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While most recent breakthroughs in scientific research
rely on complex simulations carried out in large-scale
supercomputers, the power draft and energy spent for
this purpose is increasingly becoming a limiting factor
to this trend. In this paper, we provide an overview
of the current status in energy-efficient scientific
computing by reviewing different technologies used
to monitor power draft as well as power- and
energy-saving mechanisms available in commodity
hardware. For the particular domain of sparse linear
algebra, we analyse the energy efficiency of a broad
collection of hardware architectures and investigate
how algorithmic and implementation modifications
can improve the energy performance of sparse linear
system solvers, without negatively impacting their
performance.

1. Introduction
Linear algebra has been at the heart of the biannual
Top500 (the Top500 List, http://www.top500.org/.) and
Green500 (the Green 500 List, http://www.green500.
org/.) rankings of supercomputers since their respective
inception in 1993 and 2005. In particular, the Top500 list
classifies computers according to their raw performance
(in terms of GFLOPS, or millions of floating-point
arithmetic operations per second) when solving a linear
system of equations via the LU factorization.1 As a
response to the increasing concern about the energy
draw by high performance computing (HPC) facilities,

1High Performance Linpack (HPL, http://www.netlib.org/benchmark/
hpl/).

2014 The Author(s) Published by the Royal Society. All rights reserved.
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the scientific computing community has welcomed the Green500 list, which puts the emphasis
on power efficiency by using a performance–power ratio rather than using raw performance
(concretely, the GFLOPS/W), where the performance is again based on the aforementioned HPL
benchmark.

The egregious benefits that current petascale applications deliver, and those that are expected
from the problems to be tackled in the upcoming exascale decade [1–4], motivate the construction
of enormous and complex HPC systems. If we extrapolate the technologies underlying the current
no. 1 in the Top500 and Green500 lists to build an exascale machine, the outcomes are systems that
would dissipate 408 and 312 MW, respectively.

While HPL has long been criticized for not representing the actual performance of the
applications currently running on HPC systems, the importance of linear algebra is far beyond
just being at the base of this benchmark or modern candidates to replace it [5]. Indeed, the solution
of dense and sparse linear systems is ubiquitous in scientific computing, being at the bottom of
the ‘food chain’ for many computational applications. Therefore, any effort towards improving
the performance and energy efficiency of this type of operation will surely have a strong positive
impact on the countless numerical simulations that build upon them.

In this paper, we first provide a general overview of current research and developments on
energy-aware HPC by reviewing software- and hardware-based power and energy evaluation
methods, metrics used for quantifying the resource efficiency of numerical algorithms, and
power-saving mechanisms integrated into hardware. We then specifically focus on sparse linear
algebra, comparing the efficiency of different system architectures when solving sparse systems of
linear equations using the conjugate gradient (CG) method, and then showing how to improve the
energy efficiency of sparse linear system solvers based on this method on multicore and manycore
architectures.

2. Energy-efficient computing
In everyday usage, there is often an inadequate distinction between the terms ‘power’ and
‘energy’, though the physical difference is significant. In particular, energy is the integral of power
over time and, therefore, energy measures the amount of ‘work’ necessary to perform a task,
whereas power is the rate at which work is performed and, therefore, the rate at which energy
is used.

When talking about the resource demand of HPC facilities especially, the fundamental
difference between power optimization and energy optimization is neglected. The term power
optimization refers to adapting the power draft of the system running a specific application
to some desired value, given, for example, by an upper bound or smooth transition between
different values. These restrictions are in most cases motivated by the infrastructure.

When optimizing the system/application combination with respect to energy, the aim is
instead to decrease the product of time and (average) power, which can be achieved by reducing
execution time, diminishing average power draft or a combination of both. Thus, in some cases,
it may be possible to attain a lower energy utilization at the expense of a higher power draft, or
vice versa.

(a) Power metrics
As infrastructure or user demands may impose restrictions on the power draft, new metrics
accounting for the key factors of runtime, power draft and total energy consumption of a
system/application combination are essential for optimization. While GFLOPS/W is the de
facto standard to measure the energy efficiency of a computing system (the Green 500 List,
http://www.green500.org/; the Top500 List, http://www.top500.org/), recent work [6] provides
strong evidence that this metric tends to promote power-hungry algorithms that deliver high
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sustained performance, when, in reality, the objective should be the reduction of the total energy,
preferably along with the minimization of the time-to-solution (TTS).

To avoid this effect, one can rely on the energy-delay product (EDP) [7], which combines
both factors, TTS and energy, into a single figure of merit, thus promoting algorithms that are
more power-friendly. The FFTSE [6] progresses further along this line by considering the product
between the energy and a function f of TTS. Different cost functions for f thus lead to distinct
cases: f (t) = 1, with t = TTS, renders FTTSE as simply equivalent to the energy, whereas FTTSE is
analogous to EDP when f (t) = t. More interestingly, the linear model f (t) = α · t, with α a scalar,
allows one to weight (penalize) for time increases; and the exponential case f (t) = eα(t−τ ) exerts a
stronger pressure when the TTS exceeds a certain threshold τ .

(b) Technologies for power measurement
A common approach to measuring power and energy consumption is to leverage a hardware
device, in general a wattmeter, connected between the electric power outlet and the power supply
unit (PSU) of the system. Alternatively, the measurement point can be inside the system itself,
connecting the hardware device to the lines that run from the PSU to the different components
(motherboard, disk, network card, etc.). These power measurement devices can be mainly
classified according to four criteria: nature, location (internal or external, as we just observed),
accuracy and sampling rate.

Nature: some devices measure the active power, that is, average power consumption obtained
from the energy measured during a second, whereas other devices instead provide the
instantaneous electric power that is obtained by testing the current and voltage of the machine.

Location: the point of measurement has significant consequences. Internal supervision cards
measure power consumption inside the machine (i.e. downstream from the PSU) unlike other
devices which sample externally (upstream of the PSU). This implies that power measurements
from such internal cards refer to direct current (DC) power and do not take into account the
power wasted by the PSU. By contrast, external devices measure the overall alternating current
(AC) power, and therefore include the PSU inefficiencies, which can represent a non-negligible
portion of the total consumption of the machine. On the other hand, the external power meters,
in general, operate at a lower sampling rate than their internal counterparts.

Accuracy and sampling rate: the variability of these two dimensions can be large: from devices
that offer a measurement uncertainty of ±7 W and/or a sampling rate of 1 Hz (sample per
second)—in general too large to capture power variations of few watts and/or a few seconds—
to extremely accurate, though in general highly expensive, elements with error margins below
±0.1 W and sampling rates in the range 10 kHz and above.

Recent processor technologies are increasingly equipped with diverse types of counters that
provide power measurements, either extracted from real data or estimated via a model. This
is the case, for example, of the running average power limit (RAPL) model, available in the Intel
Sandy Bridge microarchitecture; the NVIDIA management library (NVML) for graphics processors;
and the thermal power management device (TPMD) and the automated measurement of systems for
temperature and energy reporting (Amester) for IBM’s Power 7 processors. Unfortunately, these
technologies can be leveraged to measure only the power consumed by the processors, not
the whole machine. Moreover, in some cases (e.g. RAPL), this is an intrusive solution as it is
necessary to access the energy counters via a daemon program running on the same machine that
is monitored, thus introducing unwanted noise into the measurement process.

The general conclusions from El Mehdi Diouri et al. [8] indicate that, thanks to their high
sample rate, the internal measurement devices allow for better identification of some power
fluctuations that the external wattmeters are not able to capture. However, a high sample
rate is not always necessary to understand the evolution of the power consumption during
the execution of a benchmark. Moreover, monitoring very large-scale distributed systems with
internal wattmeters is not practicable, as the integration of those is usually not only expensive but
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also very difficult. For these reasons, other sources such as RAPL, NVML or TPMD are becoming
very appealing for monitoring purposes.

(c) Software for power measurement
An excellent survey on hardware and software for power profiling is given in [9]. Focusing on the
software tools, POWERPACK [10] is able to identify which lines feed different components such
as disks, memory, network interface controllers, processors, etc. This information is then offered
to the user who can gain insights on where and how applications consume power. POWERPACK

uses a user-friendly interface, and targets applications running on single-node platforms, though
POWERPACK’s information can be ‘manually’ aggregated for parallel message passing interface
(MPI) applications.

HDTRACE [11] is a package to trace and simulate the power–performance footprint of MPI
programs on a cluster. This software supports MPICH2 and the parallel virtual file system.
Recently, it has also been extended to identify power hot spots in these applications, using
information from commercial AC wattmeters.

pmlib [12] is a framework of tools used to analyse the power dissipation and the energy
consumption of parallel MPI and/or multi-threaded scientific applications that comprise
(i) a simple API (application programing interface) to interact with a number of power
measurement devices, (ii) a library and a collection of drivers to capture the power dissipated
during the execution of an application in a separate system, and (iii) an interface with integrated
Extrae + Paraver packages (the Paraver Project, http://www.bsc.es/plantillaA.php?cat_
id=485.) that permits an interactive analysis of a graphical trace, relating the power dissipation
per node/core to information on the core activity.

(d) Energy-efficient processor technology
Current processor technology uses tools and mechanisms originally designed for embedded
systems and the mobile market to use energy more efficiently. As of today, most processors
adhere to the advanced configuration and power interface (ACPI) standard [13], which defines a
collection of states the system can be set to depending on the workload, and thus offers a tool to
tune the power usage to the current needs.

From the processor point of view, ACPI defines the so-called performance states (or P-states),
which define the operating voltage–frequency pair of the processor. Vendors customize their
products to feature a varying number of P-states, depending on the type of application.
Additionally, in some cases, the P-state can only be set for all cores in the socket, whereas others
permit each core to operate in a different P-state. In the past few years, the cost and latency
of transitioning between P-states has been decreasing, and the management of the P-states has
been incorporated into the operating systems (e.g. via Linux governors). State P0 corresponds to
the highest voltage–frequency pair and, therefore, the most power-consuming state. Subsequent
states are enumerated as P1, P2, etc.

ACPI includes an additional energy-saving mechanism in the form of the processor or CPU
power states (C-states). This tool defines how and when certain processor components can be
switched off to improve energy conservation. In state C0, the processor is active. In ‘deeper’ states
(C1, C1E, C2 and so on) the clock signal is shut down to certain components (e.g. the floating-
point units or certain levels in the cache hierarchy). Thus, a deeper C-state can potentially yield
higher energy savings, but the latency to transition to the active C0 state will also be longer.
While the P-states can be operated by the user (e.g. via utilities such as cpufreq), for security,
the C-states are only accessible to the hardware and the operating system. In this sense, the only
possibility for the programmer to interact with these states is by setting the appropriate conditions
in the application so that the operating system can promote the processor, when idle, to an energy
efficient C-state. Section 3 offers two relevant examples of this.
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while maxiter maxres

end

Figure 1. Algorithmic formulation of the CG method.

3. Energy-efficient solution of sparse linear systems

(a) Preliminaries
Sparse linear algebra is in many cases characterized by the solution of linear equations with
sparse coefficient matrices. For this purpose, iterative methods are often preferred to direct
solvers as they usually provide high accuracy solution approximations with a significantly lower
computational effort [14,15]. Although a large variety of iterative methods exist, those based on
Krylov subspaces2 have shown superior performance for many applications, therefore becoming
the de facto standard in many sparse linear algebra software libraries.

The CG method, introduced by Hestenes & Stiefel in 1952 [15], is among the most effective
Krylov subspace solvers for symmetric positive definite (SPD) systems. As all experiments in this
section will be based on this method, we shortly recall the algorithm and its main characteristics
next. For a linear system Ax = b, where A ∈ R

n×n is an SPD coefficient matrix, b ∈ R
n contains

the independent terms and x ∈ R
n is the solution, the method is algorithmically formulated in

figure 1, where the user-defined parameters maxres and maxiter set upper bounds, respectively,
on the relative residual for the computed approximation to the solution xk and the maximum
number of iterations.

In practical applications, the computational cost of the CG method is dominated by the matrix–
vector multiplication zk := Adk. Given a sparse matrix A with nz non-zero entries, this operation
roughly requires 2nz floating-point arithmetic operations (flops). Additionally, the loop body
contains several vector operations (for the updates of xk+1, rk+1, dk+1 and the computation of ρk
and βk+1) that cost O(n) flops each. A detailed derivation of the CG method can be found in [16],
including a broad convergence analysis.

In the following sections, we apply this algorithm to generate a solution approximation to
different linear systems where the SPD coefficient matrices are either chosen from the University
of Florida Matrix Collection (UFMC),3 corresponding to finite-element discretizations of several

2While, in principle, Krylov subspace methods belong to the class of direct solvers, as they approximate the solution in a
subspace expanded in every iteration by an additional search direction until the complete space is generated, they are almost
always used as iterative solvers providing a very good approximation of the solution after a few iterations.
3See http://www.cise.ufl.edu/research/sparse/matrices/.
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Table 1. Description and properties of the test matrices.

source acronym matrix no. non-zeros (nz) size (n) nz/n

UFMC AUDI AUDIKW_1 77 651 847 943 645 82.28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BMW BMWCRA1 10 641 602 148 770 71.53
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CRANK CRANKSEG_2 14 148 858 63 838 221.63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1 F1 26 837 113 343 791 78.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

INLINE INLINE_1 38 816 170 503 712 77.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LDOOR LDOOR 42 493 817 952 203 44.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Laplace A100 A100 6 940 000 1 000 000 6.94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A126 A126 13 907 370 2 000 376 6.94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A159 A159 27 986 067 4 019 679 6.94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A200 A200 55 760 000 8 000 000 6.94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A252 A252 111 640 032 16 003 001 6.94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

structural problems arising in mechanics, or derived from a finite difference discretization of the
three-dimensional Laplace problem. A few key parameters from these matrices are collected in
table 1 while sparsity plots can be found online.2 In all cases, the vector of independent terms b is
initialized so that all the entries of the solution vector x equal 1, and the CG iteration is started
with the initial guess x0 ≡ 0.

All experiments (except for those in §3c) were performed using IEEE single-precision (SP)
arithmetic. While the use of double-precision (DP) arithmetic is in general mandatory for
the solution of sparse linear systems, in [17] it is shown how the use of mixed SP–DP
arithmetic, in combination with iterative refinement, leads to improved execution time and
energy consumption for GPU-accelerated solver-platforms. The underlying idea of a hybrid SP–
DP solver, with iterative refinement, is visualized in figure 2 as an iterative process where the
DP solution approximation is updated by the solution of an error correction equation based on
the residual and solved in SP. Note that a major conclusion from [17] is that, with this kind of
solver, the impact on the global execution time and energy consumption by the parts that are
performed in DP arithmetic is negligible. Therefore, it is natural to study the cost of the SP solver.
Unfortunately, there exists only a DP version of the solver evaluated in §3c so that, for those
experiments, we had to rely on the more conventional DP arithmetic.

(b) Time–power–energy trade-offs
(i) General overview

Sparse linear algebra in general, and sparse linear system solvers in particular, are characterized
by a high number of memory accesses compared with a low number of flops. Therefore, for
many computing systems, the actual sustained performance peak that can be attained in a given
platform is dictated by the bandwidth between the computational units and the level of the
memory where the data resides. Hardware designs often try to account for this issue by either
providing sophisticated memory hierarchies consisting of multiple cache levels, and/or data
streaming mechanisms, such as those in GPUs [21].

Aiming for higher energy efficiency, many multicore systems allow for modification of the
core clock rate (via the P-states). Although decreasing operating frequency for memory-bound
operations may, in principle, yield lower energy usage while preserving performance, this is not
true for all architectures, as processor frequency and memory throughput rate are sometimes
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Figure2. Mixedprecision iterative refinementprocess [18–20] using anerror correction solver in single precision (.s) to generate
solution updates for a system of linear equations Ax = b in double precision (.d). (Online version in colour.)

coupled. Decreasing the number of working cores on multicore platforms (thus enabling the idle
hardware to transition to a sleep C-state) may have a similar effect: if the memory bandwidth
is independent of the number of active cores, for this type of computations, we may be able to
decrease the power draft without impacting performance by deactivating a subset of the cores.

In summary, the key factor that determines the energy efficiency for sparse linear algebra
applications is the underlying paradigm concerning the hardware complexity. An architecture
composed of a few complex cores, featuring high clock frequencies and deep cache hierarchies,
provides high floating-point performance and greatly benefits from data locality, at the price of
a high power draft. On the other hand, a low-power processor consisting of simple cores and an
unsophisticated memory hierarchy, operating at moderate frequencies, aims for a lower power
draft at the expense of extended execution time. Both paradigms, though, have to compete with
the data-streaming approach taken by the manycore GPUs.

(ii) Experimental analysis

Next, we summarize the key results and observations of our energy efficiency evaluation of
the CG method for the solution of sparse linear equation systems on several architectures
representative of today’s HPC landscape [22]. Following a recent approach that aims at designing
an exascale architecture from low-power and embedded components (the Mont Blanc Project,
http://montblanc-project.eu), we included several low-power processors in the comparison. One
crucial challenge in conducting a fair comparison is choosing an appropriate level of hardware-
dependent optimizations to the code as, for example, different systems usually benefit from
distinct layouts of the data structures. In particular, data-streaming hardware usually exhibits
significant performance increases for coalesced memory access patterns. To account for this issue,
we adopt the ELLPACK sparse matrix storage format for GPU systems, while we rely on the
standard compressed sparse row (CSR) format for the multicore architectures [23,24]. More details
on the implementation of the sparse matrix–vector (SpMV) kernels underlying the CG method,
for the CSR and ELLPACKT formats, can be found in [22].

In the following experiments, we execute 1000 iterations of the CG solver on the systems listed
along with their characteristics in table 2, for the subset of the UFMC test matrices introduced in
table 1, which fit in the main memory of all architectures (BMW, CRANK and F1), as well as the
Laplace A159 matrix. All power measurements are collected using a WATTSUP?PRO wattmeter.
In figure 3, we report the performance (figure 3a,c) and energy efficiency (figure 3b,d) for the
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Figure 3. Comparison of performance (a,c) and performance/watt (b,d) when optimizing with respect to run time (a,b) or net
energy (c,d), measured, respectively, in terms of GFLOPS and GFLOPS/W (1 GFLOPS= 109 flops s−1). (Online version in colour.)

different test platforms when optimizing the operating frequency for either runtime performance
(figure 3a,b) or energy efficiency (figure 3c,d).

Optimization with respect to time. In terms of runtime performance, the Tesla K20 (KEP) and
the Tesla C2050 (FER) are superior to all other architectures by almost by an order of magnitude
(see figure 3a). However, the performance of these two GPU-based systems strongly depends on
the matrix sparsity pattern, a sensitivity that is also shared by the Quadro 1000M (QDR), which
outperforms the C6678 DSP (TIC) only for those cases where the use of the ELLPACK format does
not incur significant overhead on the GPUs. While TIC shows some variation on performance as
well as the performance-per-watt ratio depending on the matrix structure, its energy efficiency is
unmatched by any other architecture. The two other low-power processors, ARM and Atom (IAT),
show better ratios than the conventional general-purpose processors (Interlagos AIL, Magny-
Cours AMC, Nehalem INH, and Sandy-Bridge ISB), but only for some matrix cases do they show
higher energy efficiency than the GPUs. For FER and QDR, it is interesting to note that, although
they yield very different performance, their performance-per-watt ratios are almost equal [22].

Optimization with respect to the net energy efficiency. If we optimize the configurations with
respect to energy consumption, it is, in many cases, beneficial to reduce the operating voltage and
frequency. Particularly, significant improvements can be observed for the low-power processors
as these architectures provide not only higher optimization potential, but also exhibit superior
energy efficiency compared with the conventional general-purpose CPUs or GPUs [22]. Again, the
TIC exhibits the best energy efficiency, followed by ARM, with the latter still superior to the GPUs
or the general-purpose CPUs (see figure 3d). IAT is, in terms of energy efficiency, competitive with
the FER and QDR GPU-based systems. Unfortunately, the decreased voltage and frequency, which
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results in the superior energy efficiency, also incurs an extended run time as the reduced watt-per-
iteration values for TIC, ARM and IAT come at the price of significantly higher execution times; see
the performance decrease from figure 3a,b to figure 3c,d.

(c) Leveraging the CPU states on manycore systems
The results in §3b illustrate that GPUs are among the most energy-efficient hardware architectures
for sparse linear algebra. Despite the fact that these hardware accelerators rarely offer any
user-controlled power-saving mechanism, their vast number of floating-point arithmetic units,
in combination with an outstanding bandwidth to memory and a data-streaming architecture,
results in highly favourable performance/watt ratios. However, as GPUs cannot be used as stand-
alone systems, one also has to take the power draft of the host into account. In the end, the energy
efficiency depends on the performance/watt ratio of the GPU and the question becomes how to
save power for the host.

In this section, we show how to leverage the CPU states in order to improve the energy balance
of a GPU-based iterative solver. For this purpose, we evaluate different implementations of the
CG method on a platform equipped with both a multicore processor and a GPU. First, we consider
a straightforward CG-CUBLAS implementation that consists of individual routines that are either
taken from the CUBLAS library or self-written kernels, reflecting specific numerical operations of
the method (compare the left-hand side implementation in figure 5 with algorithm 1). This natural
approach has not only the advantage of the clear representation of the mathematical description
of the method, but also provides the possibility of replacing individual kernels for alternative
codes, and, for these reasons, will later be used as a reference implementation.

One major disadvantage of this initial implementation becomes obvious when monitoring the
power draft of the CPU, which is in charge of launching the GPU kernels for the vector- and
matrix–vector operations. Counter to what one might expect, the CPU does not enter a power-
efficient state during idle periods, but instead remains in a power-oblivious polling loop waiting
for the GPU kernel to finish. In past work, we leveraged an idle-wait approach [25] to avoid this
behaviour, though the same effect can be achieved by running the code in the CUDA blocking
mode, which suspends the CPU thread when waiting for the GPU to finish a task. While the
suspended threads of the CPU can now be promoted by the hardware into an inactive power-
friendly C-state, e.g. C1 (halt) or deeper [13], the reactivation cost may cause some runtime
overhead; see figure 4, which illustrates the power benefits and runtime overhead of the blocking
mode for the CG-CUBLAS implementation applied to the AUDI test matrix. Hence, the generally
superior power efficiency of the CUDA blocking mode comes along with a certain price in terms
of performance, which may negatively affect energy consumption. As the runtime is, in general,
regarded as the crucial figure, the challenge is thus to recover the performance of the polling
mode while leveraging the power-saving mechanisms embedded in the hardware by operating
in blocking mode. The key to this lies in developing a new implementation of the CG method that
breaks down the rigid structure of the original code, so that several kernels can be gathered and
merged together, with the result offering a higher computational intensity.

Let us reconsider the loop of the original CG-CUBLAS implementation, in the left-hand side of
figure 5, corresponding to algorithm 1. We can observe that the loop body comprises a number of
calls to CUBLAS kernels inside a loop that can be potentially invoked from hundreds to thousands
of times. This large number of kernel calls and the frequent data transfers between GPU and main
memory are major sources of overhead. Reducing the number of calls by merging kernels and
avoiding synchronization owing to data transfers are both crucial to alleviating the time overhead,
but can also render a lower number of activations of the CPU, yielding a more efficient usage of
the C-states and, consequently, improved energy efficiency. (We note that this technique can be
applied not only to the CG method but, in general, the same approach can be applied in many
other codes that off-load most of the computations to the accelerator as a sequence of short GPU
kernels.)
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Figure 4. Power (W) dissipated by the CG-CUBLAS implementation, using the polling and blocking modes, for the AUDIKW_1
matrix. (Online version in colour.)

Figure 5. Aggregation of kernels to transform the CG-CUBLAS implementation into the CG-merged implementation. (Online
version in colour.)

In [26], we describe how to decrease the kernel count by gathering multiple operations into a
single GPU kernel, and how to reduce the host-device communication by keeping the outcome
from reduction operations on the GPU. The resulting implementation, hereafter referred to as
‘merge’, is shown in the right-hand side of figure 5. An enhanced version, ‘merge-s’, that checks
the convergence criterion not every single but every s iterations of the CG loop, is also proposed
in [26]. While, on average, this technique incurs s/2 additional iterations of the solver, it will also
decrease the transfers from GPU to main memory as (11/s) of the transfers/synchronization are
economized.

The benefits of the modifications visualized in figure 5 are summarized in figure 6 for all test
matrices listed in table 1, showing the average variation of runtime (figure 6a) and CPU energy
(figure 6b) in polling mode (left) and blocking mode (right), with respect to the CG-CUBLAS
reference implementation running in polling mode. The target platform for this experiment was
equipped with an Intel Core i7-3770K (four cores at 3.5 GHz) and 16 GB of RAM, connected to
an NVIDIA GeForce GTX480 ‘Fermi’ GPU. Power was measured using an internal DC wattmeter
connected to the 12 V lines that run from the PSU to the motherboard. For further details about
the experiment set-up and the results, see [26].
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modes, using the polling-CUBLAS code as reference. (Online version in colour.)

Concerning the performance objective, we deduce from the left-hand side of figure 6a that
the merged implementations running in polling mode outperform the reference polling-CUBLAS
implementation. The blocking mode may still have a negative impact on the execution time,
and in the worst case we observe an increase of about 10%. However, this only occurs for very
specific cases where the time for the matrix and vector operations is short compared with the
cost of reactivating CPU cores, whereas, on average, the performance of the reference CUBLAS
implementation can be matched. When the blocking-merge implementation is slower than the
polling-CUBLAS code, shifting to blocking-merge-10 compensates for this, making the difference
negligible. In all cases, the blocking-merge-10 implementation exhibits higher performance gains
with respect to the reference than the blocking-merge code. In summary, figure 6a demonstrates
that the performance goal is fulfilled as the merge-10 implementation in blocking mode matches
or even outperforms CG-CUBLAS in polling mode.

Figure 6b illustrates the CPU energy consumption of the merged implementations, compared
against those of the CG-CUBLAS code. While the merged variants executed in polling mode (left-
hand side) may, on average, render some appealing savings owing to the reduced execution time,
the clear winners are the same variants operating in blocking mode (right-hand side), which yield
a reduction of the CPU energy draft of about 25–30%. Hence, the reformulated CG meets the
twofold goal of rendering a significant reduction of the total energy consumption while retaining
the runtime performance.
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(d) Leveraging the CPU states on multicore systems
Here, we revisit the solution of sparse linear systems via ILUPACK (incomplete LU package4),
a numerical software based on Krylov iterative methods. The package implements multilevel
ILU preconditioners for general, symmetric indefinite and Hermitian positive definite systems, in
combination with inverse-based ILUs and Krylov subspace solvers.

The parallelization of ILUPACK is analysed in [27], where the task concurrency intrinsic
to the preconditioned iterative solution of the sparse linear systems is efficiently exploited on
multicore architectures. Specifically, in this approach, parallelism is exposed by means of nested
dissection applied to the adjacency graph representing the non-zero connectivity of the sparse
coefficient matrix of the linear system. By recursively splitting this graph, the result is a hierarchy
of independent subgraphs that is highly amenable to parallelization.

This type of concurrency can be expressed as a (directed) task dependency tree, where nodes
represent concurrent tasks and arcs specify dependencies among them. The parallel execution of
this tree on multicore processors is then orchestrated by a runtime which dynamically maps tasks
to threads (cores) in order to improve load balance requirements during the computation of the
ILU preconditioner and the subsequent solution of the triangular linear systems.

From the implementation point of view, the runtime keeps a shared queue of ready tasks
(i.e. tasks with their dependencies fulfilled), which is initialized with the tasks corresponding
to the independent subgraphs (leaves of the tree). Processor threads update this queue as they
complete the execution of tasks allocated to them. The access to shared data structures is carefully
controlled via low-cost synchronization primitives.

In the following, we evaluate the exploitation of the C-states made by two implementations
of the runtime underlying ILUPACK. For this purpose, we use a scalable SPD sparse linear
system of dimension n = N3, resulting from the finite difference discretization of the partial
differential equation −�u = f in a three-dimensional unit cube Ω = [0, 1]3, with Dirichlet
boundary conditions u = g on ∂Ω , using a uniform mesh of size h = 1/(N + 1). We set N = 252,
which yields a linear system with about 16 × 106 unknowns and 111 × 106 non-zero entries in
the coefficient matrix. The tests reported next were performed using IEEE DP arithmetic. The
target server contains a single AMD Opteron 6128 processor (eight cores) and 24 GB of RAM.
This processor features three operating or C-states (C0, C1 and C1E). Samples were collected in
this case using an internal wattmeter. Unfortunately, there exists no version of ILUPACK using
SP computations, so we have to use DP for the experiments in this section.

In the previous paragraphs, we exposed how the task-parallel calculation of the preconditioner
in ILUPACK is organized as a binary tree and bottom-up dependencies. The subsequent iterative
process basically requires the solution of two triangular linear systems per iteration, with tasks
that are also organized as binary task trees, but with bottom-up (lower triangular system) or top-
down (upper triangular system) dependencies. When these tasks are dynamically mapped to a
multicore platform by the runtime, the execution can be expected to exhibit a number of time
periods during which certain cores are idle, depending on the number of tasks of the tree, their
computational complexity, the number of cores of the system, etc. As in the previous case, where
we outsourced computations to the accelerator (see §3c), it is basically these idle periods that
we could expect the operating system to leverage, by promoting the corresponding cores into a
power-saving C-state (sleep mode).

In the original runtime underlying ILUPACK, upon encountering no tasks ready to be
executed, ‘idle’ threads simply perform a ‘busy-wait’ (polling) on a condition variable, until a
new task is available. This strategy prevents the operating system from promoting the associated
cores into a power-saving C-state, because the threads are not idle but doing useless work by
actively waiting for tasks.

As an alternative to the power-hungry strategy, a power-aware version of the runtime
underlying ILUPACK can apply an ‘idle-wait’ (blocking) whenever a thread does not encounter
a task ready for execution and, thus, becomes inactive. Note that, as previously mentioned in §2d,

4http://ilupack.tu-bs.de.
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Table 3. Execution time (s), average power (W) and energy (J) of the power-oblivious and power-aware implementations of
the runtime.

preconditioner iterative solver total

runtime time power energy time power energy time energy

oblivious 66.11 240.17 15 878.82 220.17 269.27 59 284.92 286.28 75 163.74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aware 66.52 227.16 15 112.06 221.39 237.80 52 646.41 287.91 67 758.84
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

setting the necessary conditions for the operating system to promote the cores into a power-saving
C-state is all we can do, as we cannot explicitly enforce the transition from the user side.

The question is whether the use of the power-aware runtime comes with a performance
penalty which masks the energy benefits. Table 3 compares the two runtimes, showing that this
is not the case for both the computation of the preconditioner and iterative solution. Indeed, for
a negligible increase in the total execution time, from 286.28 to 287.91 s, we observe reductions in
the (average) power from 240.17 to 227.16 W for the preconditioner; and from 269.27 to 230.80 W
for the solver. The outcome is a more than 10% decrease of the total energy from 75 163.74 to
67 758.84 J.

4. Concluding remarks
In this paper, we have reviewed the current status in energy-efficient HPC, focusing the analysis
in the particular domain of sparse linear algebra. Specifically, we have experimentally compared
different architectures using the solution of sparse linear systems via the CG method as the
key benchmark. Furthermore, we have identified current challenges that stand in the path to
effectively lower energy utilization, and we have also assessed the potential of energy-aware
implementations. One key observation of our studies is that the energy efficiency of linear system
solvers can be improved, without impacting runtime performance, by carefully adapting the
algorithm’s implementation to the target hardware. Doing so allows for better exploitation of
the hardware-featured power-saving techniques. As a more general conclusion of this work,
we believe that, in the context of the energy challenge of exascale computing, hand-in-hand
development of computing architectures and simulation algorithms is crucial for achieving
efficient resource utilization.
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