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Abstract—The generalized minimum residual (GMRES)
method is a popular method for solving a large-scale sparse
nonsymmetric linear system of equations. On modern computers,
especially on a large-scale system, the communication is becom-
ing increasingly expensive. To address this hardware trend, a
communication-avoiding variant of GMRES (CA-GMRES) has
become attractive, frequently showing its superior performance
over GMRES on various hardware architectures. In practice,
to mitigate the increasing costs of explicitly orthogonalizing the
projection basis vectors, the iterations of both GMRES and CA-
GMRES are restarted, which often slows down the solution con-
vergence. To avoid this slowdown and improve the performance
of restarted CA-GMRES, in this paper, we study the effectiveness
of deflation strategies. Our studies are based on a thick restarted
variant of CA-GMRES, which can implicitly deflate a few Ritz
vectors, that approximately span an eigenspace of the coefficient
matrix, through the standard orthogonalization process. This
strategy is mathematically equivalent to the standard thick-
restarted GMRES, and it requires only a small computational
overhead and does not increase the communication or storage
costs of CA-GMRES. Hence, by avoiding the communication, this
deflated version of CA-GMRES obtains the same performance
benefits over the deflated version of GMRES as the standard
CA-GMRES does over GMRES. Our experimental results on
a hybrid CPU/GPU cluster demonstrate that thick-restart can
significantly improve the convergence and reduce the solution
time of CA-GMRES. We also show that this deflation strategy
can be combined with a local domain decomposition based
preconditioner to further enhance the robustness of CA-GMRES,
making it more attractive in practice.

I. INTRODUCTION

The cost of executing software can be modeled as a function
of its computational and communication costs (we ignore
the potential overlap of the computation and communication,
which could reduce the cost by a factor of two). For instance,
we can model the computational cost based on the number
of required arithmetic operations, while the communication
includes data movement or synchronization between parallel
execution units, as well as data movement between the levels
of the local memory hierarchy. On modern computers, the
communication is becoming increasingly expensive compared
to the computation, in terms of both time and energy con-
sumption. It is critical to take such hardware trends into
consideration when designing high-performance software for
new and emerging computers.

The Generalized Minimum Residual (GMRES) method [13]
is a popular Krylov subspace projection method for solving a
large-scale nonsymmetric linear system of equations, Ax = b.

To address the current hardware trend, the techniques, which
were originally proposed as a s-step method [21], have
been adapted to avoid communication of GMRES in recent
years [5]. We studied the performance of this communication-
avoiding variant of GMRES (CA-GMRES) on multicore CPUs
with multiple GPUs on a single compute node [23] and on a
hybrid CPU/GPU cluster [25]. Such a hybrid CPU/GPU archi-
tecture is becoming popular in high-performance computing
due to their potential of enabling exascale computing [3], but
the same hardware trend exists and its communication cost
is becoming increasingly expensive. Our performance results
demonstrated that CA-GMRES can obtain speedups of about
2× over GMRES by avoiding the communication on such
hybrid architectures (using up to 120 GPUs).

Using GMRES or CA-GMRES, the solution converges with
nonincreasing residual norm. However, each basis vector is
explicitly orthogonalized against the previous basis vectors,
and as the subspace dimension grows, it becomes increasingly
expensive to generate a new basis vector in terms of its
computation, communication, and storage requirements. To
mitigate this increasing costs of generating a large projection
subspace, the iteration is generally restarted after computing
a fixed number of basis vectors. Since the dimension of the
subspace is now limited, restarting the iteration often slows
down, or even prevents, the solution convergence. To mitigate
this convergence slowdown of GMRES, several techniques
have been proposed that deflate an approximate eigenspace
associated with the smallest eigenvalues of the coefficient
matrix A (such eigenspace is known to slow down the GM-
RES’s convergence [18]). To examine the effectiveness of
deflation techniques on CA-GMRES, in this paper, we adapt
a thick restarting strategy [10] and integrate two deflation
techniques into CA-GMRES, implicit deflation [1] and implicit
restart [9]. Our experimental results demonstrate that thick-
restart requires only a small increase in the computation, while
greatly improving the convergence of CA-GMRES. These
deflation strategies are mathematically equivalent to those
proposed for GMRES and do not increase the communication
or storage cost of CA-GMERS. As a result, the deflated
variant of CA-GMRES obtains the same performance benefits
over the deflated GMRES as the standard CA-GMRES does
over GMRES, improving the robustness of CA-GMRES, and
making it more attractive in practice.

Recently, we proposed a domain decomposition (DD) based



preconditioning framework that have shown to work seam-
lessly with a CA-Krylov method [25]. We observed that in
many cases, the preconditioner is effective in reducing both
the iteration counts and the total solution time. This itself is a
significant contribution since one major reason why the CA-
Krylov method has not been widely adapted in practice is the
lack of such preconditioners. However, this DD preconditioner
is local in nature, and its effectiveness may degrade on a
larger number of subdomains. Since the deflation strategy
studied in this paper can be combined with any preconditioner,
it may provide a simple framework to introduce a global
preconditioner on top of the local DD preconditioner. We
present several experimental results to examine this potential.

The rest of the paper is organized as follows; in Sec-
tion II, we first review CA-GMRES and briefly describe
our implementation on a hybrid CPU/GPU cluster. We then
outline, in Section III, our thick-restarted CA-GMRES, and
in Sections IV and V, respectively, we describe the implicit
deflation and implicit restart strategies, which our thick-restart
strategy uses to generate its deflation subspace. Finally, in
Section VI, we study the effects of deflation on the perfor-
mance of CA-GMRES with and without preconditioning on
a hybrid CPU/GPU cluster. We provide our final remarks in
Section VII.

We use the following notations in the rest of the paper:
the j-th column of a matrix A is denoted by aj , while
Aj1:j2 is the submatrix consisting of the j1-th through the
j2-th column of A, Ai1:i2,j1:j2 is the submatrix consisting
of the i1-th through the i2-th rows of Aj1:j2 , and ai,j is
the (i, j)-th element of A. We use [x; y] to represent the
vector with a vector x stacked on top of another vector y,

i.e., [x; y] =

[
x
y

]
, while 0k is a k-length vector whose

elements are all zeros, and ek is the k-th column of an identity
matrix, whose dimension should be clear from the context. The
dimension of the coefficient matrix A is denoted by n.

II. COMMUNICATION-AVOIDING GMRES

GMRES’s j-th iteration generates a new basis vector qj+1

for a Krylov projection subspace [13]. This is done by
first multiplying the previously-generated basis vector qj
with the sparse coefficient matrix A (SpMV), and then or-
thonormalizing (Orth) the resulting vector against all the
previously-orthonormalized basis vectors q1,q2, . . . ,qj . This
explicit orthogonalization of the basis vectors becomes in-
creasingly expensive as the iteration proceeds. To avoid the
increasing cost of computing a large projection subspace,
the iteration is restarted after computing a fixed number
m + 1 of basis vectors. Before restart, GMRES updates
the approximate solution x̂ by solving a least-squares prob-
lem g := arg mint ‖c−Ht‖2, where c := QT1:m+1r =
[‖r‖2; 0m], r is the residual vector (i.e., r = b − Ax̂),
H := QT1:m+1AQ1:m, and the approximate solution is updated
by x̂ := x̂ + Q1:mg. Then, the iteration is restarted with the
new residual vector r as the starting vector (i.e., q1 = r/‖r‖2).

The matrix H , a by-product of the orthogonalization pro-
cedure, has an upper Hessenberg form. Hence, the least-
squares problem to update the approximate solution can be
efficiently solved, requiring only about 3(m+ 1)2 floating-
point operations (flops). On the other hand, for an n-by-n
matrix A with nnz(A) nonzeros, SpMV and Orth require
a total of about 2m · nnz(A) and 2m3n flops over the
m iterations, respectively (i.e., n, nnz(A) � m). Hence,
the GMRES’s computational cost is typically dominated by
SpMV and Orth. In addition, SpMV and Orth dominate the
communication cost of GMRES. This includes point-to-point
messages or neighborhood collectives for SpMV, and global
all-reduces in Orth, as well as data movement between the
levels of the local memory hierarchy (for reading the sparse
matrix and for reading and writing vectors, assuming they do
not fit in cache). On modern computers, such communication
is becoming increasingly expensive compared to computation,
and as a result, SpMV and Orth often dominate the solution
time of GMRES. CA-GMRES [5] aims to reduce this commu-
nication by redesigning the algorithm and replacing SpMV and
Orth with three new kernels – matrix powers kernel (MPK),
block orthogonalization (BOrth), and tall-skinny QR (TSQR)
– that generate and orthogonalize a set of s basis vectors all at
once. In theory, CA-GMRES generates these s basis vectors
with the communication cost that is no more than that of a
single GMRES iteration (plus a lower-order term) [7].

The combined cost of MPK, BOrth, and TSQR to generate
the basis vectors typically dominates the total cost of CA-
GMRES. To accelerate the solution process, our CA-GMRES
implementation on a hybrid CPU/GPU cluster generates the
basis vectors on the GPUs, while each MPI process re-
dundantly solves the least squares problem on the CPUs.
We use either a matrix reordering or a graph partitioning
algorithm to distribute both the matrix A and the basis
vectors q1,q2, . . . ,qm+1 over the GPUs in a 1D block row
format (see Section VI). A more detailed description of our
implementation can be found in [23], [25].

III. THICK-RESTARTED CA-GMRES

Restarting slows down the solution convergence because
some useful information (e.g., eigenspace associated with the
smallest eigenvalues) is discarded and must be recomputed
during each restart loop. In this section, we outline the thick
restart strategy to improve the solution convergence of CA-
GMRES by retaining some of the useful information at each
restart. In particular, this strategy restarts the iteration with
a few approximate eigenvectors, called Ritz vectors, of A in
addition to the current residual vector r. It is based on the
application of the Krylov Schur method for solving an eigen-
value problem [17] to GMRES to solve a linear system. Our
approach is mathematically equivalent to the implicit deflation
and implicit restart [1], [9]. However, our implementation
is based on a thick restart algorithm, and is different from
these approaches [1], [9] which are based on the implicitly
restarted Arnoldi algorithm [15]. A thick restarted variant of



CA-GMRES(A, M , b, s, m):
repeat (restart-loop)

1.Generate Krylov Basis: O(m · nnz(|A|) +m2n) flops on GPUs.
(x̂ = 0n, q1 = r/‖r‖2, r = b−Ax̂, and k = 0, initially)
1.1. Initialization

Sparse Matrix Vector Multiply (SpMV):
qk+1 := Aqk

Orthogonalization (Orth):
orthonormalize qk+1 against Q1:k

1.2. Restart-loop
for j = k + 1, 1 + s, . . . ,m do

Matrix Powers Kernel (MPK):
for k = j, j + 1, . . . , j + s− 1 do
qk+1 := Aqk (SpMV)

end for
Block Orthonormalization (BOrth):

orthogonalize Qj+1:j+s against Q1:j , i.e.,
Qj+1:j+s := Qj+1:j+s −Q1:jR1:j,j+1:j+s

Tall-Skinny QR (TSQR) factorization:
orthonormalizing Qj+1:j+s against each other, i.e.,
Qj+1:j+sRj+1:j+s,j+1:j+s = Qj+1:j+s

Projected Matrix Computation
compute Hj:j+s−1,j+1:j+s

from H1:j,1:j+1 and R1:j+s,j+1:j+s

end for

2.Restart: O(m2) and O(nmk) flops on CPUs and GPUs, respectively.
2.1 solve g = mint ‖Ht−QT

1:m+1r‖2, and
compute x̂ = x̂+Q1:mg and r = b−Ax̂

2.2 compute k Ritz vector v1,v2, . . . ,vk to keep
(see Sections IV and V)

2.3 orthogonalize [V1:kr] to generate Q1:k+1

2.4 compute H1:k+1,1:k

until solution convergence

Fig. 1. Thick-restarted CA-GMRES(s, k,m).

an implicitly-restarted GMRES has been described in [10]. In
this section, we extend that to CA-GMRES.1

We assume that to restart the iteration, the approximate
eigenpairs, called Ritz pairs, (θi,vi), have been generated such
that their residual vectors, Avi − θivi, align with the current
residual vector, r, of the linear system (i.e., r = b−Ax̂). We
show two approaches to generate such vectors in Sections IV
and V. When k such vectors are kept at restart, they satisfy
the following relation:

AV1:k = [V1:k, r̄] T1:k+1,1:k, (1)

where V1:k are the k kept Ritz vectors, T1:k+1,1:k =[
Σ1:k,1:k; tT

]
, Σ1:k,1:k is a diagonal matrix with the cor-

responding kept Ritz values on diagonal (i.e., Σ1:k,1:k =
diag(θ1, θ2, . . . , θk)), the i-th element of t is equal to the
residual norm of the i-th Ritz pairs (i.e., ti = ‖Avi−θivi‖2),
and r̄ = r/‖r‖2. To restart the iteration, we compute a QR
factorization of the k+1 kept vectors, Q̂1:k+1R̂1:k+1,1:k+1 :=

[V1:kr̄], where Q̂1:k+1 has orthonormal columns, R̂1:k+1,1:k+1

is upper-triangular, and we put the “hat” over the next basis
vectors Q̂1:k+1 to distinguish them from the current basis
vectors Q1:m+1. Then, the relation (1) becomes

AQ̂1:k = Q̂1:k+1Ĥ1:k+1,1:k, (2)

1It was pointed out that similar studies have been independently conducted
in [20].

where Ĥ1:k+1,1:k = R̂1:k+1,1:k+1T1:k+1,1:kR̂
−1
1:k,1:k. When we

encounter a complex Ritz value, we keep its conjugate pairs
to form a real Schur decomposition and avoid the complex
arithmetic.

By their construction (see Sections IV and V), these k + 1
basis vectors Q̂1:k+1 span a Krylov subspace [1], [9], which
can be expanded using MPK, BOrth, and TSQR, as in CA-
GMRES without thick-restart. The projected matrix Ĥ1:k+1,1:k

is expanded correspondingly, using the formula similar to
those in CA-GMRES without thick-restart [5, Section 3.3.4].
The only difference is that when computing Ĥk+1,k+1:k+s, the
(k+1)-th row of Ĥ1:k+1,1:k is no longer in a Hessenburg form.
Hence, extra computation is needed to compute Ĥk+1,k+1:k+s

(i.e., O(sk) flops). In addition since the leading (k + 1)-by-k
block, Ĥ1:k,1:k, of the projected matrix is now fully dense,
the computational cost of solving the least square problem is
slightly increased:

g = arg min
t
‖ĉ− Ĥ1:m+1,1:mt‖2, (3)

where ĉ = QT1:m+1r̄ = [QT1:k+1r̄; 0m−k]. Moreover, a general
eigensolver is needed to compute the eigenpairs of Ĥ1:m,1:m at
restart (e.g., xGEEV instead of xHEEV of LAPACK). However,
these computational overheads are insignificant in comparison
to the cost of generating the basis vectors (i.e., O(m(nnz(A)+
mn) flops). Figure 1 shows the pseudocode of the thick-
restarted CA-GMRES, which is mathematically equivalent to
the thick-restarted GMRES. Aside from the restarting pro-
cedure, the rest of the thick-restarted algorithm is identical
to that of the CA-GMRES algorithm without thick-restart.
In particular, the approximate eigenspace, V1:k, of A is im-
plicitly deflated during BOrth. In Section VI, we present
performance results to demonstrate that thick-restart requires
only an insignificant overhead, while the convergence can be
dramatically improved. As a result, the solution time may be
greatly reduced by thick-restarting the CA-GMRES iteration.

Recently, a CA formulation [2] of a deflation technique [14]
was integrated into a CA variant of the Conjugate Gradient
(CG) method. This formulation is mathematically equivalent
to a classical deflated CG [14], and can be viewed as a
type of preconditioner based on a low-rank matrix, where
a general low-rank subspace is explicitly deflated from each
basis vector (their experiments were based on the low-rank
matrices, which consist of the eigenvectors corresponding to
the smallest eigenvalues of the coefficient matrix, while in our
experiments, we used the thick-restart strategy to implicitly
reflate the approximation to the same eigenspace). In contrast,
by restricting our deflation subspace to a subspace spanned
by the Ritz and residual vectors, thick-restarting strategy only
requires a small computational overhead of recomputing the
Ritz vectors at each restart, and it can implicitly deflate the
subspace during the standard orthogonalization process. Fi-
nally, it has been proposed to exploit data sparsity in the matrix
powers computation by representing a general sparse matrix
as a combination of a low-rank matrix and a remaining matrix
which has a sparsity structure more favorable for MPK [6]. We



are currently investigating a general low-rank preconditioner
for CA-GMRES based on this idea. The deflation techniques
studied in this paper can be combined with such low-rank
preconditioners.

IV. IMPLICIT DEFLATION

Implicit deflation [1] aims to retain some information at
restart by keeping a few Ritz vectors in addition to the new
residual vector, r = v − Ax̂. Before computing the Ritz
vectors, the projected matrix H1:m,1:m is rotated such that
the residual vectors, Avi − θivi, of the Ritz pairs (θi,vi) are
aligned with the residual vector r;

AQ1:m = Q1:mH̄1:m,1:m + h̄m+1,mr̄eTm, (4)

where H̄ = H1:m,1:m − 1
ζ zeTm, h̄m+1,m =

hm+1,m

ζ , z =

QT1:mr, and ζ = qTm+1r. Then, the Ritz pairs are computed
as (θi,vi = Q1:mxi), where (θi,xi) is the eigenpairs of
H̄1:m,1:m;

H̄1:m,1:mX1:m = X1:mΣ1:m,1:m, (5)

where Σ1:m,1:m = diag(θ1, θ2, . . . , θm). Moreover, because of
(4) and (5), the residual vectors of the Ritz pairs satisfy

AV1:m − V1:mΣ1:m,1:m = hm+1,mqm+1e
T
mX1:m.

Hence, the i-th residual norm ti of (1) can be computed
cheaply by ti = hm+1,m|xm,i|. We refer to the thick-restarted
CA-GMRES using these Ritz pairs associated with H̄1:m,1:m

as ID-CAGMRES.

V. IMPLICIT RESTART

Instead of using Ritz vectors, implicit restart [9] restarts the
iteration, using harmonic Ritz pairs (θi,vi = Q1:mxi), where
(θi,xi) is now the eigenpairs of a generalized eigenvalue
problem,

HT
1:m,1:mxi =

1

θi
(HT

1:m,1:mH1:m,1:m + h2m+1,memeTm)xi.

In our implementation, we solve an equivalent standard eigen-
value problem,

(H1:m,1:m + h2m+1,mfeTm)xi = θixi,

where f = H−T1:m,1:mem. In many cases, harmonic Ritz
values provide more accurate approximation to the smallest
eigenvalues than the standard Ritz values do [11]. With the
harmonic Ritz pairs, the residual vectors are now given by

AV1:m − V1:mΣ1:m,1:m

= hm+1,m(hm+1,mV1:mf + qm+1)eTmX1:m, (6)

and the residual norm can be still computed cheaply for
the convergence check. In our implementation, instead of
using (6) to compute the residual norms, we recover the
Arnoldi relation (2) by computing the i-th element ti of the
vector t based on the following equalities:

ti = (Avi − θivi)T r̄

= −θivTi r̄

= −θiR̂T1:i,i(Q̂T1:kr̄),

Name Source n nnz/n
sherman3 UF collection 5, 005 4.0
PDE(1.0275) Trillinos 1, 030, 301 26.5

Fig. 2. Test matrices.

where the second equality follows since (Avi)
T r̄ = 0 [9,

Lemma 5.3], and Q̂T1:kr̄ in the third equality is needed to solve
the least-squares problem (3) at the next restart. Hence, the
residual norms can be computed without significant computa-
tional overhead. We refer to the thick-restarted CA-GMRES
using these harmonic Ritz pairs as IR-CAGMRES.

VI. EXPERIMENTAL RESULTS

We now study the effectiveness of the thick-restart strategy
to improve the convergence and performance of CA-GMRES
with restart. Table 2 lists the two test matrices used for
our experiments. All the experiments were conducted on the
Keeneland system2 at the Georgia Institute of Technology.
Each of its compute nodes consists of two six-core Intel Xeon
CPUs and three NVIDIA M2090 GPUs, with 24GB of main
CPU memory per node and 6GB of memory per GPU. We
used the GNU gcc 4.4.6 compiler and CUDA nvcc 5.0
compiler with the optimization flag -O3, and linked with
Intel’s Math Kernel Library (MKL) version 2011 sp1.8.273
and OpenMPI 1.6.1.

To distribute the matrix among the GPUs, we used a k-
way graph partitioning algorithm of METIS3. The performance
of CA-GMRES depends critically on the orthogonalization
algorithms. For all of our experiments in this paper, we used
the classical Gram-Schmidt process [4] for BOrth and the
Cholesky QR factorization [16] for TSQR. In order to ensure
the numerical stability, we always performed the full reorthog-
onalization for both BOrth and TSQR. To compute SpMV, the
local submatrix of the coefficient matrix A is stored in the
ELLPACKT sparse matrix storage format on each GPU [19].
Though our implementation allows each MPI process to man-
age multiple GPUs on a node, in this paper, we let each process
manage one GPU. In our previous experiments [23], [25],
these configurations gave good performance of CA-GMRES
without deflation. Finally, for solving symmetric eigenvalue
problems, there are several heuristics to select the Ritz pairs
to keep at each restart [22], [24]. For our experiments with
ID-CAGMRES and IR-CAGMRES for solving nonsymmetric
linear systems in this paper, we simply kept the fixed number k
of the Ritz vectors corresponding to the smallest Ritz values,
unless otherwise specified.

Figure 3 compares the convergence history of CA-
GMERS(s,m) with those of ID-CAGMRES(k,s,m) and IR-
CAGMRES(k,s,m), in terms of the residual norm. The test
matrix used for this experiment is called sherman3 and arises
from an oil reservoir simulation. This matrix belongs to the
group of the test matrices used in the original papers [1],
[9], and is available from the University of Florida Sparse

2http://keeneland.gatech.edu/KDS
3www.cs.umn.edu/∼metis

http://keeneland.gatech.edu/KDS
www.cs.umn.edu/~metis
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Fig. 3. Residual norm convergence for sherman3 matrix, 6 GPUs.
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Fig. 4. Residual norm convergence for PDE(1.0275) matrix, 6 GPUs.

Matrix Collection4. Figure 3(a) clearly demonstrates that the
convergence rate can be greatly improved by deflating the
approximate eigenspace. CA-GMRES achieved about the same
convergence using s = 1 and 5, where CA-GMRES is
equivalent to GMRES when s = 1. In all of our experiments,
both implicit deflation and implicit restart strategies obtained
similar improvements. Figure 3(b) shows the convergence
history against time. Using a larger value of s (i.e., s = 5),
CA-GMRES avoids communication, and reduced the iteration
time significantly. The solution time was further reduced by
deflating the approximate eigenspace. Figure 4 compares the
convergence histories for one of the PDE matrices used in our
previous paper [25]. The matrix is symmetric indefinite, and
we see more significant benefits of deflation.

For the rest of this section, we study the effects of de-
flation on the preconditioned CA-GMRES convergence. Our
preconditioner is based on domain decomposition (DD) tech-
niques proposed in [25]. This DD preconditioner is similar
to block Jacobi preconditioner, but each diagonal block is

4http://www.cise.ufl.edu/research/sparse/matrices/

split into smaller diagonal blocks so that the preconditioner
can be applied without requiring any additional commu-
nication from what is already needed by MPK (i.e., the
number of GPUs is equal to the number of subdomains
or diagonal blocks). For our experiments in this paper,
we focused on the right preconditioning, that generates the
right-preconditioned Krylov subspace Km+1(AM−1,q1) ≡
span(q1, AM

−1q1, . . . , (AM
−1)mq1), where M is our DD

preconditioner and q1 is a starting vector. For the inexact
solution of each subdomain problem, we used an ILU(0) pre-
conditioner while diagonal Jacobi preconditioners were used
on both underlap and overlap. Each MPI process computes its
local ILU(0) preconditioner on the CPU, using the ITSOL
package5, copies it to the corresponding local GPU, and
applies the preconditioner using the CuSPARSE triangular
solver at each iteration.

Figure 5 shows the convergence history of the precondi-
tioned CA-GMRES for the PDE matrix. The figure indicates
that, though the convergence rate was significantly improved

5http://www-users.cs.umn.edu/∼saad/software/ITSOL/

http://www.cise.ufl.edu/research/sparse/matrices/
http://www-users.cs.umn.edu/~saad/software/ITSOL/
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Fig. 5. Residual norm convergence for PDE(1.0275) matrix with Preco, 6 GPUs.

using this DD preconditioner, it can be further improved by
deflating the approximate eigenspace. The effectiveness of our
DD preconditioner degraded with a greater step size s. This
is because in order not to increase the communication for
the larger step size, the diagonal blocks of the preconditioner
must be split into smaller blocks. Even when the deflation
technique is used in combination with the DD preconditioner,
the convergence rates still degraded with a larger step size. In
fact, when s = 5 with the deflation, the iteration count was
greater using the preconditioner. This is because the effective-
ness of the deflation depends on the spectrum distribution of
the coefficient matrix A or the preconditioned matrix AM−1.
The PDE matrix A has a few negative eigenvalues. Deflating
the eigenspace associated with these eigenvalues significantly
improves the convergence. In contrast, the spectral distribution
of the preconditioned matrix AM−1 may not be as favorable
for the deflation. In the end, with the overhead of applying
the preconditioner, the solution time was shorter, using only
the deflation technique without the preconditioner, for this
particular test matrix.

Figure 6 shows the convergence histories with different
numbers of subdomains. Our DD preconditioner is local in
nature, and the iteration count of the preconditioned CA-
GMRES often increases with the number of subdomains.
With deflation, the number of iterations was about the same
on 6 and 12 GPUs. However, compared to using 12 GPUs,
both the iteration count and the solution time still increased
on 24 GPUs. Figure 7 shows the results, still using the
preconditioner, but now with different configurations of the
kept Ritz values (i.e., five smallest, four smallest plus one
largest, and three smallest plus two largest Ritz values). In
comparison to keeping just the smallest Ritz values, keeping
the largest Ritz values seems to slow down the convergence.
These results indicate that these largest Ritz values converge
quickly. On the other hand, the smallest Ritz values seem to
converge slowly. Since these Ritz values must be recomputed
during each restart loop, the solution convergence slowed
down. As a result, for this test matrix, it was more effective to

Sma/CASma/ID Sma/IR PDE/CAPDE/ID PDE/IR Pre/CA Pre/ID Pre/IR
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Fig. 8. Breakdown of average restart-loop time (normalized with stan-
dard CA-GMRES), 6 GPUs. In the figure, “Sma” and “PDE” denote the
sherman3 and PDE(1.0275) matrices, respectively, while “CA,” “ID,”
and “IR” respectively denote CA-GMRES, ID-CAGMRES, and IR-GMRES.

keep the smallest Ritz values rather than keeping the largest
Ritz values at restart.

Figure 8 shows the breakdown of the average time spent
generating m + 1 basis vectors and restarting the iteration.
In the figure, “Other” includes the restarting time, and shows
that the thick-restarting based on both the implicit deflation
and the implicit restart slightly increased the restarting time.6

With preconditioning, the relative cost of the thick-restart
increased further since we need to apply the preconditioner
to update the approximate solution (i.e., x̂ = x̂ + W1:mg,
where W1:m = M−1Q1:m and Q1:m is the orthonormal
basis vectors). More specifically, our implementation of CA-
GMRES without deflation is based on a flexible version
of GMRES [12], and saves the preconditioned basis vec-
tors. Hence, without deflation, our CA-GMRES computes

6In our current implementation, the Ritz vectors V1:k are explicitly orthog-
onalized against each other to form (2). The cost of the orthogonalization and
of the thick restarting may be further reduced by, instead of orthogonalizing
the Ritz vectors, orthogonalizing the kept eigenvectors X1:k of the projected
matrix H1:m,1:m [10].
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Fig. 6. Residual norm convergence for PDE(1.0275) matrix with Preco and different numbers of subdomains.
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Fig. 7. Residual norm convergence for PDE(1.0275) matrix with Preco and different configurations of kept Ritz values, 6 GPUs.

H̃1:m+1,1:m := QT1:m+1AW̃1:m, where W̃1:m spans the same
subspace as W1:m, but is generated during MPK and before
BOrth. As a result, the solution can be updated without
an additional application of the preconditioner. Though the
projected matrices H̃1:m,1:m is different from H1:m,1:m for
s > 1, the computed solution is mathematically the same. With
thick-restart, we use H1:m,1:m to update the solution because
the Ritz pairs are computed from H1:m,1:m (see Sections III
through V). Hence, we must update the solution vector based
on x̂ = x̂+M−1Q1:mg, requiring one additional application
of M−1 to the vector Q1:mg. Finally, when k+1 Ritz vectors
are kept at restart, CA-GMRES iterates k less time to generate
m − k additional basis vectors (i.e., the dimension of the
projection subspace is always the same, m). Hence, “SpMV”
and “Orth” times were both slightly reduced, using deflation.
In the end, the thick-restart introduced only a small overhead,
while significantly reducing the iteration count, and the total
solution time of CA-GMRES was reduced using the deflation.

Our focus of the paper is to study the effectiveness of
deflation to improve the robustness of CA-GMRES, while our
previous papers [23], [25] demonstrated the effectiveness and
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Fig. 9. Parallel strong scaling of IR-CAGMRES(5,5,60)’s restart-loop for
PDE(1.0275) matrix.

scalability of CA-GMRES without deflation. Before conclud-
ing this experimental section, we include Figure 9 to show
the scaling of CA-GMRES on a hybrid CPU/GPU cluster



just for a reference. More parallel performance studies of
our implementation can be found in [23], [25], where we
demonstrated that CA-GMRES can obtain the speedups of
about two over GMRES on multicore CPUs with multiple
GPUs on single compute node and on a hybrid CPU/GPU
cluster. The current studies are the improvements over these
previous results.

VII. CONCLUSION

We studied a thick-restarting strategy to improve the conver-
gence and performance of CA-GMRES with restart. This strat-
egy restarts the iteration using a subspace spanned by a few
Ritz vectors in addition to the current residual vector, and it
is mathematically equivalent to thick-restarted GMRES. Since
the subspace is implicitly deflated during the standard orthogo-
nalization process, this restarting strategy requires only a small
computational overhead without increasing the communication
or storage cost. Our experimental results demonstrated that the
thick-restarting strategy can greatly improve the convergence
of CA-GMRES, reducing the time to solution. Hence, this
strategy can improve the robustness of CA-GMRES, making
it more attractive in practice. We are investigating the effective-
ness of augmentation [8] compared to deflation to improve the
performance of CA-GMRES. Though augmentation requires
an additional sparse-matrix multiply with the basis vectors
spanning the augmented space, it may provide more flexible
deflation framework since any subspace can be augmented to
the Krylov subspace.

We also studied the effects of the deflation on the perfor-
mance of a preconditioned CA-GMRES. Our preconditioner
is based on a domain decomposition (DD) [25], and is local
in nature. As a result, iteration count can increase on a larger
number of subdomains. The thick-restarting strategy may pro-
vide a potential to introduce global preconditioning on top of
the local DD preconditioning. Unfortunately, the effectiveness
of the deflation depends on the spectral distribution of the
coefficient and preconditioned matrices, and even using the
thick restart strategy, the iteration count may increase on
a larger number of subdomains. We are currently studying
a more general framework to integrate a global low-rank
preconditioner on top of our local DD preconditioner (i.e.,
not restricted to a subspace spanned by the Ritz vectors of
the preconditioned matrix AM−1). The deflation techniques
studied in this paper can be combined with these local DD
and global low-rank preconditioners.
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