
POSTER: Utilizing Dataflow-based Execution for
Coupled Cluster Methods

Heike McCraw∗, Anthony Danalis∗, Thomas Herault∗, George Bosilca∗, Jack Dongarra∗,
Karol Kowalski† and Theresa L. Windus‡

∗Innovative Computing Laboratory (ICL), University of Tennessee, Knoxville
†Pacific Northwest National Laboratory, Richland, WA

‡Iowa State University, Ames, IA

I. INTRODUCTION

Computational chemistry comprises one of the driving
forces of High Performance Computing. In particular, many-
body methods, such as Coupled Cluster methods (CC) [1] of
the quantum chemistry package NWCHEM [2], are of particular
interest for the applied chemistry community.

With the increase in scale, complexity, and heterogeneity
of modern platforms, traditional programming models fail to
deliver the expected performance scalability. On our way to
Exascale, we believe that dataflow-based programming models
– in contrast to the control flow model (e.g., as implemented
in languages such as C) – may be the only viable way for
achieving and maintaining computation at scale.

In this paper, we discuss a dataflow-based programming
model and its applicability to NWCHEM’s CC methods. Our
dataflow version of the CC kernels breaks down the algorithm
into finer grained tasks with explicitly defined data dependen-
cies. As a result, the serialization imposed by the traditional,
linear algorithms can be transformed into parallelism, allowing
the overall computation to scale to much larger computational
resources. We build this experiment using the Parallel Runtime
Scheduling and Execution Control (PARSEC) framework [3] –
a task-based dataflow-driven execution engine – that enables
efficient task scheduling on distributed systems.

II. COUPLED CLUSTER THEORY OVER PARSEC

Utilizing task scheduling systems, such as PARSEC in
order to execute NWCHEM’s CC codes is not trivial. The CC
code is neither organized in pure tasks – i.e., functions with
no side-effects to any memory other than arguments passed
to the function itself – nor is the control flow affine (e.g.
loop execution space has holes in it; branches are statically
undecidable since their outcome depends on program data, and
thus it cannot be resolved at compile time). However, while
the CC code is neither affine, nor statically decidable, all the
program data that affects the behavior of CC is constant during
a given execution of the code. Therefore, the code can be
expressed as a parameterized Directed Acyclic Graph (DAG),
by using lookups into the data of the program.

To create a PARSEC-enabled version of one of the >60
CC subroutines – icsd_t1_2_2_2() – we decomposed it
into two steps. The first step traverses the execution space and
evaluates all IF branches, without executing the actual com-
putation kernels (SORTs, matrix-multiply kernels (GEMMs)).
This step uncovers sparsity information by performing all the
lookups into the program data that is involved in the IF

branches prior to the computation, and stores the results in
new custom meta-data vectors. Since the data of NWCHEM

that affects the control flow is immutable at run-time, this first
step only needs to be performed once.

In addition to the first step, we created a parameter-
ized representation of the DAG called Parameterized Task
Graph (PTG) [4]. This PTG includes lookups into our cus-
tom meta-data vectors populated by the first step, so that
the execution of the modified subroutine over PARSEC per-
fectly matches the original execution of icsd_t1_2_2_2().
Fig. 1 shows one chain (of a total of 12) from the
DAG generated by executing the PARSEC version of the
subroutine, using uracil-dimer (in 6-31G basis set com-
posed of 160 basis set functions) as the input molecule.

inB4(23)

GEMM(23)

ADD_RESULT_IN_MEM(0)

inB4(15)

GEMM(15)

GEMM(16)

DFILL(0)

GEMM(0)

inB4(7)

GEMM(7)

GEMM(8)

GEMM(6)

GEMM(14)

GEMM(22)

inB2(4)

GEMM(4)

inB2(2)

GEMM(2)

inB2(0)

GEMM(1)

inB4(16)

GEMM(17)

inB4(11)

GEMM(11)

inB4(10)

GEMM(10)

inB4(9)

GEMM(9)

inB4(8)

inB4(6)

inB4(5)

GEMM(5)

inB4(3)

GEMM(3)

inB4(1)

inB4(17)

GEMM(18)

inB4(18)

GEMM(19)

inB4(19)

GEMM(20)

GEMM(12)

inB4(20)

GEMM(21)

inB4(12)

GEMM(13)

inB4(21)

inB4(13)

inB4(22)

inB4(14)

Legend

inB_X(i)

GEMM(i)

DFILL()

ADD_RESULT_IN_MEM()

Fig. 1. Chain of 24 GEMMs

It is clear that the execution forms
a chain, where each task (a GEMM
in particular) has to wait for the
completion of the previous one
(as well as the task that reads
the necessary input data). In terms
of parallelism and load balancing,
this precisely matches the exe-
cution of the original NWCHEM

code, where a series of GEMM op-
erations, executed sequentially in
a loop, constitutes a single task. In
the case of uracil-dimer there are
12 such independent chains, each
performing 24 GEMMs.

However, the most significant
outcomes of porting CC over PAR-
SEC is (1) the ability of express-
ing tasks and their data dependen-
cies at a finer granularity, and (2)
the decoupling of computation and
communication that enables us to
experiment with more advanced
communication patterns than se-
rial chains. A GEMM kernel per-
forms the operation C = α∗A∗B+β ∗C where A, B, C are
matrices and α, β are scalar constants. Since matrix addition is
an associative and commutative operation, the order in which
the GEMMs are performed does not bare great significance†,
as long as the results are atomically added. This enables us

†Changing the ordering of GEMM operations leads to results that are not
bitwise equal to the original, but this level of accuracy is rarely required, and
is lost anyway when transitioning to different compilers and/or math libraries.

978-1-4799-5548-0/14/$31.00 ©2014 IEEE 296

inB_4(23)

GEMM(23)

BTREE(2, 1, 7)

inB_4(15)

GEMM(15)

BTREE(2, 1, 3)

DFILL(0)

inB_4(7)

GEMM(7)

BTREE(1, 1, 3)

LINEAR_REDUC(1)

inB_2(4)

GEMM(4)

inB_2(2)

GEMM(2)

inB_2(0)

GEMM(0)

BTREE(1, 1, 0)

BTREE(1, 2, 0)

BTREE(2, 1, 4)

BTREE(2, 2, 2)

inB_4(16)

GEMM(16)

inB_4(11)

GEMM(11)

inB_4(10)

GEMM(10)

inB_4(9)

GEMM(9)

inB_4(8)

GEMM(8)

BTREE(2, 1, 0)

BTREE(2, 2, 0)

inB_4(6)

GEMM(6)

inB_4(5)

GEMM(5)

inB_4(3)

GEMM(3)

inB_4(1)

GEMM(1)

BTREE(2, 3, 0) BTREE(1, 3, 0)

BTREE(2, 1, 1)

BTREE(2, 4, 0)

BTREE(2, 3, 1)

LINEAR_REDUC(2)

BTREE(2, 2, 1)

BTREE(1, 1, 1)

BTREE(1, 2, 1)

inB_4(17)

GEMM(17)

BTREE(2, 1, 5)

BTREE(2, 2, 3)

BTREE(2, 1, 2) BTREE(1, 1, 2)

inB_4(18)

GEMM(18)

inB_4(19)

GEMM(19)

BTREE(2, 1, 6)

inB_4(20)

GEMM(20)

inB_4(12)

GEMM(12)

inB_4(21)

GEMM(21)

inB_4(13)

GEMM(13)

inB_4(22)

GEMM(22)

inB_4(14)

GEMM(14)

inB_X(i) GEMM(i)

DFILL() BTREE(t, s, i)

ADD_RESULT_IN_MEM(0)
ADD_RESULT_IN_MEM()

Legend

Fig. 2. Parallel GEMMs and binary reduction of results (each color corresponds to 1 out of 8 nodes that participated in this run)

to perform all GEMMs in parallel and accumulate the results
using a binary reduction tree in PARSEC. Fig. 2 shows the
DAG of one of the 12 “chains” of GEMMs (uracil-dimer input),
generated by PARSEC with binary reduction.

Clearly, in this implementation there are significantly fewer
sequential steps than in the original chain (Fig. 1). Each color
in Fig. 2 corresponds to one of the eight nodes that participated
in this run. While the original CC implementation treats the
entire chain of GEMMs as one “task” and therefore assigns
it to one node, our new implementation of t1_2_2_2()
over PARSEC distributes the work onto different hardware
resources leading to better load balancing and the ability to
utilize additional resources. That is, the PARSEC version is by
design able to achieve better strong scaling (constant problem
size, increasing hardware resources) than the original code.

III. EXPERIMENTAL EVALUATION

The performance data of icsd_t1_2_2_2() for the
original NWCHEM and our dataflow-based implementation
with PARSEC is compared in Fig. 3. As input we used the beta
carotene molecule in 6-31G basis set composed of 472 basis set
functions. For the original version of icsd_t1_2_2_2(),
this results in 48 chains, each computing 48 sequential GEMM’s.
The scalability tests were performed on the Titan Cray-XK7
computer system at Oak Ridge National Laboratory. Each
node has 32 GB of RAM and one 16-core AMD Opteron
(Interlagos) processor running at 2.2 GHz. We performed
performance tests utilizing 1, 2, 4, 8, and 16 cores per node.

1e-05

1e-04

1

10

100

512x1 512x2 512x8 512x16

E
xe

cu
ti

o
n

Ti
m

e
R

a
n

g
e

(s
e

c)

Nodes x Cores/Node

Original NWChem

PaRSEC w/ Reduction

Fig. 3. Performance of original and dataflow version of NWCHEM’s CC

Each (light) blue box represents the execution time range
observed for the 48 slowest processes of the original code
(i.e., only the 48 processes involved in the computation of
the chains‡). The whiskers show the execution time of the
other processes that are idle (since their execution time is on
the order of 100µs). Interestingly however, in the case of the

‡However, more than 48 nodes are needed due to memory requirements.

original code, as we increase the number of processes per node
we observe a dramatic performance degradation. The execution
time of the 48 working processes (i.e., the boxes in the graph)
goes from the order of 1s when using one core per node, to 5s
with two cores, to 20s with eight and finally to over 50s when
all the cores of each node are running NWCHEM processes.
This behavior demonstrates the inability of the original code
to utilize additional resources to speed up a fixed problem, i.e.,
lack of strong scaling.

The same graph depicts the behavior of our implementation
of the subroutine over PARSEC using the (dark) red boxes,
which represent the entire range from minimum to maximum.
PARSEC uses one process per node and an increased number of
threads per node when additional cores are being used. By de-
sign the PARSEC version of the code uses individual GEMMs as
the unit of parallelism (as opposed to a whole chain of GEMMs)
and thus it is able to utilize more hardware resources. Also,
PARSEC internally uses an additional thread for performing the
communication, so the minimum recommended core count per
node is two.

In terms of absolute time, the PARSEC version of the
code is at best (for 16 cores/node) on a par with the best
performance achieved by the original code (for 1 core/node).
As can be seen in the graph, while the performance of
the original code deteriorates with the increasing number of
resources, the performance of the PARSEC version improves
as the number of cores per node increases. If we compare the
performance of the original versus the modified code when all
the cores per node (or half the cores per node) are used then
our dataflow version outperforms the original by more than an
order of magnitude.

ACKNOWLEDGMENT

This work is supported by the Air Force Office of Scientific
Research under Award No. FA9550-12-1-0476; and used resources
of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] R. J. Bartlett and M. Musial, “Coupled-cluster theory in quantum
chemistry,” Reviews of Modern Physics, vol. 79, pp. 291–352, 2007.

[2] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,
H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Aprà, T. L. Windus,
and W. A. de Jong, “NWChem: A comprehensive and scalable open-
source solution for large scale molecular simulations,” Computer Physics
Communications, vol. 181, pp. 1477–1489, 2010.

[3] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, J. Don-
garra, “DAGuE: A generic distributed DAG engine for High Performance
Computing,” Parallel Computing, vol. 38, pp. 37–51, 2012.

[4] M. Cosnard and M. Loi, “Automatic task graph generation techniques,”
in HICSS ’95: Proceedings of the 28th Hawaii International Conference
on System Sciences. Washington, DC: IEEE Computer Society, 1995.

297

