
previous chain, and (c−1)∗W tasks that will execute serially.
Note that this will be the case even if there are P available
processors (P ≤ W ). In contrast, PaRSEC can keep all P
processors busy at all times and finish the execution in the
following number of steps:

SPTG =
c ∗W 2

P

Thus, on a machine with P processors, PaRSEC will execute
this code with a speedup of O(P ):

Speedup =
SDTG

SPTG
= P ∗ (1− 1

c
+

1

c ∗W )

It is unlikely that a production application would exhibit
a pattern as adversarial as this, and reach such a dramatic
asymptotic difference between a PTG based runtime and a
DTG with fixed window system. However, the demonstra-
tion above serves as a theoretical proof that some potential
parallelism can remain hidden to the DTG exploration of the
DAG when considering reasonable memory limitations. In



contrast, the PTG model always discovers the same amount
of parallelism as a DTG approach with an infinite window,
but without the heavy memory requirement, or the high
overheads of the sequential program skeleton.

Adherence to control flow, or freedom from it thereof,
is another major difference between PaRSEC’s meta-data
driven PTG and alternative approaches that build the Dy-
namic Task Graph. In 1993, Wolfe [33] proposed a new loop
type, DOANY, to capture the semantics of a loop whose itera-
tions can execute in any order, because they do not depend
on one another in a specific way, but they must run in some
order because their output must be progressively processed
by each new iteration. A good example of this behavior is
a loop that performs multiple matrix-matrix multiply op-
erations (C = C + A ∗ B) such that all iterations use the
same output matrix C (and no iteration uses C as an input
matrix A or B). The DOANY loop has not been adopted by
any popular programming language, because, in a control-
flow dominated world, there is not much benefit from hav-
ing a loop like this. However, a program expressed as a
PTG can declare the loop iterations as independent tasks
that send their output to a reduction tree that performs
the C = C + Ci operation for all task outputs Ci. This
case is not just of theoretical importance. This structure of
chained matrix-multiply operations appears multiple times
in the CCSD code of the NWChem [32] package, a state-of-
the-art software package for computation chemistry. As a
consequence, a modified version of the NWChem software
that runs over PaRSEC takes advantage of this flexibility
and achieves better performance than the vanilla NWChem.

4.3 PTG versus Coarse Grain Parallelism with
explicit message passing

Most HPC applications are structured as serial codes that
include communication and synchronization calls to perform
explicit message passing. Most such programs execute iden-
tical instances of the code across all nodes of a parallel
machine and the more sophisticated applications have if-

then-else branches that depend on process id (rank) to
express divergent behavior between different nodes. Such
applications are colloquially referred to as “MPI applica-
tions” and many computational scientists use the term “MPI

programming paradigm.” The elevation of the communica-
tion layer to a programming paradigm status in the mind of
practitioners is telling. The actual programming paradigm
is Coarse Grain Parallelism with explicit message passing
(CGP), since the whole application is parallelized and the
message passing is explicitly inserted in the application layer.

Control flow based limitations plague the CGP model,
as we discussed in 2. Since the application is structured as
a serial code, it has to order its work in units of computa-
tion that follow one another even if they are not dependent
on each other. When such independent units of work ex-
ist, they will often be used to overlap communication and
computation. However, they cannot be used to dynamically
adjust the level of parallelism. In the PTG programming
model, if at some point in the execution of an application
the available parallelism increases, more tasks become avail-
able and the runtime can efficiently employ more computing
resources. In the CGP model, the number of processes is
fixed and even in the case of hybrid MPI +threads applica-

tions, a dynamically adjusting number of threads have yet
to show significant penetration in the community.

Idle time is almost inevitable when a parallel application is
designed at a coarse grain level, and there are logical stages
that need to complete for the application to move to the next
stage. Figure 6 shows, on the top, the execution trace of a
QR factorization implemented in ScaLAPACK, and on the
bottom, the same factorization in PaRSEC (using the same
problem size, and number of processors). In this figure, gray
areas represent idle time and colored areas represent differ-
ent types of work. Clearly, the coarse grain parallelism used
for ScaLAPACK led to barriers between logical stages of the
code, and these barriers led to idle time due to load imbal-
ance. Expressing such a dynamic and opportunistic load
balance and ordering of computations in the CGP program-
ming model would be extremely tedious. As a consequence,
although the ScaLAPACK library has gone through many
optimization cycles in its decade long existence, it is not until
embracing the data-flow model that programmers were able
to refactor the algorithms with a finer grain parallelism, at
a reasonable engineering cost. The refactored code is sim-
ple enough to be expressed clearly, yet it permits decoupling
the load balance from the programmatic expression of the
algorithm. In the opportunistic execution over PaRSEC, the
idle time is greatly reduced, since the runtime can execute
any available task, and as a result the overall execution time
is improved significantly.
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Figure 6: Execution trace of QR factorization.

Noise in the execution environment – even at very low
overheads – has been shown to have a disproportionately
large detrimental effect to the execution of parallel appli-
cations [20, 21]. Just as in the case of idle time, PaRSEC

has no predetermined schedule, or stages, so it can absorb
noise by dynamically adapting the execution of tasks to the
availability of compute resources.

Communication-computation overlapping has been a
topic of research for coarse grain applications, and devel-
opers have to take special care to achieve this behavior in
their codes (see “Issues” in [27]). In the case of the PTG,
communication is implicit. As soon as the execution of a
task completes, its output data can start being transferred,
while other available tasks are being scheduled by the run-
time. Thus, overlapping takes place automatically.



The memory hierarchy in modern machines is complex
and has multiple layers, from shared and private caches
to main memory that exhibits Non-uniform memory ac-
cess (NUMA). CGP applications are often oblivious to this
structure; a typical deployment runs one process per core
of the machine, with little regard to the hardware topology.
Even when a CGP application embeds some support for a
multi-tiered memory hierarchy, the resultant program loses
in portability: the number of levels and the neighboring re-
lationship between processes is hardcoded. More advanced
designs include threads through solutions such as OpenMP,
but are thereby dependent on the capacity of the compiler
to generate code that employs the memory hierarchy effi-
ciently; a challenge that has proven difficult in practice. In
contrast, the PTG representation does not hardcode the di-
vision of the parallel workload onto the resources. Instead,
the scheduling of the expressed parallelism is delegated to
the runtime which manages all compute resources outside
the view of the programmer. Since PaRSEC makes all the
dynamic scheduling decisions, it is fully aware of the re-
source each task executed on. Given this information and
the data-flow information from the PTG, PaRSEC is able
to schedule tasks so that reuse of local memory resources
is achieved, and cross traffic between memory banks is only
allowed when some computing unit is idle.

Heterogeneity of computing resources creates manage-
ment challenges for coarse grain applications and makes the
challenge of load balancing even more difficult. In the case
of PaRSEC, both challenges are mitigated by the runtime,
since the management of data is performed implicitly by the
runtime and load balancing is achieved through dynamically
adapting the task scheduling to the available workload and
available computing resources.

Programmability is a subjective issue. Implementing a
parallel application using an imperative language such as C
or FORTRAN in conjunction with MPI has a low startup
overhead since these are well known technologies. In con-
trast, PaRSEC is new in the community and so is the con-
cept of writing large applications using a PTG. However,
implementing a parallel algorithm with particularly complex
data-flow patterns can be easier if the PTG approach is used
rather than coarse grain parallelism. A case in point: the
Hierarchical QR Factorization Algorithms presented in [18]
have only been implemented in PTG, because the authors
deemed the PTG programming model to be easier for this
problem than CGP. The importance of HQR becomes ev-
ident when one compares the superior performance of this
algorithm when compared to the traditional QR factoriza-
tion – as demonstrated in Figure 7

It may initially seem easier to write a parallel application us-
ing the CPG programming model than using a PTG. How-
ever, writing a CPG application that addresses all the afore-
mentioned challenges as effectively as they are addressed by
PaRSEC is becoming increasingly difficult, as is becoming
evident by the performance success stories of PaRSEC.

5. TASK AFFINITY AND GRAPH SCHEDUL-
ING

Task scheduling on multiprocessor systems is a well-studied
problem in parallel processing. Kwok et al. [25] offer a thor-

ough survey of the literature for the interested reader. Find-
ing an optimal schedule is an NP-complete problem in gen-
eral, therefore most research has focused on efficient heuris-
tics and approximation algorithms.

In PaRSEC we took a different approach. As the DAG of
tasks is never available as a whole, other mechanisms for effi-
cient scheduling must be involved, mechanisms that require
less global knowledge. The runtime reacts to the availabil-
ity of new ready tasks and tries to schedule them on the
most appropriate computing resources. The user-provided
task affinity clues have little impact on the execution within
a node, they are used to map tasks onto different compute
nodes. As a result, from the perspective of each node, the
effort of scheduling tasks locally is independent of the ef-
fort on other nodes. Fortunately, the state of the computing
resources, together with the knowledge of ready tasks, pro-
vides enough information to allow for simple, yet efficient,
scheduling algorithms. By default, PaRSEC includes several
scheduling algorithms (that a user can choose from) that
try to optimize the following heuristics: (a) memory local-
ity; (b) starvation minimization; and (c) user defined task
priorities. However, even smarter scheduling strategies can
be envisioned by extending the scheduler knowledge of fu-
ture tasks using PaRSEC’s ability to examine ancestor and
descendant tasks in the symbolic execution DAG. To un-
derstand the importance of examining ancestor and descen-
dant tasks symbolically, consider the task “Task2(37,190)”
from the PTG in Figure 5. By evaluating the symbolic ex-
pressions in the PTG, PaRSEC knows that this task has
“Task2(37,191)” as its descendant, or no descendants if
the condition “j < c*W-1” is false. This knowledge is ob-
tained without traversing any in-memory data structures,
since PaRSEC does not store the dynamic DAG of tasks in
memory. It is obtained by setting the parameters “i” and
“j” to 37 and 190 respectively, and evaluating the symbolic
expressions; and this is done regardless of the state of the
execution and without the need for the runtime to first “dis-
cover” those tasks. In PaRSEC, all possible tasks can be
examined at any time.

Memory locality is maximized by maintaining a hierarchy of
local queues of ready tasks that maps the memory hierarchy
of the computing node (i.e., typically a queue per core, one
shared per socket, one shared for the entire node). This
heuristic guarantees some level of locality for the following
reason. Consider that task Ta enabled task Tb by producing,
as output, the data element D that Tb needs as input. Since
ready tasks are stored in local queues by this scheduling
algorithm, and since Tb was enabled by Ta, the two tasks
will go into the same queue and therefore run on the same
hardware resource.

Starvation minimization is achieved through the use of shared
task queues across the node. Clearly, this criterion is anti-
thetical to the memory locality criterion. A good balance
is achieved in PaRSEC by using a hybrid approach. Short
local queues, that improve locality, are used to store ready
tasks and when these queues are full, additional ready tasks
are stored in shared queues, that reduce starvation.

Finally, PaRSEC includes a variety of algorithms for schedul-
ing tasks based on user provided priorities. Priorities can be



arbitrary expressions, providing the developer with a versa-
tile tool for affecting scheduling. This approach is useful
for algorithms that are regular and well understood by hu-
man developers, and where there is a clear bijection between
priorities and the execution critical path.

6. RELATED WORK
Multiple task based execution solutions are being currently
actively developed [1, 2, 4, 6, 7, 8, 13, 30, 36]. While their
level of similarity with PaRSEC varies, none of them sup-
ports the PTG programming model. They all rely on the
Dynamic Task Graph of the task instances. These systems
allow the generation of asynchronous tasks that are sched-
uled by the runtime, but use in-memory structures that grow
with the number of task instances to detect the dependencies
between individual task instances. The PTG approach, dis-
cussed in this paper, enables the declaration of parameter-
ized dependencies between task classes without enumerating
individual task instances.

PGAS languages [11, 19, 12, 28] eliminate explicit message
passing and offer high programmability. However, these ap-
proaches put too much of the burden on the compiler and
have yet to consistently deliver high performance at scale.
Also, PGAS languages either do not support tasks, or sup-
port a limited form of fork-joint task parallelism.

Charm++ [22, 23] proposes a rich programming language
for parallel computing that tries to cope with the issues
related to the traditional Coarse Grain Model, by oversub-
scribing execution resources. An extension of this Charm++
language, Structured Dagger, provides support for chares
(tasks) linked through structured control flow dependencies.
One major difference with PaRSEC is that the flow of data
between these chares is defined through explicit message
passing instead of providing the flexibility of the parametric
definition of data dependencies.

PYRROS is a parallel programming tool developed in the
90’s by Yang and Gerasoulis [35]. While the language used to
specify tasks and their dependencies is semantically equiva-
lent to the PTG, PYRROS differs from PaRSEC fundamen-
tally in that it is a static graph scheduling tool. Specifically,
it examines the DAG of execution and tries to find an ap-
proximate solution to the problems of clustering tasks and
mapping the clusters on processors.

In summary, the PTG programming model, as realized by
PaRSEC, differs from existing alternatives in that it allows
applications to be described – in a concise symbolic represen-
tation – as a set of task classes with parameterized data-flow
edges between them and no unnecessary control-flow. Such
a description reveals the most parallelism available on the
particular instantiated problem in a format that allows the
runtime to freely explore the entire execution space.

7. PERFORMANCE EXPERIENCES WITH
PaRSEC

In this section we briefly outline a set of experimental re-
sults from various experiments that demonstrate that PaR-

SEC can (a) scale to large numbers of processing units and
take advantage of multiple accelerators in a highly efficient

way; and (b) outperform state-of-the-art applications and
libraries implemented using Coarse Grain Parallelism with
MPI. Some of these results are from previous publications
and some are from projects that are still a work in progress.
In some experiments we used codes from the DPLASMA and
LibSCI libraries. DPLASMA is a dense linear algebra library
that we have implemented on top of PaRSEC and aims to
provide functionality similar to that of ScaLAPACK. Lib-
SCI is a version of ScaLAPACK that is provided by Cray
and is tuned for Cray machines.
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Figure 7 shows the performance of the Hierarchical QR fac-
torization in PaRSEC [18], along with the more traditional
QR factorization (DGEQRF) found in the DPLASMA li-
brary and the QR factorization found in libSCI. As we dis-
cussed in Section 4.3, HQR is a superior algorithm that only
exists in PaRSEC. However, PaRSEC outperforms the MPI

code by a significant margin, even if we do not take the more
advanced algorithm into consideration. The main reason for
this performance improvement comes from the dynamic re-
balancing of the computation among threads, which reduces
the idle time spent in (unnecessary) synchronization from
communications.
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In Figure 8 we show a strong scaling experiment on a large
scale run. The algorithm tested here is the Systolic QR [5]
that is implemented in the DPLASMA library. The QR fac-
torization from LibSCI is included in the graph for reference.
We see that the MPI implementation stops scaling at about
4,000 cores, while the PaRSEC based solution keeps scaling
all the way to 23,868 cores and beyond. One can note that
expressing a systolic algorithm in a PTG form is natural, as
there is a close match in the concepts between the PTG and
systolic paradigm.
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In Figure 9 we show the weak scaling of the Cholesky factor-
ization when using up to 1024 cores and 192 GPUs (three
per node) simultaneously. Clearly, the performance keeps
increasing steadily and does not taper off even at this scale
of heterogeneous execution. The GPU data transfer and
the inter-node communications are handled automatically
by the PaRSEC runtime, freeing the developer from the te-
dious expression of these operations, and allowing the run-
time to schedule these communications with more freedom
in order to maximize overlap.

 0

 1

 2

 3

 4

 5

 6

 7

16x1 16x2 16x4 16x8

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Nodes x Cores/Node

Execution Time of icsd_t2_8() subroutine in CCSD of NWChem

Original (isolated) icsd_t2_8()
PaRSEC (isolated) icsd_t2_8()

Figure 10: Execution time of NWChem subroutine.

Adapting the Coupled Cluster (CCSD) code of the compu-
tational chemistry package NWChem – that is FORTRAN
77 code automatic generated by the Tensor Contraction En-
gine (TCE) – to PaRSEC has been challenging and it is still
a work in progress. However, we have successfully generated
a PTG from a subset of this code and ran it over PaRSEC.
Figure 10 shows the execution time of one of the most com-
putationally intensive subroutines, in isolation, in the case
of the original code and the PaRSEC version of the code (us-
ing uracil-dimer as input.) In addition to the computation
threads, PaRSEC spawns a thread to handle the communi-
cation. Consequently, there is no entry for the single core
execution for PaRSEC and the entries for 2,4, and 8 cores
use one of the cores for the communication thread and the
remaining for the actual work. The boxes show the fastest
measured execution of the icsd_t2_8() subroutine across
iterations and across nodes and the error bars extend to the
slowest execution across iterations and nodes. As can be
seen in the graph, PaRSEC achieves significantly faster exe-
cution for all core counts although it actually uses one less
core every time.

8. CONCLUSION
There is little doubt that the tools and the programming
methodologies for upcoming HPC systems will eventually
evolve with the hardware architecture. But for our own sake,
and by means of productivity, it is now time for a revolution
rather than an evolution, a drastic shift toward more flexi-
ble and powerful programming constructs that will allow a
more portable experience to applications development and a
smoother transition with every novel architectural trend. In-
stead of settling for small steps forward in the name of safety,
it is now time to take a leap forward, and develop languages
capable of exposing a dynamic degree of parallelism together
with supporting runtime or execution environments able to
use this information in the most constructive and thus effi-
cient way. What we have described in this paper, the PTG,
is a stepping stone toward a more comprehensive description
of parallelism constructs.
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J. Nieplocha, E. Aprà, T. L. Windus, and W. de Jong.
NWChem: A comprehensive and scalable open-source
solution for large scale molecular simulations.
Computer Physics Communications,
181(9):1477–1489, SEP 2010.

[33] M. Wolfe. Doany: Not just another parallel loop. In
Proceedings of the 5th International Workshop on
Languages and Compilers for Parallel Computing,
pages 421–433, London, UK, UK, 1993.
Springer-Verlag.

[34] M. Wolfe. Compilers and More: MPI+X. http:
//www.hpcwire.com/2014/07/16/compilers-mpix/,
2014.

[35] T. Yang and A. Gerasoulis. Pyrros: Static task
scheduling and code generation for message passing
multiprocessors. In Proceedings of the 6th
International Conference on Supercomputing, ICS ’92,
pages 428–437, New York, NY, USA, 1992. ACM.

[36] A. YarKhan, J. Kurzak, and J. Dongarra. QUARK
Users’ Guide: QUeueing And Runtime for Kernels.
Technical report, Innovative Computing Laboratory,
University of Tennessee, 2011.


